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Abstract—In this article, we consider the dynamical mod-
eling of a class of quantum network systems consisting of
qubits, where information extraction is allowed by perform-
ing measurement on several selected qubits of the system.
For a variety of applications, a state space model is a useful
approach to modeling the system dynamics. To construct
a state space model for a quantum network system, the
major task is to find an accessible set containing all of
the operators coupled to the measurement operators. This
article focuses on the generation of a proper accessible set
for a given system and measurement scheme. We provide
analytic results on simplifying the process of generating
accessible sets for systems with a time-independent Hamil-
tonian. Since the order of elements in the accessible set
determines the form of state space matrices, guidance is
provided to effectively arrange the ordering of elements in
the state vector. Defining a system state according to the
accessible set, one can develop a state space model with
a special pattern inherited from the system structure. As a
demonstration, we specifically consider a typical 1-D-chain
system with several common measurements and employ
the proposed method to determine its accessible set.

Index Terms—Accessible set, dynamical modeling, quan-
tum network system, quantum system.

I. INTRODUCTION

THE dynamical modeling of quantum systems is a basic
task for a variety of quantum engineering problems such as
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quantum identification [1]–[6], [8]–[13], [15]–[18] and quantum
control [19]–[21], [24], [26]–[28]. A good dynamical model can
benefit the analysis of these problems. This article studies the
modeling of a class of quantum network systems whose element
systems are qubits and the structure of the system Hamiltonians
is given [29], [31], [32]. While the ultimate objective is to gener-
ate a state space model for a quantum network system subject to a
measurement scheme, our main concern here is on the generation
of an efficiently represented accessible set which can be used to
generate a state vector. A series of works on Hamiltonian identifi-
cation, a key task in various applications such as quantum control
and quantum computation, has benefited from the state space
model commonly used by engineers [9]–[11]. In these results,
state space equations were employed to describe the dynamics of
a quantum network system and the state space model facilitated
developing algorithms to identify unknown parameters in the
system Hamiltonian. To formulate the state space equations for
the system, a general way is to define a coherence vector [9], [33],
which is a complete representation of the quantum state. How-
ever, rather than using a complete basis of the operator space, it is
often possible to generate an accessible set containing a smaller
number of operators necessary for describing the evolution of the
measurement operators [9], [34]. Then the state can be defined
as a vector of expectation values of operators in the accessible
set. A properly generated accessible set may contain the least
number of operators that are coupled with the measurement and,
thus, significantly reduces the dimension of the system dynamic
model. Moreover, a good ordering of element operators in the
accessible set can lead to a state space with desired properties
which can benefit subsequent analysis. Thus, the generation of
accessible sets is important to the system dynamic modeling.
Once an accessible set is obtained, the state space equations
can then be deduced. Although other methods may also be used
to generate a state space model, this article aims to provide a
guidance on the generation of accessible sets for obtaining a
relatively low-dimensional state space with low computational
complexity, which will be instrumental for the efficient modeling
of a class of quantum network systems composed of qubit nodes.

The generation of accessible sets is usually complicated. For
most cases, the number of elements in an accessible set increases
rapidly with the number of subsystems in a network system (see
Fig. 1) [29], and, thus, it may be difficult to search for numerical
solutions in high-dimensional systems. Although one can always
turn to a computer for solutions, the computational complexity
can be high. Moreover, the ordering of the elements in the state
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Fig. 1. Example of a quantum network system. The nodes are qubits
and each connecting line indicates coupling between two qubits. A
measurement device is employed to measure two nodes at the verge
of the system.

vector is also nontrivial. Arranging a good ordering of elements
in the system state variable may lead to state space matrices
with a good structure. In the conference paper [35], preliminary
results have been presented in searching for a rapid method for
the generation of accessible sets. This article aims at presenting
a comprehensive investigation on obtaining good accessible sets
while simplifying the generation process. The specific definition
of “good” is to give a state space matrix that is easy to analyze
and has a repetition pattern as the qubit number increases.

The main contributions of this article are summarized as
follows. We first generalize the generation rules of the acces-
sible set to achieve a lower computational complexity. Then we
provide several lemmas and propositions to further reduce the
computational complexity for a class of spin chain systems. We
introduce a powerful tool, graphs, to describe the generation
of accessible sets. We prove that the generation of accessible
sets can be decomposed as the generation of a series of subsets
for a class of quantum chain systems. The division of graphs
can help in revealing the repetition pattern of the state space
matrices. Graphs can also provide a guidance for the ordering of
elements in the state vector. Given the corresponding accessible
set, a state space model for the quantum network system can be
directly obtained.

The structure of this article is as follows. Section II formulates
the problem. Section III presents our main results. A series
of illustrative examples are given in Section IV. Section V
concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

This work is motivated by establishing simplified state space
model for quantum system identification problems (e.g., Hamil-
tonian identification). In this section, we first provide a brief
introduction to Hamiltonian identification and then discuss state
space modeling and accessible sets. Finally, problem formula-
tion is presented.

A. Hamiltonian Identification

Hamiltonian is a critical physical quantity determining the
evolution of a quantum system. When the system Hamiltonian
is unknown or partially known, it can be reconstructed using
the Hamiltonian identification technique based on the extracted

information (e.g., measurement results) of the system. Lots of
efforts have been devoted to developing this technique, and
researchers have explored identification algorithms for various
quantum systems under different conditions [1]–[6], [8]–[12],
[15]–[18].

In the most general case, the Hamiltonian identification prob-
lem for quantum network systems is difficult due to the curse
of dimensionality, but it can be simplified in structured systems,
and a key to this simplification lies in appropriate model estab-
lishment. The approaches of state space equation and transfer
function have been demonstrated to be two useful methods
for modeling and solving Hamiltonian identification problems
of quantum network systems [9]–[11]. For example, [9] first
provided a rule to generate an accessible set and then derived
the corresponding state space model where the system matrix
contains the unknown parameters. Then, the input and output
information was used to construct a minimal realization of the
system by using the eigen-state realization algorithm. Since one
system may have nonunique realizations but a unique transfer
function, both the modeled and the data-based state space models
were further converted into transfer functions. By equating the
corresponding coefficients of the two transfer functions, polyno-
mials of the Hamiltonian parameters can be obtained and their
solution gives the estimation of the unknown parameters. The
method based on the state space model for Hamiltonian iden-
tification has two main merits: no state tomography is needed;
the algorithm can make use of prior knowledge on the network
structure or partial knowledge of the parameters.

Subsequent studies [11], [17] considered the identifiability
problem based on the state space model established in [9].
While [11] provided an algorithm based on the transfer function
which can be obtained given the state space equations, authors
in [17] considered the state space model directly. All these results
demonstrated that a good state space model with properly gen-
erated coefficient matrices can simplify the subsequent analysis
for Hamiltonian identification.

