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Abstract—1In this work, we propose quantum assisted eigen-
value estimation and target detection algorithms for a large
sensor array via Hamiltonian simulation. Quantum algorithms
provide complexity advantage of a certain class of problems on
a quantum computer with fewer physical resources as compared
to their classical counterparts. The proposed algorithms make
use of the quantum phase estimation (QPE) as its core com-
puting component. We have introduced an analytical quantum
framework to map from classical to quantum in the context of
target detection. Target detection involves an appropriate choice
of threshold based on the probability of detection or false alarm.
We exploited the massive sensor array structure and invoked
the random matrix theory to propose an optimal threshold.
It also takes into account the quantum measurement noise in the
framework. Numerical simulations are performed to ascertain
the efficacy of the proposed framework. The results suggest near
term applications of the quantum algorithm for large-scale linear
systems.

Index Terms— Quantum signal processing, quantum eigenvalue
estimation, quantum phase estimation, Hamiltonian simulation,
array signal processing.

I. INTRODUCTION

ENSOR arrays with multiple-input and multiple-output

(MIMO) have become the forefront in modern signal
processing and communication systems with a number of
dedicated applications. They include beam-forming, precod-
ing, source localization that improve the reliable detection
and estimation of parameters of interest in a wireless system.
The large arrays facilitate higher diversity and multiplexing
gains, enhance channel estimation, and excellent efficiency
in signal recovery [1], [2]. Few concurrent systems include
the recent Terahertz (THz) communication [3], [4], robust
source localization [5], and MIMO radar [6], where large
number of antenna arrays have been used. As the sensor
arrays are kept much higher than the number of parameters
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of sources, the underlying matrix of the system model seems
to be sparse in nature [4]. We have considered a generalized
sparse signal model of sensor arrays, while we use extended
models to MIMO in the spatial domain and beam-space MIMO
for practical interest. However, our objective of this work is
limited to the quantum-based framework design for finding
the eigen-spectrum of the said sparse matrix. This is because
many modern applications require knowledge of the spec-
trum (eigenvalues) of the underlying system matrix. However,
estimation of the eigenvalues with classical eigenvalue decom-
position (EVD) incurs higher computational complexity of
O(N?) with an N x N matrix [7]. Quantum signal processing
will come as a great help in determining the eigenvalues
due to the parallelism inherited in quantum computation.
Albeit, quantum inspired classical algorithms may achieve
computational advantage for low rank system [8].

A. Recent Advances in Quantum Signal Processing

To provide much faster computation, quantum formal-
ism comes with a few revolutionizing phenomena such as
quantum parallelism, superposition and interference, quan-
tum tunnelling, and entanglement [9]. Some of the potential
applications include quantum communication (QC), quantum
cryptography, quantum information theory (QIT) and oth-
ers [10], [11]. However, most of the works in this area can be
categorized into two major disciplines based on the quantum
framework. One is the quantum search algorithm (QSA)
[12], [13] and the other is the quantum simulation-based
algorithms, such as Hamiltonian simulation [14] and quantum
Fourier transform [15]. Based on QSA, a number of applica-
tions are proposed in the literature such as quantum assisted
maximum likelihood algorithm, iterative quantum multi-user
detector design [16], localization problem of mm-Wave com-
munication [17], non-coherent multiple symbol detection [18],
spatial division multiple access [19], channel estimation [20],
non-orthogonal multiple access (NOMA) [21], and the sparse
code multiple access detection [22]. There have been a few
notable works conceived for the iterative quantum receiver
with QSA [23], quantum Pareto optimization in network
routing problems [24], and recently signal detection for MIMO
with orthogonal frequency division multiplexing (MIMO-
OFDM) systems [25]. Recent works also include quantum
inspired classical algorithms [26], [27] and [8] for low rank
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system, which attain computational speed-up. However, the
quantum simulation-based detection and estimation problems
remain an open-ended area to be researched.

B. Motivation of This Work

The motivation behind this work is to augment the power
of quantum simulations to support the process of finding the
eigenvalues of a massive matrix. This is the central problem for
detecting objects using massive sensor arrays, where a covari-
ance matrix is used. The inherent property of quantum paral-
lelism is exploited in this computation. Unlike decomposing
such matrix into its diagonal form via classical EVD method,
quantum-Hamiltonian simulation can be used to prepare a
unitary operator U using Hamiltonian-S as U = e~*S! with
a proper quantum time-resolution (QTR) ¢ (defined in Sub-
section B of Section-III), that facilitates the computation of the
eigen-spectrum via the quantum phase estimation (QPE). If S
is a d-sparse Hamiltonian, the simulation can be performed
in O(rlog(Z)/log log(%)), with 7 = d?(|S||mast > 1 and
the overall permissible error being bounded by e [28]. This
is computationally much faster than the classical algorithms.
This motivates us to reformulate the problem of estimation
and detection of sources using quantum computation. We have
shown applications of quantum eigenvalue estimation (QEE)
for source identification and localization problems, whereby
we propose quantum assisted detection and estimation algo-
rithms for multiple sources. We have also discussed the
effect of time-resolution and measurement uncertainty of the
outcome of QPE on measurement bases, and the error model
in the result and discussion part. Simulations are performed
on both classical computers, as well as IBM quantum simula-
tor [29] for the implementation of the algorithms.

C. Contributions

With the above background, our contributions in this paper

are summarised as follows.

e A quantum framework with Hamiltonian simulation in a
large sensor array is proposed, where object detection is
performed. This proposal has several technical novelties
in its fold.

1) We propose a semi-quantum algorithm known
as quantum assisted source detection algorithm
(QA-SDA) for object detection in a massive sensor
array with the Neyman-Pearson (NP) framework.
In the first step, Hamiltonian simulation-based phase
estimation is performed for computing the eigen-
values of a massive dimensional covariance matrix
arising from the sensor array. This reduces the
computational complexity, taking the advantage of
quantum computing. In the second stage, an NP cri-
teria is adopted, where the eigenvalues are compared
with a threshold to detect the presence of objects.

