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General Mixed-State Quantum Data Compression
With and Without Entanglement Assistance

Zahra Baghali Khanian and Andreas Winter

Abstract— We consider the most general finite-dimensional
quantum mechanical information source, which is given by a
quantum system A that is correlated with a reference system R.
The task is to compress A in such a way as to reproduce the
joint source state ρAR at the decoder with asymptotically high
fidelity. This includes Schumacher’s original quantum source
coding problem of a pure state ensemble and that of a single
pure entangled state, as well as general mixed state ensembles.
Here, we determine the optimal compression rate (in qubits per
source system) in terms of the Koashi-Imoto decomposition of
the source into a classical, a quantum, and a redundant part.
The same decomposition yields the optimal rate in the presence
of unlimited entanglement between compressor and decoder, and
indeed the full region of feasible qubit-ebit rate pairs.

Index Terms— Quantum information, source coding,
entanglement.

I. WHAT IS A QUANTUM SOURCE?

A QUANTUM source is a quantum system together corre-
lations with a reference system. A criterion of how well

a source is reproduced in a communication task is to measure
how well the correlations are preserved with the reference
system. Without correlation, the information does not make
sense because a known quantum state without correlations can
be reproduced at the destination without any communication.

To elaborate more on these notions, consider the source
that Schumacher defined in his 1995 paper [1], [2] as an
ensemble of pure states {p(x), |ψx�A}, where the source
generates the state |ψx� with probability p(x). The figure of
merit for the encoding-decoding process is to keep the decoded
quantum states on average very close to the original states
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with respect to the fidelity, where the average is taken over
the probability distribution p(x). By basic algebra one can
show that this is equivalent to preserving the classical-quantum
state ρAX =

�
x p(x)|ψx��ψx|A⊗|x��x|X , where system A is

the quantum system to be compressed. Another source model
that Schumacher considered was the purification of the source
ensemble, that is the state |ψ�AR =

�
x

�
p(x)|ψx�A|x�R,

where the figure of merit for the encoding-decoding process
was to preserve the pure state correlations with the reference
system R by maintaining a high fidelity between the decoded
state and ψ. He showed that both definitions lead to the same
compression rate, namely, the von Neumann entropy of the
source S(A)ρ = S(ρA), where ρA = TrRρ

AR. Incidentally,
the full proof of optimality in the first model, without any
additional restrictions on the encoder, had to wait until [3]
(see also [5]); the strong converse, i.e. the optimality of the
entropy rate even for constant error bounded away from 1,
was eventually given in [4].

Another example of a quantum source is the mixed state
source considered by Horodecki [5] and Barnum et al. [6], and
finally solved by Koashi and Imoto [7], where the source is
defined as an ensemble of mixed states {p(x), ρA

x }. Preserving
these mixed quantum states, on average, in the process of
encoding-decoding, the task is equivalent to preserving the
state ρAX =

�
x p(x)ρ

A
x ⊗|x��x|X , that is the quantum system

A together with its correlation with the classical reference
system X .

The reference system is not usually considered in the
description of classical information theory tasks, but arguably
it is conceptually necessary in quantum information. This is
because it allows us to present the figure of merit quantifying
the decoding error as operationally accessible, for example via
the probability of passing a test in the form of a measurement
on the combined AR-system. This point is made eloquently
in the early work of Schumacher on quantum information
transmission [8], [9].

In this work, we consider the most general
finite-dimensional source in the realm of quantum mechanics,
namely a quantum system A that is correlated with a reference
system R in an arbitrary way, described by the overall state
ρAR. In particular, the reference does not necessarily purify
the source, nor is it assumed to be classical. The ensemble
source and the pure source defined by Schumacher are special
cases of this model, where the reference is a classical system
in the former and a purifying system in the latter. So is the
source considered by Koashi and Imoto in [7], where the
reference system is classical, too.
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Understanding the compression of the source ρAR has
paramount importance in the field of quantum information
theory and unifies all the models that have been considered
in the literature. Schumacher’s pure source model in a sense
is the most stringent model because it requires preserving
the correlations with a purifying reference system which
implies that the correlations with any other reference system
is preserved which follows from the fact that the fidelity is
non-decreasing under quantum channels. However, the con-
verse is not necessarily true: if in a compression task the
parties are required to preserve the correlations with a given
reference system which does not purify the source state, they
might be able to compress more efficiently compared to the
scenario where the reference system purifies the source. This
is exactly what we show in this paper: we characterise the gap
precisely depending on the reference system.

We find the optimal trade-off between the quantum and
entanglement rates of the compression which are in terms
of a decomposition of the state ρAR introduced in [10].
This decomposition is a generalization of the decomposition
introduced by Koashi and Imoto for a set of quantum states
in [11], so when the reference system is classical, the quantum
rate reduces to the rate derived by Koashi and Imoto. We show
the optimality of the rates with a new converse proof which
is based on the decoupling of the environment systems of the
encoding and decoding operations from the decoded systems
and gives us an insight into how general mixed states are
processed in an encoding-decoding task. Our results also
cover the entanglement assisted compression task considered
in [12] when the side information system is trivial, as well
as the entanglement assisted version of the Koashi-Imoto
compression.

The structure of the paper is as follows. In the reminder of
this section, we introduce the notation that we use through-
out the paper. In Sec. II, we rigorously define the task of
the asymptotic compression of the source ρAR, where as
for the communication purposes, we let the encoder and
decoder share initial entanglement, and the encoder sends the
compressed information to the decoder through a noiseless
quantum channels. In Sec. III, we first introduce the Koashi-
Imoto decomposition of the state ρAR, and then in Theorem 2
we state the main result of this paper, that is the optimal
rate region for the compression of the source in terms of
the trade-off between the entanglement and quantum rates,
then we prove the achievability of the rates in the same
section, but we leave the converse proofs for the subsequent
sections which need more involved machinery. In Sec. IV,
we define two functions which emerge in the converse proofs,
and in Lemma 1 we state some important properties of these
functions which then we use to prove the tight asymptotic
converse bounds of Theorem 2. We prove Lemma 1 in Sec. V.
Finally, in Sec. VI we discuss our results and some related
open problems.

