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Incompressibility of Classical Distributions
Anurag Anshu , Debbie Leung, and Dave Touchette

Abstract— In blind compression of quantum states, a sender
Alice is given a specimen of a quantum state ρ drawn from
a known ensemble (but without knowing what ρ is), and she
transmits sufficient quantum data to a receiver Bob so that
he can decode a near perfect specimen of ρ. For many such
states drawn iid from the ensemble, the asymptotically achievable
rate is the number of qubits required to be transmitted per
state. The Holevo information is a lower bound for the achiev-
able rate, and is attained for pure state ensembles, or in the
related scenario of entanglement-assisted visible compression of
mixed states wherein Alice knows what state is drawn. In this
paper, we prove a general and robust lower bound on the
achievable rate for ensembles of classical states, which holds
even in the least demanding setting when Alice and Bob share
free entanglement and a constant per-copy error is allowed.
We apply the bound to a specific ensemble of only two states
and prove a near-maximal separation (saturating the dimension
bound in leading order) between the best achievable rate and
the Holevo information for constant error. This also implies
that the ensemble is incompressible – compression does not
reduce the communication cost by much. Since the states are
classical, the observed incompressibility is not fundamentally
quantum mechanical. We lower bound the difference between
the achievable rate and the Holevo information in terms of
quantitative limitations to clone the specimen or to distinguish
the two classical states.
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I. INTRODUCTION

A. Blind Quantum Data Compression and Related Scenarios

ACENTRAL goal of information theory is to capture the
ultimate rate of transformation of resources. For example,

we may want to minimize the communication cost of a task,
which is an optimization problem over a potentially unbounded
number of possible communication protocols. In some special
cases, the best communication cost is given by a simple
enough information theoretic quantity that can be computed.
For example, this has been achieved in Shannon’s source
coding theorem (data compression) and noisy channel cod-
ing [1] and some network analogues [2]. Quantum information
theory shares the same goal, and similar understanding has
been achieved in quantum noisy coding theorem, albeit with
regularization issues in many scenarios.

This paper focuses on the problem of quantum data com-
pression, which can be stated as follows. Fix an ensemble
{p(x), ρx

C} of quantum states ρx
C on a register C, and define

the associated state

ρXC =
�

x

p(x)|x��x|X ⊗ ρx
C . (1)

In the aforementioned ensemble, each state ρx
C is labeled by

a classical index x recorded in the register X and occurring
with probability p(x). Suppose a Referee prepares n copies of
the above state:�
x1x2···xn

p(x1)p(x2) · · · p(xn) |x1��x1|X1⊗ |x2��x2|X2⊗ · · ·

· · · ⊗ |xn��xn|Xn ⊗ ρx1
C1

⊗ ρx2
C2

⊗ · · · ⊗ ρxn

Cn
, (2)

where each Ci ≡ C. The Referee transmits C1 · · ·Cn to Alice.
Alice is allowed to send some quantum data to Bob. Bob
decodes and his final output registers are C�

1 · · ·C�
n. The goal

is that the final state of the Referee and Bob should be close
to the state in (2), while minimizing the amount of data sent.
A rate r is achievable for the compression if there is a family of
protocols labeled by n in which Alice sends nr qubits. There
are many related but inequivalent scenarios for quantum data
compression.

• In the blind scenario (as described above), Alice does
not have access to the registers X1 · · ·Xn. She has a
specimen of the states ρx1 ⊗ · · · ⊗ ρxn in C1 · · ·Cn, but
she does not known what they are in general. In contrast,
in the visible scenario, the Referee gives a copy of
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X1 · · ·Xn to Alice so she knows x1 · · ·xn (and in this
case it is unnecessary to give her C1 · · ·Cn).

• In the unassisted model, Alice and Bob do not share any
correlations. In other scenarios, they may share classical
randomness. In the entanglement-assisted scenario, they
may share any entangled state of their choice. Note
that with entanglement assistance, sending quantum or
classical data are equivalent due to teleportation [3] and
superdense coding [4]. The rate in qubits is equal to half
of the rate in bits.

• One has to specify the measure of proximity between the
initial state (2) and the final state held by the Referee and
Bob. A more stringent definition of error requires that the
final state in X1 · · ·XnC

�
1 · · ·C�

n be close to the original
state in (2), in trace distance or in fidelity. The error in
this case is called “global.” A more relaxed definition of
error requires that for each i, the i-th output state in XiC

�
i

is close to the initial state in XiCi. The error in this case
is called “local.” For the asymptotic case, the error is
typically required to vanish as n increases. Alternatively,
one can consider the one-shot scenario when n = 1, but
this scenario is out of the scope for our paper. We will
mention some one-shot results which have asymptotic
implications.