2) The threshold value is determined from a target
probability of detection or probability of false alarm.
We choose the former. However, no prior probability
distribution of eigenvalue is assumed for threshold.
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In this work, we exploit the large dimension ran-
dom matrix theory [30] to first determine the prior
probability of this eigenvalue and then incorporate
two random valued errors into it. The first one is
a standard residual Gaussian noise error, and the
other one is the quantum measurement noise. This
quantum measurement noise is a discrete random
variable, contrary to any Gaussian estimation error.
3) A detailed analytical bound has been conceived for
determining this threshold. We have also proposed
a closed form bound with certain approximations.

e We have proposed a quantum-assisted multiple sig-
nal classification (QA-MUSIC) algorithm for angle of
arrival (AoA) estimation in this multiple source localiza-
tion problem frameworks. This is also a semi-quantum
algorithm exploiting the Hamiltonian simulation-based
phase estimation method.

o The quantum measurement noise is a drawback of every
quantum system. However, properly determining this
probability of error is conceived in a simple quantum
signal processing application. In this work, we derive
the exact probability of quantum measurement noise
considering all the quantum building blocks and their
effects.

o We have also done a computational complexity analysis
for the proposed scheme and compared it with the one
for a traditional system.

« Further, we have shown the circuit-level implementation
of single-phase estimation on a real quantum computer
provided by IBM, which shows attractive measurement
outcome probability of the estimated outcome.

D. Mathematical Notations

Some mathematical notations and symbols used in this
article are described below.
|¢) € C™*1: A quantum state vector in column form.
p = |1 (¢|: Density matrix of pure state.
C,Cn, C™x1: Set of complex number, vector, and matrices.
[|A||p,: p-norm of matrix A.
oi(A): it" eigenvalue of A € CN*¥ fori € (1,2,...
Tr(A): trace of matrix A.
diag(o,): diagonal matrix with o; elements at 4" positions.
span(vy, va, ..., v,): span defined by vectors vy, ve, ..., U,
over the complex field C.
dim(S): dimension of the matrix S.
x, x, X: scalar, vector and matrix quantity.
Cn*1, C*™ column vector and row vector respectively.
AT at: complex conjugate transpose of the matrix
“A”, and vector “a”, respectively.

,N).

II. SYSTEM MODEL

We depict a system model having /N sensor antennas and
K -sources (objects) as shown in Fig. 1. We assume that it
receives a complex signal vector x € CX*! from K-sources,
incident on a uniform linear array (ULA) of sensors with
size N. The received data vector is represented by

s=7Yx+mn, (D
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Fig. 1. A receiver front-end with linear uniform sensor array of size N,
sensing incident rays from K objects.

where X € CV*K represents the steering matrix, s € CV*1
denotes received vector. Also, n € CN*! is assumed to be
circularly symmetric, independent and identically distributed
zero-mean additive white Gaussian noise (AWGN) vector. The
steering matrix Y is represented as a sequence of K -steering
vectors, each with dimension NV x 1, and is given by

T = [a(el),a(eg),...,a(GK)]T, (2)

where the a; € CV*! for i = 1,..., N denotes the i steer-
ing vector, and 61, 60s, ..., 0k represent the spatial directions
of incoming signals at the receiver from K -sources.

In Fig. 1, the inclination angles of received signal are
01,04, ...,0k with inter-element distance of d = \/2, where
A is the wavelength of the transmitted signal. The sparsity
aspect appears in the model, as we choose N > K [4]. The
covariance matrix S € CNV*N js estimated statistically from s
as follows

S = Ess'], (3)

where E[.] denotes the expectation operator. In array signal
processing, the matrix S holds certain structures such as
normal matrix, Hermitian, Vandermonde, Toeplitz [31], or a
Wishart Matrix, and sometimes sparse (for N > K). Often,
we are interested to find the spectral estimate of S for several
signal processing applications such as finding the model order,
estimation of AoA of the signals, finding maximum power
component, detection of the desired signal, and finding signal
and noise subspace. However, we are limiting our work to
detect the number of sources and estimate their positions via
proposed quantum-inspired algorithms. In classical system, the
spectrum of S is computed by EVD of S as

L
S=QxQ =) oeel, (4)
i=1
where Q € CM*¥ is a unitary matrix that contains the
eigenvectors (e, eo,...,ey), and the matrix ¥ € RNV*N g
a diagonal matrix with ordered eigenvalues (01 > g2 > --- >
o) along its primary diagonal element. The covariance matrix
can be written as follows

S =8, +021, (3)
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where the overall covariance matrix S comprises of two
components: a signal-covariance matrix S,, (which is low-
rank for K < N), and O’,?UI is the noise-covariance matrix
(which regularizes the low-rank matrix S;;).

III. BACKGROUND: QUANTUM ASSISTED
HAMILTONIAN SIMULATION

A. Quantum Formalism

In this section, an introductory description of quantum
computation is shown including state vector representation,
quantum operation, some fundamental sub-routines, and mea-
surement.

1) State and Basis: The basic computational element in
a quantum computer is the qubit, which follows a set of
quantum mechanical principles. A quantum state vector or
simply ‘state’, |1)) can be represented as the superposition of
orthogonal unit vectors (basis) associated with probabilities as
follows

) = «|0) + B1), (©)

where, |0) and |1) are computational basis vectors, with asso-
ciated probabilities |a|? and | 3|2, which follow |a|?+|3]? = 1.
Apart from computational basis, there are other basis, such as
Fourier basis or sign basis, |+) and |—), which are related to
computational basis as

_10) +11)
_10) = 1)
=) = —7 ®)

However, computational basis states are predominantly
adopted to represent a quantum framework compared to other
basis states. With this basic framework description, a quan-
tum system comprising of N computational basis states, i.e.,

[0),|1),...,|N —1) with amplitudes «g,aq,...,an_1 is
represented as follows
|Y) = apl0) + g |1) +...... +an_1|N —1), )

N—1
with the condition stated as > |a;|? = 1.

i=0

2) Quantum Operations: A key phenomena in quantum

mechanics is that the quantum states can possess a state tran-
sition by following the Schrodinger equation [32]. It indicates
that the evolution of a quantum system can be illustrated by
reversible operation. The reversible process can be realized
using unitary transformation operator U € CV*V with the
following condition UTU = UUT = 1.