Notation: Quantum systems are associated with (finite
dimensional) Hilbert spaces A, R, etc., whose dimensions are
denoted by |A|, |R|, respectively. Since it is clear from the
context, we slightly abuse the notation and let Q denote both
a quantum system and a quantum rate. The von Neumann

entropy is defined as S(ρ) = −Trρ log ρ (throughout this
paper, log denotes by default the binary logarithm). The
conditional entropy and the conditional mutual information,
S(A|B)ρ and I(A : B|C)ρ, respectively, are defined in the
same way as their classical counterparts:

S(A|B)ρ = S(AB)ρ − S(B)ρ, and

I(A : B|C)ρ = S(A|C)ρ − S(A|BC)ρ

= S(AC)ρ + S(BC)ρ − S(ABC)ρ − S(C)ρ.

The fidelity between two states ρ and ξ is defined as F (ρ, ξ) =

�√ρ
√
ξ�1 = Tr

�
ρ

1
2 ξρ

1
2 , with the trace norm �X�1 =

Tr|X | = Tr
√
X†X . It relates to the trace distance in the

following well-known way [13]:

1 − F (ρ, ξ) ≤ 1
2
�ρ− ξ�1 ≤

�
1 − F (ρ, ξ)2. (1)

II. THE COMPRESSION TASK

We will consider the information theoretic limit of many
copies of the source ρAR, i.e. ρAnRn

=
�
ρAR

�⊗n
. We assume

that the encoder, Alice, and the decoder, Bob, have initially
a maximally entangled state ΦA0B0

K on registers A0 and B0

(both of dimension K). The encoder, Alice, performs the
encoding compression operation C : AnA0 −→ MA′

0 on
the system An and her part A0 of the entanglement, which
is a quantum channel, i.e. a completely positive and trace
preserving (CPTP) map. Notice that as functions CPTP maps
act on the operators (density matrices) over the respective
input and output Hilbert spaces, but as there is no risk of
confusion, we will simply write the Hilbert spaces when
denoting a CPTP map. Alice’s encoding operation produces
the state οMA′

0B0Rn

with M , A′
0 and B0 as the compressed

system of Alice, Alice’s new entanglement system and Bob’s
part of the entanglement, respectively. The dimension of the
compressed system is without loss of generality not larger than
the dimension of the original source, i.e. |M | ≤ |A|n. The
system M is then sent to Bob via a noiseless quantum channel,
who performs a decoding operation D : MB0 −→ ÂnB′

0 on
the system M and his part of the entanglement B0 where the
output systems Ân and B′

0 are the reconstruction of the system
An and Bob’s new entanglement system, respectively. We say
the encoding-decoding scheme has fidelity 1− �, or error �, if

F
�
ρAnRn ⊗ ΦA0B0

K , ξÂnRnA′
0B′

0

�
≥ 1 − �, (2)

where ξÂnRnA′
0B′

0 = ((D ◦ C) ⊗ idRn) ρAnRn ⊗ ΦA0B0
K .

We call 1
n log(K − |A′

0B
′
0|) and 1

n log |M | the entanglement
rate and quantum rate of the compression protocol, respec-
tively. Moreover, we say that (E,Q) is an (asymptotically)
achievable rate pair if for all n there exist codes such that
the fidelity converges to 1, and the entanglement and quantum
rates converge to E and Q, respectively. The rate region is the
set of all achievable rate pairs, as a subset of R≥0 × R≥0.

According to Stinespring’s theorem [14], a CPTP map
T : A −→ Â can be dilated to an isometry U : A �→ ÂE with
E as an environment system, called an isometric extension of a
CPTP map, such that T (ρA) = TrE(UρAU †). Therefore, the
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encoding and decoding operations can in general be viewed
as isometries UE : AnA0 �→ MW and UD : MB0 �→ ÂnV ,
respectively, with the systems W and V as the environment
systems of Alice and Bob, respectively.

We say a source ωBR is equivalent to a source ρAR if there
are CPTP maps T : A −→ B and R : B −→ A in both
directions taking one to the other:

ωBR = (T ⊗ idR)ρAR and ρAR = (R⊗ idR)ωBR. (3)

The rate regions of equivalent sources are the same, because
any achievable rate pair for one source is achievable for the
other source as well. This follows from the fact that for
any code (C,D) of block length n and error � for ρAR,
concatenating the encoding and decoding operations with T
and R, i.e. letting C′ = C ◦ R⊗n and D′ = T ⊗n ◦ D, we get
a code of the same error � for ωBR. Analogously we can turn
a code for ωBR into one for ρAR.

Remark 1: We remind that the task defined in section
can be reduced to previously studied sources by considering
specific structures on the reference system. Namely, if system
R purifies system A, then our source reduces to the purified
source of Schumacher. On the other hand, if system R is
classical, then our source model reduces to Schumacher’s
ensemble model and mixed-state ensemble model by Koashi
and Imoto for pure states and mixed states on system A,
respectively.

III. THE QUBIT-EBIT RATE REGION

The idea behind the compression of the source ρAR is based
on a decomposition of this state introduced in [10], which is
a generalization of the decomposition introduced by Koashi
and Imoto in [11]. Namely, for any set of quantum states
{ρx}, there is a unique decomposition of the Hilbert space
describing the structure of CPTP maps which preserve the
set {ρA

x }. This idea was generalized in [10] for a general
mixed state ρAR describing the structure of CPTP maps acting
on system A which preserve the overall state ρAR. This was
achieved by showing that any such map preserves the set of
all possible states on system A which can be obtained by
measuring system R, and conversely any map preserving the
set of all possible states on system A obtained by measuring
system R, preserves the state ρAR, thus reducing the general
case to the case of classical-quantum states

ρAY =
	

y

q(y)ρA
y ⊗ |y��y|Y

=
	

y

TrRρ
AR(11A ⊗MR

y ) ⊗ |y��y|Y ,

which is the ensemble case considered by Koashi and Imoto.
As a matter of fact, looking at the algorithm presented in [11]
to compute the decomposition, it is enough to consider an
informationally complete POVM (My) on R, with no more
than |R|2 many outcomes, which are measurements (My) on
R such that the map M : ρ→ M(ρ) = Tr(ρMy) from states
to probability distributions is one-to-one, or equivalently, such
that the operators My of the measurement spans all operators
on R, i.e. span{My} = B(R) [15]. The properties of this
decomposition are stated in the following theorem.