Our research here is motivated by the Hamiltonian identifi-
cation problem of network systems, aiming to generate a state
space model while trying to reduce the model dimension and
to reform the coefficient matrices from which clear structured
properties can be identified so that the subsequent tasks (e.g.,
system identification) can be simplified. In this study, we con-
centrate on the establishment of state space model, where it is
critical to generate a proper accessible set. Such a proper state
space model may have the potential to facilitate the analysis of
a variety of engineering problems including but not limited to
Hamiltonian identification and quantum control.

B. State Space Equations and Accessible Sets

Measurement is often needed to extract information about
a quantum network system. However, limited by experimental
devices, it is common that only part of the network system can
be measured in many practical applications (see Fig. 1). For
example, one can measure one or two nodes at one edge of the
network system to infer information about the whole system.
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Given H as the time-independent system Hamiltonian, the
time evolution of an arbitrary system observable O(t) in the
Heisenberg picture is

O(t) = U †(t)OU(t) (1)

where U(t) is the unitary operator with time evolution

U(t) = e−iHt. (2)

Here, i is the imaginary unit and t is the time variable (we have
set � = 1). Taking derivative of both sides of (1), we have

dO(t)

dt
= i[H,O(t)]. (3)

Given a measurement operator M(0) = M , its time evolution
is

M(t) = eiHtMe−iHt. (4)

According to the Baker–Hausdorff Lemma [36], the Taylor
series of M(t) is

M(t) = M + [H,M ]it+ [H, [H,M ]]
(it)2

2!

+ [H, [H, [H,M ]]]
(it)3

3!
+ · · · .

(5)

According to (5), the nth-order (n = 0, 1, 2, . . .) time deriva-
tives of the measurement operator M(t) correspond to

M, i[H,M ], −[H, [H,M ]], −i[H, [H, [H,M ]]], . . . . (6)

To establish a state space model, we aim to find an operator set
G constructing a basis for the space spanned by all of the terms
in (6). The set G is called the accessible set corresponding to
the measurement M since all of the element operators in G are
accessible by the measurement M . In other words, G is a set of
operators whose dynamics are coupled with M . A set of rules
to generate the accessible sets is given in [9].

Remark 1: In this article, we assume that a successive record
of expectations of the measurement observable M at times
Δt, 2Δt, 3Δ, . . . can be obtained, where the sampling period
Δt satisfies the Nyquist sampling condition. Such a succes-
sive record is referred to as the measurement time trace [9],
[13]. In [9], the authors suggested a feasible way to obtain the
measurement time trace. Suppose the object quantum system
starts its evolution at time zero with state ρ0. One can apply the
measurement operatorM at timeΔt yielding measurement data
y1. We repeat the procedure of reinitializing the system to ρ0 and
measuring using M after time Δt for n times. When n is large
enough, the averaged measurement

1

n

n∑
i=1

yi

is approximately the expectation of the operator M at time Δt.
Then, we repeat the whole process with measurement time 2Δt
and the expectation of M at time 2Δt can be obtained. An
experiment for measuring time traces on spin systems has been
demonstrated in [13].

Suppose the accessible set G has already been obtained and
is given as follows:

G = {O1, O2, O3, . . . , ONo
} (7)

whereNo is the number of operators inG. Now, we can construct
the state space model based on the expectation of operators,
given the measurement time trace of measurement M and the
associated accessible set G. We define the system state vector x
as

x � (Ô1, Ô2, Ô3, . . . , ÔNo
)T (8)

where Ok is the kth operator in G and Ôk = Tr(Okρ) is the
expectation of observable Ok. Note that measurement M can be
decomposed onto a linear combination of operators in x and the
time derivative of operators in x can be obtained using (3). One
can obtain the following state space equations:{

ẋ = Ax+Bx0

y = Cx
(9)

where A, B, and C are coefficient matrices which may contain
some unknown parameters to be identified.

To summarize, we divide the task of deriving a state space
model in (9) for a quantum network system into two parts. The
first is to find an accessible set so as to define a state vector
x. The second is to find the coefficient matrices A, B, and C
once the state vector x is determined. The matrix A can be
calculated using (3), B depends on the initial state, C depends
on the measurement operators, and x0 is the initial state [9]. In
this article, we mainly focus on the first step since the second
step is straightforward after obtaining a proper accessible set.

Although accessible set is important for constructing state
space model, the generation of the accessible set is not easy
except for systems with simple coupling structures and special
measurement schemes. For general cases, the difficulty of gener-
ating accessible sets increases rapidly with the number of qubits
in the network system. Moreover, note that the ordering of the
elements forming the state x in (8) determines the structure of
the matrices A, B, and C. A good ordering should have the
following properties:

1) The matrix A has a structure that can simplify further
analysis.

2) The matrix A possesses a repetition pattern which is
straightforward to extend when the number of qubits in
the quantum network system increases.

In this article, we mainly study the generation of accessible
sets. Our goal is to simplify the generation processes given
in [9] while obtaining a good ordering for elements in the state
vector x.

C. Problem Formulation

We assume that the Hamiltonian of a quantum network system
consisting of N qubits takes the following form:

H =

Nu∑
k=1

hkHk (10)
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where {Hk} are Hermitian operators depending on the way the
qubits coupled with each other and {hk} are coupling strengths.
Nu is the number of unknown parameters. We call the set

� � {H1, H2, H3, . . . , Hk, . . . , HNu
} (11)

the Hamiltonian set of H .
We generalize M to be a set for all applicable measurement

operators as

M = {O1, O2, . . .}. (12)

Assume the dimension of the system is Nsys. Let Λ be an
orthonormal basis set of the Lie algebra consisting of all the
Hermitian traceless matrices of dimension Nsys. The choice of
Λ is generally nonunique. But for ann-qubit system, the number
of operators in Λ is always 4n − 1.

Definition 1: Given the setΛ, for any properly defined� (M ),
we can always find a unique set �̄ (M̄ ) such that �̄ (M̄ ) is a
minimal basis set of � (M ). We call �̄ (M̄ ) the decomposed
Hamiltonian (measurement) set.

We set the initial accessible set as G0 = M̄ . Then, we iter-
atively update the accessible set using the following rule until
saturated [9]:

Gm = [[Gm−1, �̄]] ∪Gm−1 (13)

where

[[Gm−1, �̄]] � {Oj |Tr(O†
j [τ, ν]) �= 0, ∃τ ∈ Gm−1, ν ∈ �̄,

Oj ∈ Λ}. (14)

Since we require Oj ∈ Λ, the accessible set is a linear subset of
Λ. See Appendix A for an illustrative example of the generation
process of G. The generation rule (14) indicates that finding an
accessible set involves finding all of the operators coupled with
the measurement operators in (12).