• There is no limitation on the states ρx
C in the ensemble in

the problem. There are several special cases of interest.
One well-studied special case is the “pure state case” in
which all ρx

C are pure. Another case concerns ensembles
of states that are commuting, in which case they can be
simultaneously diagonalized, and the ρx

C correspond to
classical distributions.

We can summarize prior results as follows. The unassisted
blind scenario for pure state case was formulated in [5]–[7].
These pioneering works established the quantum analogue
of Shannon’s source coding theorem when the ensemble
{p(x), |ρx��ρx|C} consists only of pure states, with the best
achievable rate shown to be S(ρC) qubits, where S(.) is the
von-Neumann entropy [8] and ρC =

�
x p(x)|ρx��ρx|C is the

average state of the ensemble. If the states |ρx�C are mutually
orthogonal, the problem reduces to Shannon’s source coding
problem and Schumacher’s protocol recovers Shannon’s result
with rate being S(ρC) bits.

For a general ensemble {p(x), ρx
C}, the Holevo information

is defined as S(
�

xp(x)ρ
x
C)−�xp(x)S(ρx

C), and it is also the
quantum mutual information I(X :C)ρ between X and C eval-
uated on ρXC . It was independently shown by [9] and [10]
that the Holevo information is a lower bound for the achievable
rate in the unassisted scenarios for both visible and blind
compression.

For unassisted compression of pure states, the above lower
bound on the rate is already attained by the protocol in the
blind setting [5]–[7]. Thus the visible scenario, with Alice’s
knowledge of the state to be compressed, surprisingly does
not improve the rate. Furthermore, shared randomness does
not reduce the best achievable rate.

The situation is more complex for the compression of
mixed quantum states. The problem was considered as early
as in [11] and formulated and studied in detail in a large body

of work [12]–[19]. The rate depends on whether the protocol
is visible or blind, what kind of assistance is available, under
local or global error, and whether the ensemble is classical or
quantum, to be discussed as follows.

Visible compression of classical ensemble is relatively well
understood, given the assistance of shared randomness. The
problem is equivalent to the simulation of classical chan-
nels (associated to the classical Reverse Shannon theorem).
Authors in [20] and [13] independently showed that the Holevo
information is the achievable rate in bits under global error cri-
teria. Winter [18] further showed that under the local error cri-
teria, shared randomness is not needed to achieve the Holevo
information. It was also shown in [18, Theorem 3] that the
Holevo information is a lower bound even for asymptotically
non-vanishing global error. This is a notable feature of visible
compression: even a constant global error (for example 1

3 )
requires a rate at least equal to the Holevo information. Using
rejection sampling, the Holevo information was shown to be
achievable in the asymptotic setting [21] and one-shot with
expected communication [22].

For the visible compression of quantum ensembles without
any assistance, Horodecki [12] showed that the qubit rate is
given by a quantity defined via extensions of the ensemble.
Later, Hayashi [23] gave a simpler characterization of the qubit
rate in terms of the entanglement of purification [24]. With
entanglement assistance, protocols for the visible compression
have several guises. The first guise is remote state preparation
of entangled states between Alice and Bob, first formalized
in [25] and solved in [26] with qubit rate 1

2 I (X :C)ρ (subse-
quently reproduced from a one-shot approach in [27]). The
second is via the rejection sampling method and quantum
substate theorem [28], [29] which gives a one-shot protocol
with asymptotic rate of 1

2 I (X :C)ρ qubits. The third guise
is via the general scenario of the quantum Reverse Shannon
theorem [30], [31] which also attains the optimal qubit rate
of 1

2 I (X :C)ρ. The first and third methods are entanglement
optimal as well. Reference [32], Section 10.8, also addresses
visible compression.

Finally, for blind compression of a mixed ensemble, the
difference between the rate of quantum communication and
the Holevo information was termed “information defect” by
Horodecki [9]. Both [9] and [10] provided bounds on the
information defect without resolving whether it could be
positive. In [13], a classical ensemble was presented with an
argument sketching the positivity of its information defect.
But the error criteria in their argument was not made pre-
cise. Kramer and Savari [14] also showed a similar result
with an error criteria based on empirical distribution of
the outputs. But this error criteria does not match either
the global or local criteria discussed above. In a powerful
series of results [15]–[17], Koashi and Imoto characterized
the optimal rates of quantum and classical communication,
the amount of entanglement required, and their tradeoffs in
blind compression. This was done by a decomposition of the
ensemble of states, now colloquially called the Koashi-Imoto
decomposition. Their result requires that the local error goes to
zero in the asymptotic setting and leads to a large information
defect. An ensemble witnessing this separation consists of two
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equiprobable commuting states [16], and its blind compression
requires classical communication at the rate of the entropy
of the average state. This ensemble achieves a near-maximal
separation between achievable rate of communication and the
Holevo information of the ensemble in the regime of vanishing
error. By ‘near-maximal’, we mean that the leading order term
in the separation saturates the dimension bound.