Theorem 1 ([10], [11]): Associated to the state ρAR, there
are Hilbert spaces C, N and Q and an isometry UKI : A �→
CNQ such that:

1) The state ρAR is transformed by UKI as

(UKI⊗11R)ρAR(U †
KI⊗11R)=

	
j

pj|j��j|C⊗ ωN
j ⊗ ρQR

j

=: ωCNQR, (4)

where the set of vectors {|j�C} form an orthonormal basis
for Hilbert space C, and pj is a probability distribution
over j. The states ωN

j and ρQR
j act on the Hilbert spaces

N and Q⊗R, respectively.
2) For any CPTP map Λ acting on system A which leaves

the state ρAR invariant, that is (Λ ⊗ idR)ρAR = ρAR,
every associated isometric extension U : A �→ AE of Λ
with the environment system E is of the following form

U = (UKI ⊗ 11E)†

⎛
⎝	

j

|j��j|C ⊗ UN
j ⊗ 11Q

j

⎞
⎠UKI, (5)

where the isometries Uj : N �→ NE satisfy
TrE [UjωjU

†
j ] = ωj for all j.

The isometry UKI is unique (up to trivial change of
basis of the Hilbert spaces C, N and Q). Henceforth,
we call the isometry UKI and the state ωCNQR =�

j pj |j��j|C⊗ωN
j ⊗ρQR

j the Koashi-Imoto (KI) isometry
and KI-decomposition of the state ρAR, respectively.

3) In the particular case of a tripartite system CNQ and
a state ωCNQR already in Koashi-Imoto form (4), prop-
erty 2 says the following: For any CPTP map Λ acting on
systems CNQ with (Λ⊗ idR)ωCNQR = ωCNQR, every
associated isometric extension U : CNQ �→ CNQE of
Λ with the environment system E is of the form

U =
	

j

|j��j|C ⊗ UN
j ⊗ 11Q

j , (6)

where the isometries Uj : N �→ NE satisfy
TrE [UjωjU

†
j ] = ωj for all j.

According to the discussion at the end of Sec. II, the sources
ρAR and ωCNQR are equivalent because there are the isometry
UKI and the reversal CPTP map R : CNQ −→ A, which
reverses the action of the KI isometry, such that:

ωCNQR = (UKI ⊗ 11R)ρAR(U †
KI ⊗ 11R),

ρAR = (R⊗ idR)ωCNQR

= (U †
KI ⊗ 11R)ωCNQR(UKI ⊗ 11R)

+ Tr[(11CNQ − ΠCNQ)ωCNQ]ο, (7)

where ΠCNQ = UKIU
†
KI is the projection onto the subspace

UKIA ⊂ C ⊗ N ⊗ Q, and ο is an arbitrary state acting on
A ⊗ R. Henceforth we assume that the source is ωCNQR,
which is convenient because our main result is expressed in
terms of the systems C and Q. Notice that the source ωCNQR

is in turn equivalent to ωCQR, a fact we will exploit in the
proof.

Moreover, since the information in C is classical, we can
reduce the compression rate even more if the sender
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and receiver share entanglement, by using dense cod-
ing of j. In the following theorem we show the opti-
mal qubit-ebit rate tradeoff for the compression of the
source ρAR.

Theorem 2: For the compression of the source ρAR, all
asymptotically achievable entanglement and quantum rate
pairs (E,Q) satisfy

Q ≥ S(CQ)ω − 1
2
S(C)ω,

Q+ E ≥ S(CQ)ω,

where the entropies are with respect the KI decomposition
of the state ρAR, i.e. the state ωCNQR. Conversely, all the
rate pairs satisfying the above inequalities are asymptotically
achievable.

Remark 2: This theorem implies that the optimal asymp-
totic quantum rates for the compression of the source ρAR with
and without entanglement assistance are S(CQ)ω − 1

2S(C)ω

and S(CQ)ω qubits, respectively, and 1
2S(C)ω ebits of entan-

glement are sufficient and necessary in the entanglement
assisted case.

Remark 3: If in the compression task the parties were
required to preserve the correlations with a purifying reference
system, then due to Schumacher compression the optimal qubit
rate would be S(A)ρ = S(CNQ)ω. However, Theorem 2
shows that the parties can compress more if they are only
required to preserve the correlations with a mixed state refer-
ence. This gap can be strictly positive if the redundant system
N is mixed given the classical information j in system C, that
is S(CNQ)ω − S(CQ)ω = S(N |CQ)ω > 0.

Proof: We start with the achievability of these rates. The
converse proofs need more tools, so we will leave them to
the subsequent sections. Looking at Fig. 1, it will be enough
to prove the achievability of the corresponding corner points
(E,Q) = (0, S(CQ)ω) and (E,Q) = (1

2S(C)ω , S(CQ)ω −
1
2S(C)ω) for the unassisted and entanglement assisted cases,
respectively. This is because by definition (and the time-
sharing principle) the rate region is convex and upper-right
closed. Indeed, all the points on the line Q + E = S(CQ)ω

for Q ≥ S(CQ)ω − 1
2S(C)ω are achievable because one ebit

can be distributed by sending a qubit. All other rate pairs are
achievable by resource wasting. The rate region is depicted in
Fig. 1.