The following definition is used for a concise presentation.
Definition 2: Given a triplet {Λ, �̄, M̄}, where �̄ is a decom-

posed Hamiltonian set and M̄ is a decomposed measurement set,
the function f is defined as f : {Λ, �̄, M̄} → G where G is the
accessible set generated by the triplet {Λ, �̄, M̄}.

We formulate our problem as follows.
Problem 1: Letting G = f(Λ, �̄, M̄) where �̄ is the de-

composed Hamiltonian set of (11) and M̄ is the decomposed
measurement set of (12), we aim to develop an economic method
to simplify the generation of the accessible set G with a good
ordering according to generation rules (13) and (14).

In Problem 1, the set Λ scales exponentially. Thus, an algo-
rithm can be time-consuming since it may require a full search
of Λ, accompanying a high probability to yield an accessible set
with an unsatisfactory ordering. Our study aims to investigate
Problem 1 for generating a good accessible set efficiently.

III. MAIN RESULTS

In this section, we first simplify the generation rules (13) and
(14) to reduce the computational complexity. We then propose
a method to achieve a good ordering for accessible sets. We
also provide several lemmas and propositions that can help the
calculation.

A. Regarding the Computational Complexity

Define Ω as the set of all operators that are the tensor product
of N Pauli matrices and the identity. We have

Ω = {O|O = σi1 ⊗ σi2 · · · ⊗ σik ⊗ · · · σiN } (15)

where ⊗ denotes tensor product, ik ∈ {0, 1, 2, 3}, and

σ0 := I2×2, σ1 := σx =

(
0 1
1 0

)

σ2 := σy =

(
0 −i
i 0

)
, σ3 := σz =

(
1 0
0 −1

)
.

(16)

Note that the identity operator I is not included in Ω. We also
have the equality σ2

ik
= I .

The set Ω is an unnormalized basis set of the operator space
for the network system. For the rest of the article, we work with
the set Ω rather than Λ for the generation of accessible sets.

Definition 3: The operation �·, ·	 is defined on any operators
A,B ∈ Ω such that �A,B	 = O where O ∈ Ω and O ∝ [A,B].
If [A,B] = 0, the operation �A,B	 returns 0.

The following proposition simplifies the generation of acces-
sible sets for qubit network systems.

Proposition 1: For a qubit network system {Ω, �̄, M̄}, the
generation rules (13) and (14) are equivalent to the following
rule:

Gm = (|Gm−1, �̄|) ∪Gm−1 (17)

where

(|Gm−1, �̄|) � {Oτ,ν |Oτ,ν = �τ, ν	, Oτ,ν �= 0

τ ∈ Gm−1, ν ∈ �̄]}. (18)

Proof: The Pauli matrices are orthogonal in the sense

Tr(σ†
aσb) =

{
2 a = b,

0 a �= b
(19)

where a, b ∈ {0, 1, 2, 3}.
Note that the Pauli matrices obey the following commutation

relations:

[σa, σb] =

{
2iεabcσc a �= b,

0 a = b
(20)

where a, b, c ∈ {1, 2, 3} and the constant εabc is the Levi-Civita
symbol. Equation (20) indicates that the commutator of Pauli
matrices yields either a matrix that is proportional to another
Pauli matrix or 0. Based on this fact, we have

CO1,2
[O1, O2] ∈ Ω ∀O1, O2 ∈ Ω

where CO1,2
is a proper nonzero coefficient. We can conclude

that there exists a proper nonzero coefficient Cτ,ν such that

Cτ,ν [τ, ν] ∈ Ω ∀τ ∈ G0, ν ∈ �. (21)

Equation (21) indicates that the accessible set Gm ⊂ Ω given
that Gm−1 ⊂ Ω using generation rule (18). In our case, we have
�̄ ⊂ Ω and Ḡ0 ⊂ Ω, which assures that the generation rule (18)
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can guarantee that G ⊂ Ω. Letting

Oτ,ν = Cτ,ν [τ, ν] (22)

we have Oτ,ν ∈ Ω, which confirms that the commutator of two
operators in Ω yields another operator that is proportional to an
operator in Ω. According to (20), if Oτ,ν �= 0, then

Tr(O†
τ,ν [τ, ν]) �= 0. (23)

According to (19), for any O ∈ Ω with O �= Oτ,ν , we have

Tr(O†[τ, ν]) = 0. (24)

Equations (23) and (24) together indicate that Oτ,ν is the oper-
ator that satisfies the requirement in (14) and, thus, should be
added into the accessible set. The generation rule (14) can thus
be simplified to (18). �

Proposition 1 indicates that all of the nonzero commutators of
the operators in a former accessible set Gm−1 and the operators
in �̄ should be added into the accessible set Gm. Compared
with (14), (18) avoids a full search of the elements in Ω. Using
(14), the average computation complexity of finding a single
element in the setΩ isO(4N23N ). Using (18), the computational
complexity of updating an element is reduced to O(23N ).

Problem 1 can now be restated as the following problem with
a lower computational complexity.

Problem 2: Develop an economic method to generate the
accessible set G = f(Ω, �̄, M̄) with a good ordering, using
rules (17) and (18).

B. Graphs Generated by Accessible Sets

Graphs can be employed to demonstrate the generation of
accessible sets. We benefit from graphs mainly in three aspects.
First, a graph visualizes the relationship between operators in the
corresponding accessible set. Moreover, the repetition pattern
revealed by a graph when generating an accessible set has the
potential to be summarized and used to extend an accessible
set to any given qubit number. Second, graphs can be used
to arrange the ordering of element operators in the state vec-
tor to achieve a good structure of the state space matrices.
Third, graphs can help with the proofs of our lemmas and
propositions.

We assign each accessible set G a graph G. The vertices of G
are the elements in the corresponding accessible set G. We say
there is an edge between two vertices Om and On if and only if
there exists ν ∈ �̄ such that

Tr(O†
n�Om, ν	) �= 0. (25)

Here we prove that such an edge (if it exists) is unique.
For Pauli matrices, we observe that if �σm, σi	 = σn and
�σm, σj	 = σn where i, j,m, n ∈ {0, 1, 2, 3}, then σi = σj .
Thus, given ν, u ∈ �̄, if{

Tr(O†
n�Om, ν	) �= 0,

Tr(O†
n�Om, u	) �= 0,

for some Om, On ∈ Ω (26)

we have

ν = u. (27)

Hence, there are no multiple edges with the same direction
between any two vertices. Therefore, we can use ν to label the
edge 〈Om, On〉 andν is called the edging operator. Furthermore,
we prove that there is no loop in G, and, thus, G is a simple graph.
Note that we always have

Tr(O†
m�Om, ν	) = 0 (28)

for any Om, ν ∈ Ω. This means there exists no edge 〈Om, Om〉
and, thus, there is no loop in the graph. We conclude that
all the graphs associated with accessible sets defined in this
article have no loops or multiple edges, which means they are
simple graphs.