B. Hamiltonian Simulation

The Hamiltonian simulation process helps to prepare the
unitary operator e 'S, for a given Hamiltonian S of size
N x N in time t as efficiently as possible with suitable
methods such as product formulas [14], truncated Taylor
series [33], qubitization [34], quantum walk [35], and others.
Mathematically, our objective is to simulate an approximate
unitary operator given by,

U e ™S, (10)
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To implement this simulation with a permissible error bounded
by €, one of the well known choices is to represent the
n
Hamiltonian S = S;. With this, the evolution operator
j=1
can be approximated by a sequence of unitary operators given
by e*Sit/™ [14], where n is the number of time-segments.
The cost Ny, of this method is bounded by [14],

1
1 ,
Newp <1 x 52% x (n7)! /€

where, the term 7 = |[|S||t, and k denotes some inte-
ger. A further improvement is shown using a Taylor series
approach [33], truncated at order K, and is given by
uSg]
U, = e TS Z il (—iSt/n)l .
1=0
For a d-sparse Hamiltonian S, the complexity of the sim-
ulation for time ¢ with permissible error bounded by
e is O (rlog(Z)/log log(Z)), where the parameter 7 =
d?||S||maxt > 1 [28]. For preparing the unitary Uy €
CN*N' yia Hamiltonian simulation, the choice of time ¢ is
crucial. We define a time resolution called quantum time-
resolution (QTR) below in the context of optimal Hamiltonian
simulation.

1) Note on QTR: QTR is the minimum amount of time
t required to prepare a unitary operator Uy € CN*N via
Hamiltonian simulation of a Hermitian matrix S € CNV*V
where the error |[Uy — e 5| is bounded by ¢ > 0.
An optimal QTR should be a very small amount of time ¢,
such that the expected error in the simulation will converge
asymptotically.

2) Assumptions for Hamiltonian Simulation: For a dense
N x N Hamiltonian matrix S, we may not find an efficient
quantum simulation method. To augment the quantum speed-
up for the proposed eigen-spectrum estimation, the following
assumptions need to be taken care [36].

o The Hilbert space of S is a tensor product of many
smaller sub-system components (N = 2™ for a system
of m-qubits).

o The matrix S is sparse with O(NN) non-zero elements.
In array signal processing, the sensor array size (V)
should be enough large as compared to number of
signals (K).

o The Hamiltonian has a complete description. In our case,
the covariance matrix S is statistically estimated which
is equivalent to a time-independent Hamiltonian.

As soon as we prepare the unitary operator U for the d-sparse
Hermitian matrix S, we can suitably proceed for a quantum
evolution circuit to find out the eigenvalues of the matrix S.
One of the well-known subroutines that helps us find the
spectrum of S is the QPE circuit, which is discussed next.

(1)

C. Quantum Phase Estimation

QPE includes a family of algorithms [37], [38] that estimate
one of many phases o; of the unitary operator U. We can write
it as

U |¢>Z =0; |¢>z
_ 6i27rai

V)i 12)
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Fig. 2. Circuit of QPE (Implemented on IBM Quantum simulator with Qiskit
Package) with 5 quantum registers(q’s), and 4 classical registers (c); Uy are
controlled rotation gates, and iqft represents the inverse quantum Fourier
transform circuit; H denotes the Hadamard gate.

where, the |1)), is an eigenstate of U and the correspond-
ing eigenvalue is &;. The eigenvalue estimation for S is
now mapped to phase estimation o; for the unitary operator
U= efiSt.

Fig. 2 shows a shorter version of circuit of QPE simulated
on IBM QISKIT quantum simulator [29] with four ancillary
qubits represented by quantum registers qo,qi,q2,qs. and
x contains the i'" eigenstate [t)), stored in the quantum-
register g4. Here, ¢ represents classical registers where the
measurement outcome will be stored. The successful imple-
mentation of QPE requires that the unitary U is conditioned
on the state of the ancillary qubits in a controlled fashion
given by

U=1[0)(0]@I+]1)(1|®U, (13)

where, I, denotes identity operator, and |0), |1) represent
computational basis states of ancillary qubits ¢’s. The super-
position states of the ¢'s are generated by Hadamard gates H.
One of the challenging tasks is to prepare the starting state, i.e
the eigenstate of U in (12). In the IBM QISKIT platform, one
may easily obtain the estimated phase of U on a measurement
basis, where the probability is maximum, and precision of
the estimated phase is obtained by the number of qubits that
represent the basis in the binary numbers. Once we obtain
the phases of the eigenvalues of U, it readily produces the
eigenvalues o1,...,0x of S with normalization.

IV. PROPOSED QUANTUM ALGORITHMS IN SOURCE
DETECTION AND LOCALIZATION

Source localization for sparse array system is of great
interest [39], [40]. In this section, we propose two quantum
assisted algorithms for a sparse-array system. The first one is
on spectral detection, i.e the number of sources/user detection,
and the second one is on localization problem, i.e the AoA
estimation.

A. Proposed Quantum Assisted Source Detection
Algorithm (QA-SDA)

Detection of the signal subspace dimension helps to provide
the model order of many high-resolution parametric estima-
tors [41]. We are interested to find the number of sources (K)

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:45:57 UTC from IEEE Xplore. Restrictions apply.



LASKAR et al.: EIGEN-SPECTRUM ESTIMATION AND SOURCE DETECTION IN MASSIVE SENSOR ARRAY

present in an environment that determines the signal subspace
dimension. For K number of sources and /N sensor arrays,
the covariance matrix S € CV*¥ can be approximated to a
sparse-matrix with rank K < N. Here, the parameter K is
unknown which needs to be estimated.

1) The Source Detection Problem: We propose a quantum
assisted source detection algorithm (QA-SDA) to find the
number of unknown sources K. This is a semi-quantum
detection framework, where the eigenvalues are obtained by
quantum Hamilton simulation, and the detection of signal-
subspace dimension (K) is performed as a classical computa-
tion. We assume a maximum limit of K as K,,qz.

In determining the number of sources, it is required to
estimate the non-zero eigenvalues of the Hermitian matrix S
having a rank K. QEE estimates these eigenvalues. Thereafter,
a classical NP detection method is used. Due to noise, the
estimation of the eigenvalue will never be non-zero, where
the target is absent. Hence, a threshold is used to determine if
an eigenvalue exists or not. This leads to a hypothesis testing
scheme as stated below,

Ho:x = 0; < op, (14)

Hy:x = 0; > 0. (15)

Here, each eigenvalue o; obtained from QEE is stored in a
classical register. A classical oracle compares each o; to a
specified threshold oy;. Due to the presence of residual zero-
mean Gaussian noise w, and the quantum measurement noise
wy, the o; can be represented as

0 = 0; + Wq + We + We, (16)

where 7; is the actual eigenvalue. Let us assume that the vari-
ance of w, is o2, while w, is a discrete valued measurement
noise having mean zero and variance ag. Further the Quantum
evolution uncertainty in preparation of Uy via Hamiltonian
simulation is modelled as additive noise component w, which
has zero mean and variance of €2 (Derivation is in Subsection-
A of Section-V). The total residual noise variance is 02, =
0? 4+ 02 + €. The o} can be obtained from Cramer Rao
lower bound (CRLB) or Bayesian-CRLB (BCRLB) based on
estimation technique. The noise w, arises due to quantum
probabilistic measurement.