As we discussed, we can assume that the source
is (ωCNQR)⊗n = ωCnNnQnRn

. To achieve the point
(0, S(CQ)ω), Alice traces out the redundant part Nn of the
source, to get the state ωCnQnRn

and applies Schumacher
compression to send the systems CnQn to Bob. Since the
Schumacher compression preserves the purification of the
systems CnQn, it preserves the state ωCnQnRn

as well. To be
more specific, let ΛS denote the composition of the encoding
and decoding operations for the Schumacher compression of
the state |ω�CnQnRnR′n

where the system R′n is a purifying
reference system which of course the parties do not have
access to. The Schumacher compression preserves the follow-
ing fidelity on the left member of the equation, therefore it

Fig. 1. The achievable rate region of the entanglement and quantum rates.

preserves the fidelity on the right member:

1 − � ≤ F
�
ωCnQnRnR′n

, (ΛS ⊗ idRnR′n)ωCnQnRnR′n
�

≤ F
�
ωCnQnRn

, (ΛS ⊗ idRn)ωCnQnRn
�
,

where the inequality is due to monotonicity of the fidelity
under partial trace. The rate achieved by this scheme is
S(CQ)ω. After applying this scheme, Bob has access to the
systems ĈnQ̂n, which is correlated with the reference system
Rn:

ζĈnQ̂nRn

= (ΛS ⊗ idRn)ωCnQnRn

.

Then, to reconstruct the system Nn, Bob applies the CPTP
map N : CQ −→ CNQ to each copy, which acts as follows:

N (ρCQ) =
	

j

(|j��j|C ⊗ 11Q)ρCQ(|j��j|C ⊗ 11Q) ⊗ ωN
j .

This map satisfies the fidelity criterion of Eq. (8) because of
monotonicity of the fidelity under CPTP maps:

1 − � ≤ F
�
ωCnQnRn

, ζĈnQ̂nRn
�

≤F
�
(N⊗n⊗idRn)ωCnQnRn

, (N⊗n⊗idRn)ζĈnQ̂nRn
�

= F
�
ωCnNnQnRn

, τ ĈnN̂nQ̂nRn
�
. (8)

To achieve the point (1
2S(C)ω , S(CQ)ω − 1

2S(C)ω), Alice
applies dense coding to send the classical system Cn to
Bob which requires n

2S(C)ω ebits of initial entanglement and
n
2S(C)ω qubits [16]. When both Alice and Bob have access
to system Cn, Alice can send the quantum system Qn to Bob
by applying Schumacher compression, which requires sending
nS(Q|C) qubits to Bob. Therefore, the overall qubit rate is
1
2S(C)ω + S(Q|C) = S(CQ)ω − 1

2S(C)ω.

IV. CONVERSE

In this section, we will provide the converse bounds for the
qubit rate Q and the sum rate Q+E of Theorem 2. We obtain
these bounds based on the structure of the CPTP maps
which preserve the source state ωCNQR. Namely, according
to Theorem 1 the CPTP maps acting on systems CNQ,
which preserve the state ωCNQR, act only on the redundant

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:46:14 UTC from IEEE Xplore.  Restrictions apply. 



3134 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 5, MAY 2022

system N . This implies that the environment systems of
such CPTP maps are decoupled from systems QR given the
classical information j in the classical system C. This gives us
an insight into the structure of the encoding-decoding maps,
which preserve the overall state asymptotically intact.

To proceed with the proof, we first define two functions that
emerge in the converse bounds. Then, we state some important
properties of these functions in Lemma 1 which we will use
to compute the tight asymptotic converse bounds.

Definition 1: For the KI decomposition ωCNQR =�
j pj |j��j|C ⊗ωN

j ⊗ ρQR
j of the state ρAR and � ≥ 0, define

J�(ω):=max I(N̂E : ĈQ̂|C′)τ s.t. U : CNQ→ ĈN̂Q̂E

is an isometry with F (ωCNQR, τ ĈN̂Q̂R)≥1 −�,
Z�(ω) := maxS(N̂E|C′)τ s.t. U : CNQ→ ĈN̂Q̂E

is an isometry with F (ωCNQR, τ ĈN̂Q̂R)≥1 −�,

where

ωCNQRC′
=

	
j

pj |j��j|C ⊗ ωN
j ⊗ ρQR

j ⊗ |j��j|C′
,

τ ĈN̂Q̂ERC′
= (U ⊗ 11RC′)ωCNQRC′

(U † ⊗ 11RC′),

τ ĈN̂Q̂R = TrEC′ [τ ĈN̂Q̂ERC′
].

In this definition, the dimension of the environment is w.l.o.g.
bounded as |E| ≤ (|C||N ||Q|)2 because the input and output
dimensions of the channel are fixed as |C||N ||Q|; hence,
the optimisation is of a continuous function over a compact
domain, so we have a maximum rather than a supremum.

Lemma 1: The functions Z�(ω) and J�(ω) have the follow-
ing properties:

1) They are non-decreasing functions of �.
2) They are concave in �.
3) They are continuous for � ≥ 0.
4) For any two states ωC1N1Q1R1

1 and ωC2N2Q2R2
2 and for

� ≥ 0,

J�(ω1 ⊗ ω2) ≤ J�(ω1) + J�(ω2),
Z�(ω1 ⊗ ω2) ≤ Z�(ω1) + Z�(ω2).

5) At � = 0, Z0(ω) = S(N |C)ω and J0(ω) = 0.

The proof of this lemma follows in the next section. Now
we show how it is used to prove the converse (optimality)
of Theorem 2. As a guide to reading the subsequent proof,
we remark that in Eqs. (24) and (28), the environment systems
VW of the encoding-decoding operations appear in the terms
I(N̂nVW : ĈnQ̂n|C′n) and S(N̂nVW |C′n), which are
bounded by the functions J�(ω⊗n) and Z�(ω⊗n), respectively.
As stated in point 4 of Lemma 1, these functions are sub-
additive, so basically we can single-letterize the terms appear-
ing in the converse. Moreover, from point 3 of Lemma 1,
we know that these functions are continuous for � ≥ 0;
therefore, the limit points of these functions are equal to the
values of these functions at � = 0. When the fidelity is equal
to 1 (� = 0), the structure of the CPTP maps preserving
the state ωCNQR in Theorem 1 implies that J0(ω) = 0 and
Z0(ω) = S(N |C)ω, as stated in point 5 of Lemma 1. Thereby,
we conclude the converse bounds in Eqs. (27) and (31).