Labeling the vertices of graph G with natural numbers, we
obtain the adjacency matrix A whose (i, j)th entry is 1, if and
only if there is an edge connecting the ith and jth vertices [37].
The state space matrixA in (9) has the same structure as A, while
having different elements from A. The graph and the matrix
A share the same pattern in a certain sense. Thus, studying
on the graph provides insights on the accessible set and the
corresponding state space representation. In the following, we
provide more features of the graph.

The graph G can be described as G = {G,E}, where the
accessible set G is a set of vertex operators and E is the set of
all of the edges. Moreover, we have the following definition.

Definition 4: A path in the graph can be specified by a set
of vertex operators (O1, O2, . . . , Om) or equivalently by the
starting operator, ending operator and a sequence of edging
operators {O1, (ν1, ν2, · · · ), Om} where νi = 〈Oi, Oi+1〉. We
refer to the sequence E = (ν1, ν2, . . .) as an edging sequence
which is a sequence of edging operators. We define S(�̄) as the
set of all the sequences of finite edging operators chosen from
�̄. We also defineC(E) � ν1, ν2, . . .︸ ︷︷ ︸ as the collection of edging

operators in E.
Remark 2: The notation E ∈ S(�̄) indicates that all of

the elements in E belong to �̄. The reason that the triplet
{O1, E,Om} can specify a path is based on the fact that the
graphs in this article are all simple graphs. It is worth noting
the differences between a set, a collection, and a sequence. Sets
and sequences can be regarded as specific class collections that
are endowed with different features. While the uniqueness of
objects in a collection is not guaranteed, a set is defined as
a collection of distinct objects. While objects in a collection
may not be ordered, elements in a sequence are uniquely or-
dered. For example, whileE1 = (X,Y, Y ) andE2 = (Y,X, Y )
are two different sequences, the collections C1

E = C(E1) =
X,Y, Y︸ ︷︷ ︸ and C2

E = C(E2) = Y,X, Y︸ ︷︷ ︸ are the same. Moreover,

we have E1, E2 ∈ S({X,Y }) which indicates that sets of
edging operators forming the sequences E1 and E2 are the
same.

A graph is called undirected if there is no direction assigned
to the edges. We have the following lemma which states that any
graph generated by an accessible set is essentially undirected.

Lemma 1: Assume that G = {G,E}whereG = f(Ω, �̄, M̄)
and E is the corresponding set of edges. Then each edge of G is
bi-directed if endowed with direction.
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Proof: Suppose Om and On are two different vertices and
there is an edge 〈Om, On〉 connecting Om and On. We prove
that there exists an edge 〈On, Om〉 and it has the same label as
〈Om, On〉.

According to the definition of an edge and the fact that we
have an edge 〈Om, On〉, there exists a ν ∈ �̄ such that

On = �Om, ν	. (29)

Then the edge 〈Om, On〉 is labeled by ν. According to (20), we
have

Om = �On, ν	. (30)

Then the edge 〈On, Om〉 is also labeled by ν. Hence, each
edge of G is bi-directed if endowed with direction. To put it
differently, the iterative rules given in (13) and (18) can achieve
a bi-directional search. �

Considering Lemma 1, direction becomes a trivial property
for graphs representing accessible sets. Hence, we regard all
graphs employed in this article to be undirected.

Note that a graph is connected if there exists at least one path
between every pair of vertices. An induced subgraph of a graph
is another graph, formed from a subset of the vertices of the
graph and all of the edges connecting pairs of vertices in that
subset. We have the following lemma.

Lemma 2: Let G = {G,E} where G = f(Ω, �̄, M̄) and E
is the corresponding set of edges. Also let M = {M̄,EM} be
an induced graph of G where all of the vertices of M are in the
measurement set M̄ and EM is the corresponding set of edges.
If the graph M is connected, then the graph G is connected.

Proof: All of the elements in the accessible setG are generated
by the elements in the initial set M̄ . Thus, they are connected
with the elements in M̄ according to the definition of the graph
G. Since M is assumed to be connected, the graph G is also
connected. �

Lemma 3: Given G = f(Ω, �̄, M̄) and G̃ = f(Ω, �̄, M̃)
where M̃ is a nonempty subset of G. If G is connected, we
have G̃ = G.

Proof: Since we suppose that an undirected graph G is
connected, the accessible set can be obtained starting from an
arbitrary group of operators (not necessary the measurement
operators) that belong to the accessible set, using the generation
rules (17) and (18). Then Lemma 3 follows. �

C. Special Consideration for a Class of Spin
Chain Systems

A chain system, where qubits are connected in the form of
a string, is a fundamental and typical quantum network system
(see Fig. 2) [10], [11]. Here, we consider a chain system con-
sisting of N qubits. The system Hamiltonian is

H =

N−1∑
k=1

hk(XkXk+1 + YkYk+1) (31)

where the following notation is used X := σx, Y := σy, and
Z := σz . The subscript k indicates that the operator is on the
kth qubit. To write the operators in a compact form, we omit the
tensor product symbol and the identity operator unless otherwise

Fig. 2. Example of a quantum network system whose elements are
qubit systems coupled in the form of a chain. The measurement is on
the first several (two in this example) qubits in the chain system.

specified. Hence, for example, we use the simplified notation
XkXk+1 to represent

I⊗(k−1) ⊗Xk ⊗Xk+1 ⊗ I⊗(N−k−1). (32)

The system whose Hamiltonian is given in (31) is an exchange
model without transverse field [38], [39]. The coupling Hamil-
tonian between the kth and (k + 1)th qubit is hk(XkXk+1 +
YkYk+1). The decomposed set �̄ for the chain system in (31) is

�̄ = {X1X2, Y1Y2, . . . , XkXk+1, YkYk+1, . . . , } (33)

where 1 ≤ k ≤ N − 1.
We present the following proposition to help with the gener-

ation of accessible sets for the system with Hamiltonian given
in (31).