We motivate this study by asking if the above rate charac-
terization holds for non-vanishing error; mimicking the feature
of visible compression mentioned earlier. This is a first step
towards chalking out the “communication versus error” profile
for blind compression and understanding its strong converse
rate. We observe that the Koashi-Imoto rate characterization
is sensitive to the amount of error. We highlight this using
an example in Appendix A, where we show that blind com-
pression of any ensemble of two commuting states {ρ0

C , ρ
1
C}

with local error ε can be achieved with unassisted rate of
2 log log d

ε + 2 log 1
ε + 5 bits (d is the dimension of register

C which is a constant independent of n). For ε � 1√
d

, our
achievable rate is substantially less than the lower bound of
log d given by the Koashi-Imoto rate characterization for a
generic pair of commuting states in the vanishing error regime.
The general compression rate, as a function of ε, therefore,
remains unresolved.

Is there a coding scheme that can even further reduce the
rate exhibited in the aforementioned example for finite ε? For
instance, could the rate depend on the error as O �log log 1

ε

�
,

as in [22], [25], [29] using rejection sampling? Much of this
paper is devoted to showing the contrary. We provide an
example where the rate of O �log 1

ε

�
is optimal for a suitable

finite choice of local error. For this ensemble, we show a
large and robust lower bound (log d) − 7 for the rate, while
the Holevo information is less than 1. By ‘robust’, we mean
that the lower bound is a simple function of the error. Thus
compression of this ensemble does not reduce communication
rate in a significant manner relative to sending the whole
register C. Note that since our lower bound holds for local
error, it also implies the same lower bound for the global error.
Furthermore, our lower bound applies to entanglement-assisted
protocols. Since we consider entanglement-assisted protocols,
our lower bound also applies to shared randomness assisted
protocols, such as in [32, Section 10.8].

Our result may also provide insights to rate distortion
theory for blind compression of distributions. Rate-distortion
theory has been studied in the quantum setting, for example,
see [33]–[35]. These prior works use a less stringent error
measure than our current work, but preserve the purification
of the compressed states. Therefore, their lower bounds do not
apply to the current setting.

B. Main Result, Techniques and Consequences
In this work, we show a near-maximal (for the dimen-

sion of the states) separation between the achievable
rate of classical communication for entanglement-assisted
blind mixed state compression and the Holevo informa-
tion. As mentioned earlier, our separation holds for finite
(non-vanishing) local error. We establish this separation in
two steps.

In the first step, we consider entanglement-assisted blind
mixed state compression of the n-copy state in (2), for
ensembles of classical states ρx

C that are diagonal. We obtain a
single-letter lower bound on the asymptotic achievable rate R:

R ≥ min
F :C→CC′

�
I (C :C� |X)F(ρ)

�
+I (X :C)ρ−ε log |X | − 1,

(3)

where ρ is defined in (1), the quantum TPCP map F takes
ρXC to ρXCC′ and satisfies the constraints

1) TrCF(ρXC) ≈ ρXC′ ,
2) TrC′F(ρXC) = ρXC ,

and the approximation in the first constraint is given by ε.
Since the map F acts as identity on the register X , we have
shortened the notation IX ⊗ F to F for convenience. Note
that despite a similarity in form between (3) and Lemma 3.1
in [14], our bound is obtained under the local error condition
(unlike the empirical error condition of [14]). The expression

minF :C→CC′
�
I (C :C� |X)F(ρ)

�
approximates the difference

between R and the Holevo information I (X :C)ρ in (3), with
the following noteworthy features:

• If Alice knows X (visible scenario or distinguishable
ρx

C’s), the expression vanishes which matches previous
known bounds. Thus this expression represents Alice’s
lack of knowledge of the label X of the given state.
Our strategy is to prove a large lower bound for the
expression.

• We can view C as the register containing the state held
by Alice, and C� as the register C� containing the output
state held by Bob. The first constraint TrCF(ρXC) ≈
ρXC′ reflects the correctness of the protocol: the state
TrCF(ρXC) between Bob and the Referee (holding X)
is close to the desired state ρXC′ (with C replaced by C�).
The second constraint TrC′F(ρXC) = ρXC comes from
classicality of the ensemble, which allows Alice to retain
a copy of the classical value in register C. Being classical,
the system C is not disturbed by the measurement that
allows Alice to retain the copy of C.