Proof of Theorem 2 (Converse): We first get the following
chain of inequalities considering the process of the decoding
of the information:

nQ+ S(B0)
≥ S(M) + S(B0) (9)

≥ S(MB0) (10)

= S(ĈnN̂nQ̂nV ) (11)

= S(ĈnQ̂n) + S(N̂nV |ĈnQ̂n) (12)

≥ nS(CQ) + S(N̂nV |ĈnQ̂n) − nδ(n, �) (13)

≥nS(CQ)+S(N̂nV |ĈnQ̂nC′n)− nδ(n, �) (14)

= nS(CQ) + S(N̂nV |ĈnQ̂nC′n)

−S(N̂nV |C′n)+S(N̂nV |C′n)−nδ(n, �)
= nS(CQ) − I(N̂nV : ĈnQ̂n|C′n)

+ S(N̂nV |C′n) − nδ(n, �)

≥ nS(CQ) − I(N̂nVW : ĈnQ̂n|C′n)

+ S(N̂nV |C′n) − nδ(n, �) (15)

where Eq. (9) follows because the entropy of a system is
bounded by the logarithm of the dimension of that system;
Eq. (10) is due to sub-additivity of the entropy; Eq. (11)
follows because the decoding isometry UD : MB0 �→
ĈnN̂nQ̂nV does not change the entropy; Eq. (12) is due to
the chain rule; Eq. (13) follows from the decodability: the
output state on systems ĈnQ̂n is 2

√
2�-close to the original

state CnQn in trace norm; then the inequality follows by
applying the Fannes-Audenaert inequality [17], [18], where
δ(n, �) =

√
2� log(|C||Q|) + 1

nh(
√

2�); Eq. (14) is due to
strong sub-additivity of the entropy, and system C′ is a copy
of classical system C; Eq. (15) follows from data processing
inequality where W is the environment system of the encoding
isometry UE : CnNnQnA0 �→MW .

Moreover, considering the process of encoding the informa-
tion, Q is bounded as follows:

nQ ≥ S(M)
≥ S(M |WC′n) (16)

= S(MWC′n) − S(WC′n) (17)

= S(CnNnQnA0C
′n) − S(WC′n) (18)

= S(CnNnQnC′n) + S(A0) − S(WC′n) (19)

=S(CnNnQnC′n)+S(A0)−S(C′n)−S(W |C′n) (20)

=S(CnNnQn)+S(A0)−S(C′n)−S(W |C′n) (21)

=nS(CQ)+nS(N |CQ)+S(A0)−nS(C′)−S(W |C′n)
(22)

=nS(CQ)+nS(N |C)+S(A0)−nS(C′)−S(W |C′n),
(23)

where Eq. (16) is due to sub-additivity of the entropy; Eq. (17)
is due to the chain rule; Eq. (18) follows because the encoding
isometry UE : CnNnQnA0 �→ MW does not the change the
entropy; Eq. (19) follows because the initial entanglement A0

is independent from the source; Eq. (20) is due to the chain
rule; Eq. (21) follows because C′ is a copy of the system C, so
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S(C′|CNQ) = 0; Eq. (22) is due to the chain rule and the fact
that the entropy is additive for product states; Eq. (23) follows
because conditional on system C the system N is independent
from system Q.

Now, we add Eqs. (15) and (23); the entanglement terms
S(A0) and S(B0) cancel out, and by dividing by 2n we obtain

Q≥ S(CQ) +
1
2
S(N |C)− 1

2n
I(N̂nVW : ĈnQ̂n|C′n)

−1
2
S(C)+

1
2n
S(N̂nV |C′n)− 1

2n
S(W |C′n)−1

2
δ(n, �)

≥ S(CQ)+
1
2
S(N |C)− 1

2n
I(N̂nVW : ĈnQ̂n|C′n)

− 1
2
S(C) − 1

2n
S(N̂nVW |C′n) − 1

2
δ(n, �) (24)

≥ S(CQ) − 1
2
S(C) +

1
2
S(N |C) − 1

2n
J�(ω⊗n)

− 1
2n
Z�(ω⊗n) − 1

2
δ(n, �) (25)

≥ S(CQ) − 1
2
S(C) +

1
2
S(N |C) − 1

2
J�(ω) − 1

2
Z�(ω)

− 1
2
δ(n, �), (26)

where Eq. (24) follows from strong sub-additivity of the
entropy, S(N̂nV |C′n) + S(N̂nV |WC′n) ≥ 0; Eq. (25)
follows from Definition 1; Eq. (26) is due to point 4 of
Lemma 1.

In the limit of � → 0 and n → ∞, the qubit rate is thus
bounded by

Q ≥ S(CQ) − 1
2
S(C) +

1
2
S(N |C) − 1

2
J0(ω) − 1

2
Z0(ω)

= S(CQ) − 1
2
S(C), (27)

where the equality follows from point 5 of Lemma 1.
Moreover, from Eq. (15) we have:

nQ+ S(B0)
= nQ+ nE

≥nS(CQ)−I(N̂nVW:ĈnQ̂n|C′n)+S(N̂nV |C′n)−nδ(n, �)
≥ nS(CQ)−I(N̂nVW : ĈnQ̂n|C′n)−nδ(n, �) (28)

≥ nS(CQ) − J�(ω⊗n) − nδ(n, �) (29)

≥ nS(CQ) − nJ�(ω) − nδ(n, �), (30)

where Eq. (28) follows because the entropy conditional on
a classical system is positive, S(N̂nV |C′n) ≥ 0; Eq. (29)
follows from Definition 1; Eq. (30) is due to point 4 of
Lemma 1.