Proposition 2: Given �̄ as in (33) and the measurement set
M̄ = {Z⊗(m−1)Xm} where m is an arbitrary integer satisfying
1 ≤ m ≤ N , we have

GX := f(Ω, �̄, M̄) = {OX
1 , . . . , OX

k , . . .} (34)

where

OX
k =

{
Z⊗(m+k−1)Xm+k, k is even,

Z⊗(m+k−1)Ym+k, k is odd
(35)

and 0 ≤ k ≤ N −m. Similarly, if the measurement set is given
as M̄ = {Z⊗(m−1)Ym}, the corresponding accessible set is

GY := f(Ω, �̄, M̄) = {OY
1 , . . . , OY

k , . . . } (36)

where

OY
k =

{
Z⊗(m+k−1)Ym+k, k is even,

Z⊗(m+k−1)Xm+k, k is odd
(37)

and 0 ≤ k ≤ N −m.
Proof: According to (18), the iterative generation rule in-

volves adding nonzero operators that are generated by taking
the commutator operation on operators in Gm−1 and operators
in �̄ into the new accessible set Gm. Here we find the following
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common patterns:

[O(1,k−1)ZkYk+1, Xk+1Xk+2]

= O(1,k−1)Zk[Yk+1, Xk+1]Xk+2

= (−2i)O(1,k−1)ZkZk+1Xk+2

[O(1,k−1)ZkXk+1, Yk+1Yk+2]

= O(1,k−1)Zk[Xk+1, Yk+1]Yk+2

= (2i)O(1,k−1)ZkZk+1Yk+2

[O(1,k−1)ZkYk+1, Yk+1Yk+2]

= O(1,k−1)Zk[Yk+1, Yk+1]Xk+2 = 0

[O(1,k−1)ZkXk+1, Xk+1Xk+2]

= O(1,k−1)Zk[Xk+1, Xk+1]Yk+2 = 0

(38)

where O(1,k−1) is an operator acting on the first (k − 1)
operators. For a system whose Hamiltonian takes the form
of (31), O(1,k−1)ZkYk+1 ∈ G where 1 ≤ k ≤ N − 2 leads to
O(1,k−1)ZkZk+1Xk+2 ∈ G. If we have O(1,k−1)ZkXk+1 ∈ G
where 1 ≤ k ≤ N − 2, then we also have O(1,k−1)ZkZk+1

Yk+2 ∈ G. The equalities in (38) provide us with opera-
tors that should be added when all of the operators in G
can be written either in the form of O(1,k−1)ZkYk+1 or in
the form of O(1,k−1)ZkXk+1. Note that the added operators
O(1,k−1)ZkZk+1Xk+2 and O(1,k−1)ZkZk+1Yk+2 can be writ-
ten in the form O(1,k)Zk+1Xk+2 and O(1,k)Zk+1Yk+2, which
facilitates the iterative generation of accessible sets. �

Proposition 2 provides us with accessible sets for cases such
as 1), 3), and 5) in Section IV.

D. Improving the Ordering

The results in Section III-A concern the reduction of computa-
tional complexity. Here, we focus on the generation of accessible
sets with good ordering. Two main objectives are as follows:

1) to find a repetition pattern for the state space model as the
number of nodes increases;

2) to reveal the connections between element operators
in G.

These two objectives are vital for finding a repetition pattern
for the state space model and writing down an N -qubit system
model for arbitrary N . Otherwise, one only has accessible sets
for several limited values of N , and the identification, analysis,
and control of the system will be difficult to be extended.
Arranging the order of element operators in the state vector
according to the graph, it is likely to obtain a state space model
with good structure.

Definition 5: We denote the set B = {I2×2, σx.σy, σz} as the
cell set and an operator O ∈ B is a cell operator.

In this article, we use the notation X := σx, Y := σy , and
Z := σz interchangeably so that the cell set can also be written
as B = {I2×2, X, Y, Z}.

Definition 6: A set G is said to be k-finite if every operator
O ∈ G takes the following form:

O = σsk1
⊗ σsk2

⊗ σsk3
⊗ · · · ⊗ σskM

(39)

where M < ∞ is the number of cell operators in O, and

skj ∈

⎧⎪⎨
⎪⎩
{0, 1, 2, 3}, 1 ≤ j < k

{1, 2, 3}, j = k

{0}, k < j ≤ M.

(40)

We start from an N -qubit chain system with a Hamiltonian as
in (31). For such a system, we have the following proposition.

Proposition 3: For an i-qubit network system with the Hamil-
tonian given in (31), �̄i given in (33) and M̄ connected, let
Gi = f(Ω, �̄i, M̄) be the corresponding accessible set. Define
a series of sets G�k (1 ≤ k ≤ i) as

G�k =

{
Gk, k = 1

Gk −Gk−1, k > 1.
(41)

The symbol “−′′ between any sets A and B as A−B indicates
the subtraction of the setB from the setA. We have the following
assertions:

Assertion 1: ∀1 ≤ l ≤ μ ≤ i, Gl ⊆ Gμ.
Assertion 2: The set G�k is k-finite.
Assertion 3: There exists �̄k ⊂ �̄ such that G�k =

f(Ω, �̄k, {Ok}) where Ok can be any operator in G�k and �̄k

can be independent of the choice of Ok.
Proposition 3 reveals the relations between the sets Gk and

G�k for k = 1, 2, . . .. Please see Appendix B for the proof.
Equation (41) is equivalent to Gi = Gk−1 ∪G�k, which

means one only needs to find G�k to obtain the accessible set Gi

given the accessible set Gk−1 for a class of spin chain systems.
Moreover, if we observe a pattern shared by all of the graphs
G�k, one can generate the accessible set Gn for any given n.
Furthermore, Assertion 3 in Proposition 3 confirms that all of
the induced subgraphs G�k are connected. The connectivity of
G�k indicates that all of the subsets G�k can be generated by
starting from an arbitrary operator that belongs to G�k. After
finding an arbitrary operator O ∈ G�k, one can obtain all of the
operators in G�k.

We want to design a search algorithm that is suitable for
generating all of the subsets G�k. In the set G, we place the
elements of G�k in front of the elements of G�k+1. For different
systems and measurement schemes, one needs to design a proper
search rule accordingly. The main idea employed in generating
an accessible set with a good ordering is to divide the accessible
set G into subsets to reveal a generation pattern that is shared
by the accessible sets as the number of qubits increases.

Here, we summarize the generation process. Given a mea-
surement scheme, we first decompose the measurement set and
the Hamiltonian set into the form we defined in Definition 1.
Then we observe the measurement set to see if Proposition 2
can be applied to this situation. For some cases, we can obtain
an accessible set at this stage. Otherwise, we determine if the
graph associated with the accessible set is connected or not.
If the graph is connected, we divide the accessible set into
subsets to find certain repetition patterns when generating the
subsets. If the graph associated with an accessible set is not
connected, this article can still provide some insight. Generally,
a graph can be divided into several connected subgraphs. The
ideas in this article can thus still be applied for the generation
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of the connected subgraphs. Collecting all of the vertices of the
subgraphs together provides a complete accessible set.