The null-hypothesis (H) states that any eigenvalue below
the threshold can be considered to be zero. The H; hypothesis
favours the acceptance of eigenvalues above the threshold. The
number of non-zero eigenvalues that favours H; is referred to
as K. To find a suitable threshold, one needs to consider the
likelihood function of x given by

[ Pala)P@ds =,

Oth

A7)

Here, ~ is the probability of detection for the designed
experiment. Let us define a general constant as C, =
3 (F)-- ()
5 (%) (557)-

Theorem 1: For a large dimension receiving array size, the
threshold oy, in the hypothesis is related as a non-linear
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function of the probability of detection ~y as follows

oin
4

—/4 [%]i%(—n’“ (%)k] ea:p<_71%)d0, ()

Oth

Oth . .
— _ 92gin (25111 L

> 97 —4sin!
v =2 sin 1

Proof: From (17), we may expand ~y considering p(x|o;)
as Gaussian distributed with mean o and variance UZJ,
as follows

[l

Following large-dimension matrix theory [30], the distribution
of eigenvalues of the matrix S is given by

p(o) = (1_1) TN

)5 exp (—%(m—o)Q)p(U)da:do. (19)

1
2102

Ve —a)t(b—o)t (20)

o 2mco

Here, 1 is defined as 7 = z for z > 0. Note that, the
parameter ¢ = 1 ( it is the ratio of transmitting and receiving
antenna size, taken to be 1 here), a = (1 — y/c)?> = 0, and
b= (1+ +/c)? = 4. Considering p(c) as defined in (20), the
expression for « in (19) becomes

co 4 9 %
e | [ () (557) e
b 2n
(E>2> (4_—0) : dxdo
O o
T I 4-o\?
e[| (520

Oth —<
Tw

’y =
Further, we solve (21) as follows

= [(m) oo

Oth

(22)

Note that, we have considered y = =%, and adjusted

the limit of the integral accordingly. Hence, ‘the we obtain the
expression of (.) function from the above integral and the
reduced form is given by

b)) (5

Oth

(23)

Introducing the bound for Q(y) < exp(_Tyz) and y > 0 in
the above expression, the integral becomes

4 1
—o2 4—0\2
> _ -
vz [[i-en ()] (57) o

Oth

4 1 4 o N
z/ (4_0) da—/exp(—a> (4—0) do. (24)
o 202, o

Oth
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In the expression (24) of ~, let us consider that

4 A N
Ilé/( _U> do.
o

Oth

(25)

In order to solve the integration, further we have considered
that o = 4 sin? ¢ and adjusted the limit for change of variable
from o to ¢, given as follows

¢1l,
/1 — sin?
Ilz/ *qb 8 sin ¢ cos pde
sin® ¢

[}

=21 —4sin! 1/ % — 2sin (2 sin~! %) . (26)

Here, the limit of integral are ¢, = /2, and ¢ = sin ™! b

Hence, adopting (26) in the expression (24), the v becomes

4
i (3

Oth

1
1 _ 3

o? 4—0 do.
2 02 o

Let us consider the integral equation of (27) as

4 1
N —102 4—0)\?2
IQ = /6%])(7@ e do

Oth

. / 20-9)])" (5 )ar

Oth

S e (e o

Oth

The closed-form solution to (28) may not be achieved as the
integral does not possess elementary function(s) of finite order.
Hence, the expression for gy, with 7 is given by (29), as shown
at the bottom of the page. ]
Lemma 1: With first order approximation, the false alarm
probability v of the hypothesis can be represented as in (30),

as shown at the bottom of the page.
Proof: In order to get an approximate solution for oy,
related to v (29), we use Taylor series approximation of the

27)

1
term (4=2)2 with the first two terms and ignoring rest as

follows
1
4—0\2 2 o
~ 1——). 31
< o > \/E( 8 G
Then, we obtain further as follows
4
2 Vo —102
I, = _— - —— | do. 32
= [(F ) () o

Oth
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To solve the above integral by parts, we consider u =

(% — %) and v = eat:p(’1 — ) Hence, (32) becomes
4 4
I = [u/vda] - {/u' (/vda) do} . (33)

where v’ is the derivative of u which can be computed to be
/ 1
w=-|

A+ 5w
4

| wdo. As this integral cannot be computed as an elementary

fﬁhction, we consider the following (with expanded o)

s
I3 —/vda—/exp<2—2>da.
O-U)

We take Taylor series approximation of the function f(o) =

Now, we need to compute the integral

(34)

2 . .
exp(%) about the point o = 0, given as

flo) = £(0) + o f'(0) + O1)?,

O(1)? is the approximation-residue with step length /. Further,
computing the values of the terms, we can see f(0) =
1 and higher terms are zero. Hence, we obtain the first order
approximation of I3 as

(35)

I3 = /f(O)da (36)
=o. (37
Now, I can be written as
- 4
.[2 = |Uu I3 —/u/13d0:|
- Oth
/2 o 1 1 :
=||l—=-— Isd
_(ﬁ 1 >”+/ [ 72 8\/3} ’ U}
_ 4 4
2 1
=|l—=- ﬁ o + / Igda
[\vo 4 o o3/ 8\/_
= 20,/ - Z S (38)
where, the I, is computed as follows,
1 1 :
Iy = [/ {——l——] Ud0:|
o3/2 " 8\/o o
12 1 30
=20}/ Ea”{ (39)
Hence, we get I = 4o,/” — laff With (37), (38) and (39),
the expression for v > I1 I in (27) becomes (30). [ |

4
2 & k —1 02
N> 271 — 4sin”! /% — 2sin <2 sin~? %) - / l% kz;o <Z> (—1)* (%) ]exp<7z—g)>da. (29)
Tth -
1
v~ 2m —4sin! /% — 2sin <2sin—1 %) —doy? — coll. (30)
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The o, can be obtained by solving the below optimization
problem using line search method as follows

argmin [y — I'(ow)],

Oth

(40)

where, I'(oyp,) is the right hand side part of (30). The overall
QA-SDA algorithm is summarized in Algorithm-1.