In the limit of � → 0 and n → ∞, we thus obtain the
following bound on the rate sum:

Q+ E ≥ S(CQ) − J0(ω) = S(CQ), (31)

where the equality follows from point 5 of Lemma 1.
Remark 4: Our lower bound on Q + E in Eq. (31) repro-

duces the result of Koashi and Imoto [7] for the case of a
classical-quantum source ρAX =

�
x p(x)ρ

A
x ⊗ |x��x|X . This

is because a code with qubit-ebit rate pair (Q,E) gives rise to
a compression code in the sense of Koashi and Imoto using a
rate of qubits Q+E and no prior entanglement, simply by first

distributing E ebits and then using the entanglement assisted
code.

It is worth noting that conversely, Eq. (31) can be obtained
from the Koashi-Imoto result, as follows. Any good code for
ρAR is automatically a good code for the classical-quantum
source of mixed states

ρAY=
	

y

q(y)ρA
y ⊗|y��y|Y=

	
y

TrRρ
AR(11A⊗MR

y )⊗|y��y|Y ,

for any POVM (My) on R, simply by the monotonic-
ity of the fidelity under CPTP maps. As discussed before,
by choosing an informationally complete measurement, the
KI-decomposition of the ensemble {q(y), ρA

y } is identical
to that of ρAR in Theorem 1. Thus the unassisted qubit
compression rate of ρAY and of ρAR are lower bounded by
the same quantity, the right hand side of Eq. (31).

V. PROOF OF LEMMA 1

1) The definitions of the functions J�(ω) and Z�(ω) directly
imply that they are non-decreasing functions of �.

2) We first prove the concavity of Z�(ω). Let U1 : CNQ �→
ĈN̂Q̂E and U2 : CNQ �→ ĈN̂Q̂E be the isometries
attaining the maximum for �1 and �2, respectively, which
act as follows on the purification |ω�CNQRC′R′

of the
previously introduced state ωCNQRC′

:

|τ1�ĈN̂Q̂ERC′R′
= (U1 ⊗ 11RC′R′)|ω�CNQRC′R′

and

|τ2�ĈN̂Q̂ERC′R′
= (U2 ⊗ 11RC′R′)|ω�CNQRC′R′

,

where TrR′ [|ω��ω|CNQRC′R′
] = ωCNQRC′

. For
0 ≤ λ ≤ 1, define the isometry U0 : CNQ �→
ĈN̂Q̂EFF ′ which acts as

U0 :=
√
λU1 ⊗ |11�FF ′

+
√

1 − λU2 ⊗ |22�FF ′
, (32)

where systems F and F ′ are qubits, and which leads to
the state

(U0 ⊗ 11RC′R′)|ω�CNQRC′R′

=
√
λ|τ1�ĈN̂Q̂ERC′R′|11�FF ′

+
√
1−λ|τ2�ĈN̂Q̂ERC′R′|22�FF ′

.

(33)

Then, U0 defines its state τ . for which the reduced state
on the systems ĈN̂Q̂RC′ is

τ ĈN̂Q̂RC′
= λτ ĈN̂Q̂RC′

1 + (1 − λ)τ ĈN̂Q̂RC′
2 . (34)

Therefore, the fidelity for the state τ is bounded as
follows:

F (ωCNQR, τ ĈN̂Q̂R)

= F (ωCNQR, λτ ĈN̂Q̂R
1 + (1 − λ)τ ĈN̂Q̂R

2 )

=F (λωCNQR+(1−λ)ωCNQR, λτĈN̂Q̂R
1 +(1−λ)τ ĈN̂Q̂R

2 )

≥λF (ωCNQR,τ ĈN̂Q̂R
1 )+(1−λ)F(ωCNQR, τĈN̂Q̂R

2 )
≥ 1 − (λ�1 + (1 − λ)�2) . (35)

The first inequality is due to simultaneous concavity of
the fidelity in both arguments; the last line follows by the
definition of the isometries U1 and U2. Thus, the isometry

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:46:14 UTC from IEEE Xplore.  Restrictions apply. 



3136 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 5, MAY 2022

U0 yields a fidelity of at least 1 − (λ�1 + (1 − λ)�2) =:
1 − �. Now let E′ = EFF ′ denote the environment of
the isometry U0 defined above. According to Definition 1,
we obtain

Z�(ω)

≥ S(N̂E′|C′)τ

= S(N̂EFF ′|C′)τ

=S(F |C′)τ+S(N̂E|FC′)τ+S(F ′|N̂EFC′)τ (36)

≥ S(N̂E|FC′)τ (37)

=λS(N̂E|C′)τ1+(1 − λ)S(N̂E|C′)τ2 (38)

= λZ�1(ω) + (1 − λ)Z�2(ω), (39)

where the state τ in the entropies is given in Eq. (34);
Eq. (36) is due to the chain rule; Eq. (37) follow
because for the state on systems N̂EFF ′C′ we have
S(F ′|C′) + S(F ′|N̂EFC′) ≥ 0 which follows from
strong sub-additivity of the entropy; Eq. (38) follows by
expanding the conditional entropy on the classical system
F ; Eq. (39) follows from the definitions of the isometries
U1 and U2.
Moreover, let U1 : CNQ �→ ĈN̂Q̂E and U2 : CNQ �→
ĈN̂Q̂E be the isometries attaining the maximum for
�1 and �2 in the definition of J�(ω), respectively. Again,
define the isometry U0 as in Eq. (32), which leads to the
bound on the fidelity as in Eq. (35), letting E′ = EFF ′

be the environment of the isometry U0. According to
Definition 1, we obtain

J�(ω)

≥ I(N̂EFF ′ : ĈQ̂|C′)τ

≥ I(N̂EF : ĈQ̂|C′)τ (40)

= I(F : ĈQ̂|C′)τ + I(N̂E : ĈQ̂|FC′)τ (41)

≥ I(N̂E : ĈQ̂|FC′)τ (42)

=λI(N̂E : ĈQ̂|C′)τ1+(1−λ)I(N̂E : ĈQ̂|C′)τ2 (43)

= λJ�1(ω) + (1 − λ)J�2(ω), (44)

where Eq. (40) follows from data processing; Eq. (41)
is due to the chain rule for mutual information; Eq. (42)
follows from strong sub-additivity of the entropy, I(F :
ĈQ̂|C′)τ ≥ 0; Eq. (43) is obtained by expanding the
conditional mutual information on the classical system
F ; finally, Eq. (44) follows from the definitions of the
isometries U1 and U2.