IV. ILLUSTRATIVE EXAMPLES

Here we present several examples to demonstrate the gener-
ation of a proper accessible set with good ordering. The object
system is a chain system consisting of N qubits. The system
Hamiltonian is given in (31) and the set �̄ is given in (33).
We provide accessible sets for the following six measurement
schemes:

1) M = {X1}
2) M = {Z1}
3) M = {Z1Y2}
4) M = {Y1Z2}
5) M = {Z1Z2X3}
6) M = {X1Y2Z3}.

For cases 1) and 2), only the first qubit in the chain system
is measured. For cases 3) and 4), we measure the first two
qubits of the chain system. For cases 5) and 6), the first three
qubits are measured. These cases cover most of the common
fundamental measurement settings, and several similar settings
are omitted. For example, from the analysis on case 1), one
can straightforwardly write down the analysis result when the
measurement is M = {Y1}. After we obtain the accessible sets
for these cases, we can establish the corresponding state space
models using (3) and (9). Based on these results, further tasks
can be performed, like analyzing the Hamiltonian identifiability
and developing effective Hamiltonian identification algorithms
(see [11] and [17] for specific examples).

To visualize the generation process, we employ graphs to
describe accessible sets. According to Proposition 3, when M̄
has only one element, the graph G generated by a complete
accessible set G is connected, which means there is always a
path connecting any two operators in G. This holds for all of the
examples in this section and is clearly exemplified by case 2)
(see Fig. 3). The graph G�k associated with subset G�k is also
connected under the assumption in Proposition 3. This can also
be observed from all of the examples, especially from cases 2),
4), and 6).

For cases 1), 3), and 5), we present analytical formula for the
accessible set for an arbitrary integer N . For cases 2), 4), and
6), we present the generation of the accessible set for a fixed
qubit number N , employing graphs to find the repetition pattern
generating the accessible set. By observing and summarizing
those generation patterns, we can determine the accessible set
for any givenN . Arranging the elements according to the graphs
can provide us with a good structure for the state space equation
matrices A, B, and C in (9).
1)MeasuringX1 . According to Proposition 2, the accessible

set G can be obtained immediately as

G =

{
{X1, Z1Y2, Z1Z2X3, · · · , Z⊗(N−1)YN}, N is even,

{X1, Z1Y2, Z1Z2X3, · · · , Z⊗(N−1)XN}, N is odd.
(42)

Fig. 3. Accessible set G when measuring Z1. The system contains six
qubits. Element operators (marked in black and red) are vertices of the
graph. Edges connecting vertices are labeled by operators (marked in
green) in the set �̄ used to generate the vertices.

2)MeasuringZ1 . We have the following iterative generation
rule: {

�Zk, XkXk+1	 = YkXk+1

�YkXk+1, YkYk+1	 = Zk+1.
(43)

From (43) and the fact that Z1 is in the accessible set, it can be
identified that the operators Zk, where 1 ≤ k ≤ N , are all in the
accessible set G.

Aiming to find all of the other operators in the accessible set,
we divide the accessible set G into the following subsets:

G = ∪N
k=1G�k = ∪N

k=1{Zk, . . . } (44)

where the subset G�k is k-finite.
We denote Zk as the “core” operator in the subset G�k. A

“core” operator is an operator selected from G�k and serves as
the starting operator while generating G�k. Since the graph G�k
is connected, one can select any operator in G�k to be a core
operator according to Proposition 3, which means that all of the
other operators in G�k can be generated from Zk by rule (18).

In Fig. 3, the accessible set is given for the case where there are
six qubits in the network system. Starting from the core operator,
the generation of the operators inG forms a graph which follows
a clear repetition pattern. In subset G�1 (in the blue dashed
box), there is only one operator Z1 which is the measurement
operator. In subsetG�2 (in the yellow dashed box), there are three
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Fig. 4. Generation procedure for operators that form the set G�3.

operators Z2, X1Y2, and Y1X2. Following the special pattern
revealed in Fig. 3, one can generate an accessible set for a chain
system with an arbitrary number of qubits. Moreover, we can
also turn to Fig. 3 for a good ordering when constructing the
system state variable x.

3)MeasuringZ1Y2 . Given the initial measurement operator
Z1Y2, the accessible set is as follows according to Proposition
2:

G = {O1, O2, . . . Ok, . . . } (45)

where

Ok =

{
Z1Z2 · · ·Zk−1Yk, k is even,

Z1Z2 · · ·Zk−1Xk, k is odd.
(46)

4) Measuring Y1Z2 . We have the following equality:{
�Y1Z2, Y1Y2	 = X2

�X2, Y2Y3	 = Z2Y3

(47)

which indicates that the operator Z2Y3 is in the accessible set
G. Therefore, from Proposition 2, the following operators are in
the accessible set G:

{X2, Z2Y3, Z2Z3X4, . . . , I ⊗ Z⊗(k−2)Ok, . . . } ⊂ G (48)

where 3 ≤ k ≤ N and

Ok =

{
X k is even,

Y k is odd.
(49)

Aiming to find all of the other operators in G, we divide it into
the following subsets:

G = G�2 ∪G�3 ∪G�4 ∪ · · · ∪G�k · · ·
= {X2, Y1Z2} ∪ {Z2Y3, · · · } ∪ {Z2Z3X4, · · · } ∪ · · ·

(50)

where the subset G�k is k-finite.
Let the “core” operator of G�k be Oc

k as

Oc
k =

{
Z2 · · ·Zk−1Xk, k is even,

Z2 · · ·Zk−1Yk, k is odd.
(51)

According to Proposition 3, all of the other operators in G�k can
be generated from Oc

k by rule (18) given that the core operator
Oc

k belongs to the subset G�k.
The subset G�2 = {Y1Z2, X2} only contains two operators.

Starting from the core operator Z2Y3, elements in G�3 can
be inferred and the generation procedure is shown in Fig. 4.
For example, given thatZ2Z3X4 ∈ G�4 and [Z2Z3X4, Y1Y2] =
−2iY1X2Z3X4, it can be inferred that Y1X2Z3X4 ∈ G�4 as

Fig. 5. Generation procedure for operators forming the set G�4. The
operators in black are in the accessible set while operators in green are
in �̄.

Fig. 6. Generation procedure for operators in set G�5.