Algorithm 1 Proposed QA-SDA

* Input: SHOle,S%ONXw,THONxK,tHO,
R1 — 0, R—0 N, Kmaaz, Oth, Oc, Ow, € |¥), L, k
¢ Output: K
For n=1:1L, do:
s(n) — Yx(n) + n(n);
S — E[ss'] (Co-variance matrix)
End For
¢ Step-1: Hamiltonian Simulation
for j =1:m, do:
t—1/m;
U « exp(—i)_; Ujt) (Exact)
for [ =1:m, do:
U= mr (=i ;U ;) (Approximation)
while (¢t > 0),_do:
If (J|U — U|| < €) (With precision ¢)
break;
End If
End For
End For
¢ Step-2: QPE
For n=1:N, do:
$o — 0)®™ [)  (Initialization);
Py — %/2(|0> + |1))®™ |2b) (Superposition on ¢q)
For i =1: N,ndoz
o — 2,:% S texp(2mifl) 1) @ ) (Successive
U-rotations on 1)
For h=1:N, do:

3

R T eap(2EE (h — 270)) |h) ® [¢) (IQFT of
12 on register |h))
End For
End For
End For

¢ Step-3: Quantum Detection
For i =1: Kz, do:
If o, <o, do:
R1=0
Else do:
R1=1
End If
R «— getcount (R1=1); K — R
End For

2) Notes on QA-SDA: In Algorithm-1, the pseudo-code
of QA-SDA algorithm is presented. The input variables,
s,S, YT, N, Koz, Oth, Oc, 0w, L are defined in text; Ry, R, k
represent local variables, |1) denotes quantum eigenstate, and
€ is the precision for Hamiltonian simulation. The output of
QA-SDA is the number of sources K. Given the uniform
linear array, we take the compute of the covariance matrix
S based on the noisy observed signal s. For QA-SDA, there
are three major steps: (i) Hamiltonian simulation, (ii) Quan-
tum phase estimation (QPE) with inverse quantum Fourier
transform (IQFT), and (iii) threshold comparison at Quantum
oracle. These are described as follows.

4019

o Step-1 describes the Hamiltonian simulation of the
covariance matrix S. It takes a uniform sampling of the
estimated covariance matrix following (10) with a series
of truncated unitaries U; given by (11). The iteration
continues till it satisfies the condition of the desired
accuracy, with given precision e.

o In step-2, the QPE is shown. Here, n-length qubit is
denoted with tensor representation. Hadamard operations
are performed for the superposition of the ancillary
qubits. U-gates are applied on the Hadamard output to
control |1)-bases for phase rotation. It is finally followed
by the IQFT circuit on the auxiliary resisters |h). The
measurement is performed at the output of the IQFT
circuit on the computational basis to detect the phase
changes of the qubits acted on the quantum eigenstates
via the QPE circuit, from which eigenvalues can be
obtained.

o As the estimated eigenvalues via QPE is not sorted,
we execute step-3 for the comparison. The detection
threshold is assumed to be oy, and stored in quantum ora-
cle. Every eigenvalues (o}s) are compared with the oy, at
oracle. In quantum random access memory (QRAM), the
oracle helps to count the number of eigenvalues greater
than the threshold, which represents the detected number
of sources, K.

B. Proposed Quantum Assisted MUSIC (QA-MUSIC)
Algorithm for AoA Estimation

We propose the quantum assisted AoA estimation problem
of multiple sources in a massive sensor array. Classical super-
resolution AoA algorithms exploit the eigenvalues of S via
eigenvalue decomposition (EVD) [42] for the localization of
multiple signal-sources. However, the computational costs for
EVD is extremely high for large arrays. We seek to embed
the QPE-based quantum framework for the super-resolution
AoA estimation problem. The proposed algorithm is called
quantum assisted multiple signal classification (QA-MUSIC)
as described in Algorithm-2.

1) Notes on QA-MUSIC: In the proposed QA-MUSIC
case (Algorithm-2), we have four major steps: (i) Estimation
of covariance matrix (ii) Hamiltonian simulation, (iii) QPE
with IQFT, and (iv) spectrum estimation. Step (i) to (iii) are
similar to QA-SDA as described earlier. At first, we perform
Hamiltonian simulation (10) for preparing the unitary evolu-
tion operator U from the sparse-covariance matrix S with a
sufficiently small QTR ¢. The array size is represented by N
which is considered to be large. As QA-MUSIC is a parametric
estimator, the model order of K, which determines the signal
subspace dimension needs to be provided from QA-SDA.
If K is unknown, K, is provided. For the QPE, one needs
to prepare the eigenstates (1) = [}, [0}y ..., [4) )
quantum-mechanically that satisfies U [¢), = €™ |¢),
(12). We perform single phase estimation on quantum com-
puter, whereas for the large-dimensions of S and multiple
eigenvalues, QPE is computed classically due to constrained-
resources. In the second phase of the algorithm, we perform
similar spectrum-based AoA estimation for multiple sources
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Algorithm 2 Proposed QA-MUSIC

. Input: SHOle, S%ONXAN,THONX}{,I‘/HO,
Ri 07 R «— 0, Ps(a) — 0, f — On—k, N, Kmaz, Oth,
Oes Ows € |U), L, Kk
e Output: P,(0)
1) Step-1: Co-variance Matrix from Steering Arrays
For n=1:1L, do:
s(n) — Y'x(n) + n(n);
S — E[ss']
End For
2) Step-2: Hamiltonian Simulation
for j=1:m,do:
t— 1/m;
U — exp(—i)_; Ujt)
for [ =1:m, do:
U(*Zl Olvml( ZZ U)
while(t > 0), do:
(|0 - U] < o):
break;
End If
End For
End For
3) Step-3: QPE
For j=1:N, do:
o — |0>®" ¥
¥1 = zrm (10) + [1)7 [¥)
For 7— 1:N, do

wQ — 2n/2 21:07 exp(2mifr) |1) ® [)
F:OI‘ l:l:}\{V,do:N
%:% o Yo ewp(3E(h—270)) |h) ® [¢)
nd For
End For
End For