3) The functions are non-decreasing and concave for � ≥ 0 ,
so they are continuous for � > 0.
The concavity implies furthermore that J� and Z� are
lower semi-continuous at � = 0. On the other hand, since
the fidelity, the conditional entropy and the conditional
mutual information are all continuous functions of CPTP
maps, and the domain of both optimizations is a compact
set, we conclude that J�(ω) and Z� are also upper semi-
continuous at � = 0, so they are continuous at � = 0 [19,
Thms. 10.1 and 10.2].

4) We first prove Z�(ω1 ⊗ ω2) ≤ Z�(ω1) + Z�(ω2).

In the definition of Z�(ω1 ⊗ ω2), let the isometry U0 :
C1N1Q1C2N2Q2 �→ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2E be the one
attaining the maximum, which acts on the following
purified source states with purifying systems R′

1 and R′
2:

|τ�Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER1C′
1R′

1R2C′
2R′

2

= (U0 ⊗ 11R1C′
1R′

1R2C′
2R′

2
)|ω1�C1N1Q1R1C′

1R′
1

⊗ |ω2�C2N2Q2R2C′
2R′

2 . (45)

By definition, the fidelity is bounded by

F (ωC1N1Q1R1
1 ⊗ ωC2N2Q2R2

2 , τ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2R1R2)
≥ 1 − �.

Now, we can define an isometry U1 : C1N1Q1 �→
Ĉ1N̂1Q̂1E1 acting only on systems C1N1Q1, by letting
U1 = (U0 ⊗ 11R2C′

2R′
2
)(11C1N1Q1 ⊗ |ω2�C2N2Q2R2C′

2R2)
and with the environment E1 := Ĉ2N̂2Q̂2ER2C

′
2R

′
2.

It has the property that |τ�Ĉ1N̂1Q̂1R1C′
1R′

1E = (U1 ⊗
11R1C′

1R′
1
)|ω1�C1N1Q1R1C′

1R′
1 has the same reduced state

on Ĉ1N̂1Q̂1R1 as τ from Eq. (45). This isometry pre-
serves the fidelity for ω1, which follows from monotonic-
ity of the fidelity under partial trace:

F (ωC1N1Q1R1
1 , τ Ĉ1N̂1Q̂1R1

1 )

= F (ωC1N1Q1R1
1 , τ Ĉ1N̂1Q̂1R1)

≥F (ωC1N1Q1R1
1 ⊗ωC2N2Q2R2

2 ,τ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2R1R2)
≥ 1 − �.

By the same argument, there is an isometry
U2 : C2N2Q2 �→ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER1C

′
1R

′
1

with output system Ĉ2N̂2Q̂2 and environment
E2 := Ĉ1N̂1Q̂1ER1C

′
1R

′
1, such that

F (ωC2N2Q2R2
2 , τ Ĉ2N̂2Q̂2R2

2 )

= F (ωC2N2Q2R2
2 , τ Ĉ2N̂2Q̂2R2)

≥F (ωC1N1Q1R1
1 ⊗ωC2N2Q2R2

2 ,τ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2R1R2)
≥ 1 − �.

Therefore, we obtain:

Z�(ω1) + Z�(ω2) − Z�(ω1 ⊗ ω2)

≥S(N̂1E1|C′
1)τ+S(N̂2E2|C′

2)τ−S(N̂1N̂2E|C′
1C

′
2)τ

(46)

=S(N̂1E1C
′
1)τ+S(N̂2E2C

′
2)τ−S(N̂1N̂2EC

′
1C

′
2)τ

− S(C′
1) − S(C′

2) + S(C′
1C

′
2) (47)

=S(N̂1E1C
′
1)τ +S(N̂2E2C

′
2)τ −S(N̂1N̂2EC

′
1C

′
2)τ

(48)

= S(Ĉ1Q̂1R1R
′
1) + S(Ĉ2Q̂2R2R

′
2)

− S(Ĉ1Q̂1Ĉ2Q̂2R1R
′
1R2R

′
2) (49)

= I(Ĉ1Q̂1R1R
′
1 : Ĉ2Q̂2R2R

′
2)

≥ 0, (50)

where Eq. (46) is due to Definition 1; Eq. (47) is
due to the chain rule; Eq. (48) because the sys-
tems C′

1 and C′
2 are independent from each other;
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Eq. (49) follows because the overall state on systems
Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER1C

′
1R

′
1R2C

′
2R

′
2 is pure; Eq. (50) is

due to sub-additivity of the entropy. To prove J�(ω1 ⊗
ω2) ≤ J�(ω1) + J�(ω2), let the isometry U0 :
C1N1Q1C2N2Q2 �→ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2E be the one
attaining the maximum in definition of J�(ω1⊗ω2), which
acts on the following purified source states with purifying
systems R′

1 and R′
2, as in Eq. (45). By definition, the

fidelity is bounded as

F (ωC1N1Q1R1
1 ⊗ ωC2N2Q2R2

2 ,τ Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2R1R2)
≥ 1 − �.