Fig. 7. Accessible set when measuring X1Y2Z3. The number of qubits
is 3.

well, according to (18). Similarly, the generating processes and
element operators for the subsets G�4 and G�5 are shown in
Figs. 5 and 6, respectively. The generation patterns for those
sets are similar and repetitive. It can be seen that the num-
ber of elements in G�3 is 3 + 4 = 7; the number of elements
in G�4 is 4 + 5 + 6 = 15; the number of elements in G�5 is
5 + 6 + 7 + 8 = 26. Using the induction method, the number
of operators in G�k is (3k − 2)(k − 1)/2.

For an N -qubit chain system, the total number of operators
in the accessible set G is

|G| =
N∑

K=2

(3k − 2)(k − 1)

2
=

N3 −N2

2
. (52)

From the analysis above, it is clear that the number of operators
in G scales as N3, which can be far more than the qubit number.
5) Measuring Z1Z2X3 . Given the initial measurement

operator Z1Z2X3, the accessible set is as follows according to
Proposition 2:

G = {O1, O2, . . . , Ok, . . . } (53)

where

Ok =

{
Z1Z2 · · ·Zk−1Yk, k is even,

Z1Z2 · · ·Zk−1Xk, k is odd.
(54)
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Fig. 8. Accessible set when measuring X1Y2Z3. The number of qubits
is 4. The graph generated by G4 cannot be presented in an uncrossed
two-dimensional graph. Hence, we separate it into two graphs. However,
there are repetitive elements in the two graphs (see the ones marked in
red), which means the complete graph is still a connected simple graph.

6) Measuring X1Y2Z3 . When the measurement operator
is X1Y2Z3, the accessible set G for 3-qubit and 4-qubit systems
are shown in Figs. 7 and 8, respectively. In both situations,
the graphs show some complicated generation patterns with a
certain repetition mode.

V. CONCLUSION

To model a quantum system using state space equations for
the purpose of parameter identification, one needs to define a
proper state vector. Mathematically, one can define the state
vector using any complete set of bases. However, the dimension
of the state space model is often extremely high for a quantum
network system. This problem can be solved or mitigated by
defining the state as a vector of expectations of element operators
in a reduced accessible set associated with the measurement. By
generating a proper accessible set which only contains minimal
number of operators coupled with the measurement, the model
dimension may be reduced dramatically. Moreover, we may
obtain coefficient matrices with good properties by ordering the
element operators in the accessible set in a proper sequence.
Thus, a well-generated accessible set can be used to simplify
further analysis for, e.g., Hamiltonian identification.

Based on the above motivation, we investigated the gen-
eration of accessible sets, given a system Hamiltonian and a
measurement operator. We obtained a series of results that can
simplify the generation procedure for accessible sets for a class
of network systems. We also introduced graphs to demonstrate
the generation of accessible sets and to guide the ordering of
elements in the state space vectors. Several examples were
presented where the accessible sets for different measurement
schemes were obtained, demonstrating the effectiveness of our
method.

APPENDIX A

EXAMPLE TO DEMONSTRATE THE GENERATION RULES (13)
AND (14)

For a 2-qubit system, we choose the basis set Λ as

Λ = {X1, Y1, Z1, X2, Y2, Z2, X1X2, X1Y2, X1Z2,

Y1X2, Y1Y2, Y1Z2, Z1X2, Z1Y2, Z1Z2}.
(55)

Assume the system Hamiltonian is H = 1
2 (X1X2 + Y1Y2)

which yields the decomposed set �̄ = {X1X2, Y1Y2}. Select
the measurement as M̄ = {Y1Z2} which is already decom-
posed. The generation procedure is as follows.

1) Set G0 = M̄ = {Y1Z2}.
2) Then we calculate [[G0, �̄]].

a) Let τ = Y1Z2 and ν = X1X2. Since [τ, ν] = 0, no
operators need to be added into the set.

b) Let τ = Y1Z2 and ν = Y1Y2. Since [τ, ν] =
−2iX2, there is only one operator X2 ∈ Λ that
satisfies Tr(X†

2[τ, ν]) �= 0. Thus, the operator X2

is added into [[G0, �̄]].
3) The setG1 = [[G0, �̄]] ∪G0 = {Y1Z2, X2}. SinceG1 �=

G0 which means the generation is not saturated, the
algorithm continues.

4) Then we calculate [[G1, �̄]].
a) Let τ = X2 and ν = X1X2. Since [τ, ν] = 0, no

operators need to be added into the set.
b) Let τ = X2 and ν = Y1Y2. Since [τ, ν] = 2iY1Z2,

there is only one operator Y1Z2 ∈ Λ that satis-
fies Tr((Y1Z2)

†[τ, ν]) �= 0. Thus, operator Y1Z2

should be added into [[G0, �̄]].
5) The set G2 = [[G1, �̄]] ∪G1 = {Y1Z2, X2} ∪

{Y1Z2} = {Y1Z2, X2}. Since G2 = G1 indicates that
the generation process is saturated, the generation process
stops and the final accessible set is G = {Y1Z2, X2}.

APPENDIX B

PROOF OF PROPOSITION 3

In order to prove Proposition 3, we first present preliminar-
ies and several lemmas that will be used. The following two
definitions are given first.

Definition 7: Given G = f(Ω, �̄, M̄) and its corresponding
graph G, two vertices Om ∈ G and On ∈ G are called adjacent
if and only if there exists ν ∈ �̄ such that

Tr(O†
n, [Om, ν]) �= 0 (56)

which means that there is an edge (labeled by ν) connecting
vertices Om and On in the graph G.

Definition 8: Graph Gm and graph Gn are adjacent if and
only if there exists at least one vertex in Gm that is adjacent to
a vertex in Gn.

We plan to use induction. To simplify the narrative, we divide
elements in G�k+1 into two classes G1

�k+1 and G2
�k+1 such that

we have the following:
1) G1

�k+1 ⊂ G�k+1 is the set of operators that are adjacent
to elements in Gk;
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2) G2
�k+1 = G�k+1 −G1

�k+1 is the set of operators that are
not adjacent to any element in Gk.

Note that the following three statements are equivalent: 1)
G1

�k+1 can be generated by the triplet {Ω, �̄k, {Ok+1}} where

Ok+1 is an arbitrary operator that belongs toG1
�k+1; 2) the graph

G1
�k+1 is connected; 3) there is always a path between every pair

of vertices in the graph G1
�k+1. Thus, the other two statements

are proved if any one of the statements are proved, and we may
use the three statements in the following proofs interchangeably.