Step-4: Spectrum Estimation
¢ Sorting Eigenvalues
For i=1:N, do:
[0,1] « sort(o;)
End For
¢ Spectrum Estimation:
If K+1<N-K,do:
For i=1: N — K, do:
j e . :
i llal (0wl
Py (6) < 10 log,q (f)
End For
End If

to classical MUSIC [43]. The estimated eigenvalues are sorted
in classical registers. We can find K distinct eigenvectors cor-
responding to the highest K -eigenvalues as signal subspace,
and the rest N — K eigenvectors form the noise-subspace.
As steering vectors lie on the signal subspace, which are
orthogonal to the noise-subspace eigenvectors, we can find
the spectral peaks using the expression given by

f: 1
S ke lal (0wl

The locations of multiple sources can be estimated by search-
ing the positions of the peaks in the spectrum function Ps(6) =

10 log,,(f) given by

(41)

argmax Ps(0).
0

(42)
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Here, the scanning angle 6 is taken to be —7/2 to 7/2 radian,
considering the angle of view of the sensors to be 7 radian.
The computation of (42) can be performed using a line-search
algorithm.

V. ANALYSIS OF QUANTUM NOISE AND COMPLEXITY
ON PROPOSED ALGORITHMS

In this section, we discuss the measurement of uncer-
tainty. Two kinds of errors are often encountered in quan-
tum circuits. One is the gate-level error which includes shot
noise, Markovian noise, the sensitivity of qubits due to flux-
noise, quasi-particle tunnelling, qubit relaxation time, qubit
de-phasing time (white noise) and others [44]. The other kind
of error is the measurement error due to probabilistic quantum
nature. In this work, we have considered that the circuit is ideal
and gate-level errors are corrected [45] with at most € error
in the simulation. Here, we analyze the measurement error for
the QEE problem we have discussed.

A. The Evolution Uncertainty

In preparation of the unitary operator Uy € CNVXV,
we incur an error € due to approximation of Uy through
Hamiltonian simulation given by ||Ux —e'||5. The perturbed

evolution operator can be modelled as

Uy = Uy + AUy, (43)

where Uy is the unperturbed unitary matrix, and AUy
denotes the perturbation component. We define the spectrum
of Uy given by A(Uy) = (01, 02,...,0n), and the spectrum
of Uy + AUy by /\(UN + AUN) = (M17M27---7MN)-
We can bound the estimation error in eigenvalues o; for
it = (1,...,N) using Bauer-Fike theorem for 2-norm given
as follows (Theorem 7.2.2 of [46])

i =l < ra(X) [|AU]
where, \; € A(Uy), i € AUy + AUy), and ko is
the condition number of X with X 'UyX = A =
diag(o1,09,...,0n). Here, the matrix X is comprised of
eigenvectors of the unitary matrix Uy. As Uy is a normal
matrix, its eigenvector matrix X is an orthonormal matrix
(Theorem 2.5.3 of [47]). Hence, the value of ko(X) =
|| X||[|X~!]| = 1. Therefore, the mean square error of eigen-
value is bounded as ||AU||3 < €2

(44)

B. The Measurement Uncertainty

Let us consider that the experiment is repeated for
n = 1,...,M times, with one or multiple rounds denoted
by r=1,..., R,. The ancilla qubit prepared in superposition
state (with the application of Hadamard gate) controls U]~
(13) with integer variable 7,- per round. With the application
of the rotation gate, the ancilla qubit is read out in the X -basis
and it returns a measurement outcome m, € {0,1}. The
total number of controlled-U rotation over M experiments is
given by

M R,

oT = ZZTT)

n=1r=1

(45)
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TABLE I
COMPUTATIONAL COMPLEXITY OF DIFFERENT QUANTUM SUB-ROUTINES

Sub-routine/Algorithm Computational Complexity Remark(Any)
Grover’s search for N x 1-unsorted array O(V'N) O(N) for classical computers
N-tuple vector encoding O(VN) using amplitude amplification

N-tuple vector encoding

O(poly log(N))

with augmented QRAM

Hamiltonian Simulation

] (Tlog(%)/log log(g))

7 = d?||S||mazt > 1 [28]

Quantum Phase Estimation (QPE)

O(%) X O (rlog(Z)/log log(L))

U, H gates and IQFT.

QA-SDA O(%) x O (Tlog(g)log log(%)) + O(v/Kmaz) QPE, and oracle-comparison
QA-MUSIC O(%) x O (rlog(L)/log log(Z)) + O(y/N) + O(y/N — K) | QPE, oracle-sorting, and AoA

and for each experiment the number of controlled-U rotation

Ry
is o = >_ 7. The coherence length g, is defined in [45] as

r=1
TeT‘T
rr — 5 46
Qe NoTo (46)
which limits the maximum number of applications of the

; Terr
controlled-U per experiment by ¢ < ge,. Here, 7= denotes

time-to-failure of N, qubits, Ty represents the time required
to implement single controlled-U gate, and T, is the time-
to-error of a single qubit. Hence, the choice of o is crucial
and related to the QTR of the quantum hardware (qubits and
registers in particular).

In a particular experiment, we consider that the controlled-
rotation is U7* and the ancilla qubit is rotated by R, (1) =
exp (—if1/2), where (3; is the phase for rotation around
the Z-axis direction. The outcome state generated from the
eigenstate of the operator U is given by

5 S (10 + ) 1) ).
J

where «; is the normalizing coefficient for eigenstate 1) j
corresponding to eigenvalue o;. Due to repetition of the
experiment, there is uncertainty in getting the outcome on
a particular X-basis. The probability of measurement of the
ancilla qubit on m,. € {0, 1} basis is given by

To; (81— myT
E B 2 J
j 7 ( 2 " 2 ) ’

where B; = |a;|?. Hence, the outcome-state of the ancilla
qubit becomes

Z Qj exp <%7'10'j + ﬁ,«) cos (Tlgj + Br _Zmﬂr> |¢>j :
J
49)

(47)

(48)

Here, a;’s are normalized coefficients for (49). Now, the
probability of a bit’s correct measurement outcome is given by

1 R o [(TroK B —mym
pb:NZZBjHCOS ( 5 + 5 ), (50)

k=1 j r=1

where o, denotes the k' eigenvalue. We have already
assumed that the quantum system has N,-bits resolution
and the probability of correctly measuring each single bit is
determined as p;, in (50). Let z; be the decimal value of ‘"
binary string of length IN,. Let xf ; be a N, length binary

string with [ bits reversed with respect to z; and k indicates
the k' realization of such string.