Now define U1 : C1N1Q1 �→
Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER2C

′
2R

′
2 and U2 : C2N2Q2 �→

Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER1C
′
1R

′
1 as in the above discussion,

with the environments E1 := Ĉ2N̂2Q̂2ER2C
′
2R

′
2 and

E2 := Ĉ1N̂1Q̂1ER1C
′
1R

′
1, respectively. Recall that the

fidelity for the states ω1 and ω2 is at least 1− �, because
of the monotonicity of the fidelity under partial trace.
Thus we obtain

J�(ω1) + J�(ω2) − J�(ω1 ⊗ ω2)

≥ I(N̂1E1 : Ĉ1Q̂1|C′
1)τ + I(N̂2E2 : Ĉ2Q̂2|C′

2)τ

− I(N̂1N̂2E : Ĉ1Q̂1Ĉ2Q̂2|C′
1C

′
2)τ (51)

= S(N̂1E1C
′
1)+S(Ĉ1Q̂1C

′
1)−S(Ĉ1N̂1Q̂1E1C

′
1)

− S(C′
1)+S(N̂2E2C

′
2)+S(Ĉ2Q̂2C

′
2)

− S(Ĉ2N̂2Q̂2E2C
′
2)−S(C′

2)−S(N̂1N̂2EC
′
1C

′
2)

−S(Ĉ1Q̂1Ĉ2Q̂2C
′
1C

′
2)

+S(Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2EC
′
1C

′
2)+S(C′

1C
′
2) (52)

= S(Ĉ1Q̂1R1R
′
1)+S(Ĉ1Q̂1C

′
1)−S(R1R

′
1)−S(C′

1)

+S(Ĉ2Q̂2R2R
′
2)+S(Ĉ2Q̂2C

′
2)−S(R2R

′
2)−S(C′

2)

−S(Ĉ1Q̂1Ĉ2Q̂2R1R
′
1R2R

′
2)−S(Ĉ1Q̂1Ĉ2Q̂2C

′
1C

′
2)

+S(R1R
′
1R2R

′
2)+S(C′

1C
′
2) (53)

= I(Ĉ1Q̂1R1R
′
1 : Ĉ2Q̂2R2R

′
2)−I(R1R

′
1 : R2R

′
2)

+ I(Ĉ1Q̂1C
′
1 : Ĉ2Q̂2C

′
2) − I(C′

1 : C′
2)

≥ I(R1R
′
1 : R2R

′
2) − I(R1R

′
1 : R2R

′
2)

+ I(C′
1 : C′

2) − I(C′
1 : C′

2)
= 0, (54)

where Eq. (51) is due to Definition 1; In Eq. (52) we
expand the mutual information in terms of entropies;
Eq. (53) follows because the overall state on systems
Ĉ1N̂1Q̂1Ĉ2N̂2Q̂2ER1C

′
1R

′
1R2C

′
2R

′
2 is pure;

Eq. (54) is due to data processing.
5) According to Theorem 1 [10], [11], any isometry U :

CNQ → ĈN̂Q̂E acting on the state ωCNQRC′
which

preserves the reduced state on systems CNQRC′ (C′

here is considered as a part of the reference system), acts
as the following:

(U ⊗ 11RC′)ωCNQRC′
(U † ⊗ 11RC′)

=
	

j

pj |j��j|C ⊗ Ujω
N
j U

†
j ⊗ ρQR

j ⊗ |j��j|C′
,

where the isometry Uj : N → N̂E satisfies
TrE [Ujω

N
j U

†
j ] = ωj . Therefore, in Definition 1 for � = 0,

the final state is

τĈN̂Q̂ERC′
=

	
j

pj |j��j|C ⊗ Ujω
N
j U

†
j ⊗ρ

QR
j ⊗|j��j|C′

.

Thus we can directly evaluate

Z0(ω) = S(N̂E|C′)τ = S(N |C)ω and

J0(ω) = I(N̂E : ĈQ̂|C′)τ = 0,

concluding the proof.

VI. DISCUSSION

We have introduced a common framework for all
single-source quantum compression problems, i.e. settings
without side information at the encoder or the decoder, by
defining the compression task as the reproduction of a given
bipartite state between the system to be compressed and a
reference. That state, which defines the task, can be completely
general, and special instances recover Schumacher’s quantum
source compression (in both variants of a pure state ensemble
and of a pure entangled state) [1] and compression of a mixed
state ensemble source in the blind variant [5], [7].

Our general result gives the optimal quantum compression
rate in terms of qubits per source, both in the settings without
and with entanglement, and indeed the entire qubit-ebit rate
region, reproducing the aforementioned special cases, along
with other previously considered problems [12]. Despite the
technical difficulties in obtaining it, the end result has a simple
and intuitive interpretation. Namely, the given source ρAR is
equivalent to a source in standard Koashi-Imoto form,

ωCQR =
	

j

pj |j��j|C ⊗ ρQR
j ,

so that j has to be compressed as classical information, at rate
S(C), and Q as quantum information, at rate S(Q|C); in the
presence of entanglement, the former rate is halved while the
latter is maintained. Indeed, what our Theorem 2 shows is that
the original source has the same qubit-ebit rate region as the
clean classical-quantum mixed source

ΩCQRR′C′
=

	
j

pj |j��j|C ⊗ |ψj��ψj |QRR′ ⊗ |j��j|C′
,

where |ψj�QRR′
purifies ρQR

j , and RR′C′ is considered the
reference. In Ω, C is indeed a manifestly classical source,
since it is duplicated in the reference system, and conditional
on C, Q is a genuinely quantum source since it is purely
entangled with the reference system. As TrR′C′ΩCQRR′C′

=
ωCQR, any code and any achievable rates for Ω are good
for ω, and that is how the achievability of the rate region in
Theorem 2 can be described. The opposite, that a code good
for ω should be good for Ω, is far from obvious. Indeed, if that
were true, it would not only yield a quick and simple proof of
our converse bounds, but would imply that the rate region of
Theorem 2 satisfies a strong converse! However, as we do not
know this reduction to the source Ω, our converse proceeds
via a more complicated, indirect route, and yields only a weak
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converse. Whether the strong converse holds, and what the
detailed relation between the sources ωCQR and ΩCQRR′C′

is, remain open questions.
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