Note that an arbitrary operator in Ω is formed by the tensor
product of a sequence of cell operators in B = {I2×2, X, Y, Z}.
For a given operator O ∈ Ω, we refer to the cell operator on
the jth qubit as the jth cell operator. Moreover, for an operator
O ∈ Gk where Gk is k-finite, we refer to the kth cell operator
as the ending operator. For example, the third cell operator of
O = X ⊗ Y ⊗ I ⊗ Z is I and the ending operator of O is Z,
given that O ∈ G4. We can also say that the operator O ends
with Z. Now we give five lemmas (the proof details can be
found in [40]).

Lemma 4: Suppose the system Hamiltonian is given in (31),
�̄i is given in (33) and M̄ is connected. For a vertex Oa ∈ G�k,
if there existOc, Od ∈ G1

�k+1 which are adjacent toOa, we have
the following statements.

1) Oc and Od are (k + 1)-finite.
2) Oc and Od are connected.
Lemma 5: Suppose the system Hamiltonian is given in (31),

�̄i is given in (33) and M̄ is connected. Two vertices Oa, Ob ∈
G�k are adjacent. If there exists Oc ∈ G1

�k+1 which is adjacent
to Oa, we have the following statements.

1) There exists Od ∈ G1
�k+1 which is adjacent to Ob.

2) Oc and Od are (k + 1)-finite.
3) There exists a path in G�k+1 that connects Oc and Od.

The main difficulty is in proving Assertions 2 and 3. Define
�̄�k = �̄k − �̄k−1. For the system with Hamiltonian given in
(33), we have �̄�k+1 = {XkXk+1, YkYk+1}. Since operators
in �̄�k+1 can only relate operators in G�k and G1

�k+1, all of the

operators in G1
�k+1 are generated by operators in G�k. Thus,

to prove Assertion 2 and Assertion 3, it suffices to consider
elements in G�k. We assert that every element in G�k can
generate at most two elements in G1

�k+1 for a system whose
Hamiltonian takes the form of (31). For the case where an
operator inG�k can generate two operators inG1

�k+1, we present

Lemma 4 to confirm that the generated operators in G1
�k+1 are

connected and (k + 1)-finite. For the case where an operator in
G�k only generates one operator in G1

�k+1, we present Lemma 5

to confirm that the generated operators in G1
�k+1 are connected

and (k + 1)-finite.
Lemma 6: Given O1 ∈ Ω and ν1, ν2, . . . , νm ∈ �̄ as in (33)

where m is any positive integer. Define two edging sequences

E1 = (νε(1), νε(2), . . . , νε(m))

E2 = (νε′(1), νε′(2), . . . , νε′(m))
(57)

where ε(·) and ε′(·) are two choices of the bijective
map F � {1, 2, . . . ,m} → {1, 2, . . . ,m}. For the two paths

{O1, E1, O2} and {O1, E2, O3}, we have O2 = O3 if O2, O3

∈ Ω.
Lemma 7: Let the edging sequence connecting Oa ∈ Ω

and Ob ∈ Ω be denoted as E and assume that E ∈ S(�̄k+1)
where �̄k+1 is given in (33). For an edging sequence E ′ such
that C(E ′) = C(E)− C(Ep) where C(Ep) ⊂ C(E) and each
element in Ep ∈ S(�̄k+1) appears an even number of times,
if there exists a path {Oa, E,′ Oc} and Oc ∈ Ω, then we have
Oa = Oc.

Here, the subtraction A−B for two collections A and B
is defined as removing same operators in B from A. If an
operator appears k(k ≥ 2) times in B, k such operators should
be removed from A.

Lemma 8: Given �̄k+1 as in (33), M̄ is a decomposed
measurement set and the graph is G = {G,E} where G =
f(Ω, �̄k+1, M̄). If there exists a path {Oa, E,Ob} where Oa ∈
Gk, Ob ∈ Gk+1 and E = (ν1, ν2, · · · ) ∈ S(�̄k+1), and Ob is
not (k+1)-finite, we have Ob ∈ Gk.

We now move to the proof of Proposition 3 using the
previous lemmas.

Proof: The proof of Assertion 1 is straightforward. For
any 1 ≤ l ≤ μ, given that Gl = f(Ω, �̄l, M̄) and Gμ =
f(Ω, �̄μ, M̄), since �̄�l ⊆ �̄�μ, we have Gl ⊆ Gμ. �

Then we prove Assertion 2 and Assertion 3 at the same time.
Essentially, Assertion 2 and Assertion 3 together state thatG�k is
k-finite, and, moreover, the graph generated byG�k is connected.

We use the induction method to prove Assertion 2 and As-
sertion 3. Suppose that G�i is i-finite and is connected for any
1 ≤ i ≤ k; we prove that G�k+1 is (k + 1)-finite and G�k+1 is
connected. According to Lemma 2, Gk+1 is connected. Since
Gk+1 = Gk +G�k+1 and G2

�k+1 ⊂ G�k+1 is not adjacent to

Gk, G2
�k+1 must be connected to G1

�k+1. Thus, to prove Asser-

tion 3, it suffices to prove that both the induced subgraphs G1
�k+1

and G2
�k+1 are connected given that Gk is connected. To prove

Assertion 2, we need to prove that operators inG1
�k+1 andG2

�k+1

are (k + 1)-finite given that Gk is k-finite.
Lemma 4 concerns the case where one element operator in

G�k generates two element operators in G1
�k+1 and Lemma 5

concerns the case where one element operator in G�k generates
only one element operator in G1

�k+1. For both cases, the gen-
erated operators are connected and (k + 1)-finite. Then, from
Lemma 4, Lemma 5, and the assumption that Assertions 2 and
3 hold for G1

�k, Assertions 2 and 3 hold for G1
�k+1. Since G2

�k+1

can be generated by G1
�k+1, the set G�k+1 is connected, which

means Assertion 3 holds for G�k+1.
Having proved that Assertion 2 holds forG1

�k+1, we prove that

Assertion 2 also holds for G2
�k+1. For Ob ∈ G�k+1, there must

be a path {Oa, E,Ob} where Oa ∈ Gk and all of the vertices
in the path except Ob are in G�k ∩G�k+1 because we have the
assumption that Gk is connected and previously proved that
G1

k+1 is connected. Then from Lemma 8, if Ob is not (k + 1)-
finite, we have Ob ∈ Gk, which contradicts the assumption that
Ob ∈ G�k+1. Then we conclude that the set G2

�k+1 is (k + 1)-
finite. Thus Assertion 2 is proved.

So far, we have proved that G�k+1 is connected and the set
G�k+1 is (k + 1)-finite, given that Assertion 2 and Assertion 3
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apply to Gk. In our case, we assume that G1 = M is connected.
Thus, we can always find a k validating Assertion 2 and As-
sertion 3. Therefore, using the induction method, Proposition 3
is proved.
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