Proposition 1: The variance of the quantum measurement
noise wq for a Ng-bits quantum resolution system after the
phase estimation is calculated as

2N N, Nag,
or =Ky > > > pp(t—pp)Ne i — a2l |2,
=1 1l=1 k=1
1

= .
2Na 372 NGy x Ny

Proof: The probability of [-bits mismatch for z; is
ph(1—pp)Ne~l Tt is assumed that the sign bit is equally prone
to flip. Therefore, the mean of the error will be zero. There will
be M) number of binary strings having [-bits in mismatch

with K, = 51)

with respect to x; and [ =1,2,..., N,. The index ¢ varies as
i=1,2,...,2Nq, Therefore, the average value of the error is
calculated as in (51). |

C. Analysis of Computational Complexity

The complexity class for the problems solved by a quantum
computer using Quantum algorithms is commonly known
as bounded-error quantum polynomial time (BQP). In our
work, we take several quantum sub-routines which provide the
exponential and quadratic speed-up as compared to classical
algorithms for solving certain problems. We provide a list of
different quantum subroutines and computational complexity
in Table I. The key part here is the Hamiltonian simulation
of the matrix S to prepare an optimal unitary operator U.
In our work, the Hamiltonian matrix, i.e, S is known in great
detail. Additionally, the matrix is sparse in nature. Ideally,
we expect the complexity of the quantum simulation to be
O(||St||,log N, 1), with the overall error in the simulation
bounded by e. For dense matrix S, that is d = N (where, d is
sparsity and N is the dimension of S), the computation does
not provide a query complexity of O(||St||,log V). However,
as S is d-sparse with d < N, the unitary U = 'St can be
efficiently simulated. The query complexity to such systems
can be reduced to O(d + log N) to an oracle for S [48].
This is a significant computation advantage for computing
eigenvalues of S using QPE, as compared to classical EVD,
where it is O(N3) in general. For the sparse matrix sce-
nario, where K < N, the complexity would be O(K N?).
For QA-SDA, in addition of QPE, we have the complexity
of O(v/Knas) for quantum oracle based comparison for
K4, sources. Similarly, in QA-MUSIC, we need a QRAM
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based sorting, as well as computing the phase of the sig-
nal (AOA), hence the overall complexity becomes (’)(%) X
O (rlog(Z)/log log(Z)) + O(V'N) + O(vV'N — K). One can
plug different array structure of S, in addition to sparsity to
check the complexity improvement of the quantum simulation,
which remains an open area of research in quantum signal
processing dealing with complexity issues.

D. Quantum Gate Complexity With Respect to
Elementary Operations

For efficient implementation of the proposed semi-quantum
algorithms (i.e, QA-SDA, and QA-MUSIC), we need quantum
gates and QRAM memory. The central building block for
the proposed algorithms is QPE. On successive estimation of
the eigenvalues through QPE, one can store the eigenvalues
on QRAM for further processing of the data as required for
QA-SDA and QA-MUSIC respectively. The quantum gate
complexity of the QPE is discussed as follows.

In a QPE circuit, we need multiple quantum gates and
intermediate subroutine such as Hadamard gate, controlled-
U rotation gate, and IQFT block (Ref. Chapter 5.2 of [32]).
In addition, quantum registers are required for data encod-
ing, processing and measurement. A quantum oracle is often
required to prepare quantum states |¢), (for i =1,2,..., N)
and perform controlled-U rotations as shown in (12).

o For a possible eigenstate [t)), of the unitary operator
U, we can start with a first register comprising of b
number of qubits |0) (which can be expressed as the
power of 2) for a possible b-bits representation of the
phase o;. To create superposition states of b-qubits, b
number of Hadamard operations are required. A second
register performs controlled-U?’ rotations sequentially
on the output of Hadamard gate, where j varies from
Otob—1.

o Based on the output of the oracle after controlled-U
rotations, an IQFT is performed which takes C; = b
(b + 1)/2 gates for Hadamard and rotations, and
Cy = b/2 swap-gate operations.

o The total number of elementary operations required is
approximately C3 =2b+ C; +Cy =20+ b(b+1)/2 +
b/2. Hence, for N eigenvalue estimation, we need at
least C4, = N x C3 = N x (3b + b%/2) operations
approximately [32]. By increasing the ancillary qubits
b in the first register, one can increase the precision of
estimated value of o; on the measurement bases.

o Apart from the usual QPE operation, we need Hamil-
tonian simulation for unitary state preparation for the
proposed QA-SDA and QA-MUSIC algorithms. Hence,
we prepare unitary matrix U from the covariance
matrix S. It is performed by a method called Trotter-
Suzuki approximation which enables us to express
the exponential of sum of non-commuting operators

(e7"Xi=15%) in terms of product of unitary matrices.
The gate complexity of the Hamiltonian simulation can
be given as [49]

B TlogQ(E)
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Fig. 3. Eigenvalues simulated on classical computer with Qiskit package
with Hamiltonian simulation framework.

« Hence, the total gate complexity will be

Ctotal = C(4 + C(5

_ 2 Tlog*(%)
N><(3b+b/2)+(9<1oglog(€) . (53)

o« However, for the classical matrix of dimension N x NN,
the eigenvalue estimation complexity is O(N?3) [50].

VI. NUMERICAL RESULTS AND DISCUSSION

We consider a sensor array system having 10 sources with
a different number of sensor antennas. We also demonstrate
the quantum estimation of eigenvalues.

A. Eigenvalue Estimation With Hamiltonian Simulation
for Sensor Array

We now show two different kinds of Hamiltonian simula-
tion in this context, i.e sensor array data with 16 antennas:
(1) Single quantum phase estimation and (ii) Multiple phase
estimation. Some of the simulations are performed on IBM
quantum simulators, and others on classical computer. Fig. 2
shows a circuit of QPE, where a shorter version has been
simulated on IBM QISKIT quantum simulator [29] with four
ancillary qubits represented by quantum registers qo, g1, g2,
and ¢3. Single phase estimation is performed for the phase
of first eigenvalue of U, which provides the first eigenvalue
of S. Here, z contains the i*" eigenstate (|¢)),) stored in the
quantum-register g4, and c represents classical registers.

With 4-ancillary qubits, the experiment is evaluated for
10000 times to get the histogram of outcome probability
of the phase on the measurement bases. A measurement
basis is a binary string, whose length is controlled by the
number of ancillary qubits. Fig. 3 shows the histogram of
the measurement outcome of the simulation performed on a
classical computer. Here, the optimal measurement basis for
the measurement is 0101, which has the highest probability of
occurrence (p =~ 0.68).

The same experiment is run on the IBM quantum simulator,
as the histogram shown in Fig. 4. The vertical axis shows the
probability of measurement, and the horizontal axis denotes
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Fig. 4. Eigenvalues simulated on IBM quantum computer with Hamiltonian
simulation framework.
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Fig. 5. Estimated Spectrum via EVD and QPE with optimal QTR.

the measurement bases. Here, other than the correct basis, all
other bases are insignificant. The probability of occurrence of
optimal basis is p ~ 0.99. The estimated phase via QPE is
computed as

Nm

A (54)

G =
where, NN, is the decimal value of the binary string that
represents the basis with the highest probability, and N, is the
number of ancillary qubits. With this setting, we have obtained
the value of 6 as 0.62, which is close to the true phase.

The difference in the eigenvalue estimation on a classical
computer as shown in Fig. 3, and on a IBM quantum simulator
(shown in Fig. 4) is due to the presence of noise in quantum
measurement being significant in the classical computer.

Fig. 5 and Fig. 6 show the comparison between the eigen-
values estimated by EVD and QPE. We have shown that
with a proper QTR of the covariance matrix S, the estimated
eigenvalues by EVD and QPE overlap as shown in Fig. 5.
For the covariance matrix simulation, the QTR is taken to
be 0.0056.

In Fig. 6, we have shown the eigenvalues estimated by
QPE and EVD. Here, the estimated eigenvalues by QPE is
degraded as compared to the standard EVD (considering QPE
has measurement uncertainty with zero mean, and standard
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Fig. 6. Estimated Spectrum via EVD and QPE with sub-optimal QTR and
measurement noise.
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Fig. 7. Measurement error rate (MER) with SNR(dB) for different number
of experiments (M).

deviation of 0.2 for Gaussian probability density function).
Finally, we define the quality of service (QoS) parameter called
measurement error rate (MER) as follows
Ng
MER = —=
N )

TS

(55)

where, Ng, is the number of bases that wrongly represent
the measurement outcome, and Ny, is the total number of
measurement basis. Here, the signal to noise ratio (SNR) arises
because the measurement noise creates uncertainty in detecting
the signal, which is binary strings here. Considering the string
length of M = 10,100, 1000 with Gaussian noise as a special
case, we have shown the MER versus SNR plot in Fig. 7.
It is shown that with a larger string length, the MER decays
exponentially.

B. Detection Performance With QEE

In Fig. 8, the QA-MUSIC spectrum for 10-signal sources
are shown. The actual positions are shown as square boxes
horizontally, whereas the estimated AoAs are represented by
the locations of peaks of the spectrum function, Ps(6). Here,
the sources are assumed to be distributed uniformly within
—m/2 to m/2 radian. The array size is considered to be 128,
which provides the sparsity in S as N > K. The simulation is
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Fig. 8. QA-MUSIC: Estimated angles for 10 sources (uniformly distributed
in —7/2 to w/2) and 128 arrays.
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Fig. 9. QA-SDA: Probability of detection (Pp) with SNR (dB) at different
detection threshold.

performed keeping a lower noise variance. The SNR is chosen
as 18 dB with signal power being 0.5 watt. It is observed
that the QA-MUSIC determines the location of the sources
almost accurately. In Fig. 9, we have shown the probability
of detection (Pp) with SNR (in dB), at different detection
threshold, o4, = 0.01,0.1, 0.5, 1 respectively, using QA-SDA
simulation. Here, the actual number of sources is 10, and
different curves represent the performance of the detector for
different oyp,.

Fig. 10 represents the optimal values of detection threshold
vs. the SNR for different probability of detection (0.95, 0.85)
as obtained from (40). With higher SNR values, the optimal
oy, 18 reduced. This is because as the the noise reduces,
detection threshold needs to be reduced to detect smaller
eigenvalues. This trend has been confirmed from (9). Another
observation at the lower SNR is that if the lower probability
of detection is intended, the o, needs lower values as the
noise level is already high. However, at the higher SNR, oy,
needs to be larger to meet the lower probability of detection
requirement.

C. Discussion on Quantum Advantages for Large
Sensor Arrays

The proposed algorithms QA-SDA and QA-MUSIC via
QEE framework as shown in our work is expected to provide
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Fig. 10.  Proposed Detection Threshold (o:p): This is the plot of oyp
(detection threshold) variation with respect to SNR for multiple probability
of detection as obtained from (40).

complexity advantages for some upcoming large sensor array
applications in signal processing and communications. Here,
the numerical simulation framework considers a practical array
application where signals are captured from a few objects inci-
dent on a large antenna arrays to demonstrate the applicability
of the proposed algorithms. Further, the large array can be
a few hundreds in size for a base-station in massive MIMO-
communication system [51], and it can be even as large as
1024 x 1024 for a plasmonic nano sensor in ultra-massive
multiple-input multiple-output (UM MIMO) THz communi-
cations [52]. The proposed framework is expected to have
potential complexity-advantage in such similar large sensor
array applications.

VII. CONCLUSION

In this article, we have shown a Hamiltonian simulation-
based quantum framework for the detection and estimation of
signal parameters via quantum phase estimation. The quantum
assisted algorithms provide significant complexity reduction
in computing eigenvalues of a sparse-Hamiltonian system
matrix obtained from the sensor array model. A systematic
approach of quantum assisted simulation of the Hamiltonian is
shown with a small-scale implementation on the IBM quantum
simulator, while large-scale implementation is performed on
a classical system. The maximization of the measurement
outcome probability is obtained by Bayesian inference, keep-
ing an error model inside to incorporate QTR from different
circuits. Further, we have defined a QoS parameter to showcase
the measurement error rate (MER) at different noise level
and repetition of the experiment. The context of QTR is
considered while comparing EVD and QPE. We have shown
the computational complexity of the given framework for
possible applications in array-processing.
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