• In Section III, we specialize to equiprobable ensembles
of two states, and convert the expression to two simpler
lower bounds given in (10). The first lower bound,
(10)(c), is the expected distance (over x) between two
joint states shared by Alice and Bob. The first joint state
is the output of the protocol, and the second state consists
of two independent copies of Alice’s input state, one held
by each of Alice and Bob. Thus, the compression rate is
lower bounded by the inability to clone the states in the
ensemble. The second lower bound, (10)(f), is the gain
in distinguishability between the states for x = 0 and
x = 1, if two copies of the states are available instead of
one copy. We note that these two lower bounds involve
trace distances on the joint system held by Alice and Bob,
and are optimized over arbitrary joint operations by Alice
and Bob. These quantities are also easily evaluated.

The lower bounds (10)(c) and (f) are not exten-
sive. To obtain a large lower bound on the expression
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Fig. 1. The two distributions in our example are the uniform distribution
(straight horizontal line) and the staircase distribution. Here, d = |C| and
η = d(d + 1)/2.

minF :C→CC′
�
I (C :C� |X)F(ρ)

�
limited only by the dimen-

sion, we choose an equiprobable ensemble of two states ρ0
C

and ρ1
C , where the former represents the uniform distribu-

tion and the latter the ‘staircase’ distribution; see Figure 1.
We show that if the error is a small constant ≈ 1

|C|4 , then the
only strategy Alice can employ is to send the register C to
Bob. For this, we view F as a transition matrix for probability
distributions and show that it must be close to the identity
matrix. We obtain the following.

Theorem 1: The following holds for the ensemble of two
equiprobable states {ρ0

C , ρ
1
C}, where |C| = d, ρ0

C = I/d,
ρ1

C is diagonal, with (c, c)-entry being (d − c + 1)/η, and
η = d(d+1)/2. The achievable rate for entanglement-assisted
blind compression is at least (log d)−7 bits, while the Holevo
information I(X :C)ρ is at most 1. The lower bound holds for
both global and local errors of ε ≈ 1/d4, which is independent
of the number of instances n. Thus the information defect at
non-vanishing local error can be arbitrarily large, and near
maximal for the dimension.

Our proof highlights a ‘strong no-cloning principle’ in
the classical setting. To clarify, observe that Alice and
Bob cannot transform (or clone) ρx

C → ρx
C ⊗ ρx

C′ with-
out the knowledge of x. This translates to the statement
that minF :C→CC′ I (C :C� |X)F(ρ) is bounded away from
0 in (10)(c). Theorem 1 goes further to show that the only
way to produce the register C� creates a lot of correlation
between C and C�. This is akin to the situation in quantum
no-cloning; the operation |i�C → |i�C |i�C′ leads to a large
correlation when applied to a state

�
i αi|i�C in superposition.

C. Conclusion

In this work, we study the problem of blind compression
of quantum data, in the regime of finite error. Our inspiration
comes from two sources. First is the visible scenario, where
the trade-off between global error and communication rate is
very well understood (providing a strong converse rate) and
the trade-off between local error and communication rate is
relatively well understood. Second is the Koashi-Imoto char-
acterization, which gives the optimal rate of communication
as the error vanishes in the asymptotic limit and hence shows

a near maximal separation between the communication rate
and the Holevo information in the vanishing error regime.
In their converse bound for non-vanishing error, the error
dependence of the rate is not explicitly given, and we have
observed sensitivity to error in the appendix. Thus the Koashi-
Imoto characterization does not immediately apply to the
current regime of non-vanishing (global or local) error. Our
main result resolves this problem, showing a near maximal
separation of the rate from the Holevo information in the
non-vanishing local error regime. For this, we prove a new
lower bound that is based on a variant of the no-cloning
theorem for classical distributions. Our technical proof builds
on an approximate version of the Birkoff-von Neumann
theorem.

An immediate question raised by our work is to understand
the error vs. communication rate trade-off for the blind com-
pression scenario, for the cases of global and local errors.
Furthermore, we ask if a strong converse rate exists for the
blind compression scenario when the global error is finite,
which is known to hold for the visible case. Finally, we high-
light that our lower bound does not entirely rely on the spatial
separation between the sender and the receiver, which leads to
the question of further applicability of our techniques to other
problems.

II. NOTATIONS AND INFORMATION THEORETIC

QUANTITIES USED

A. Basic Notions in Quantum Information Theory

Throughout the paper, log is taken base 2. For a finite set
C, a probability distribution is a function p : C → [0, 1]
satisfying

�
c∈C p(c) = 1. In this paper, we only consider

finite dimensional Hilbert spaces. Consider such a Hilbert
space H endowed with an inner product �·, ·�. For an operator
X acting on H, the Schatten-1 norm of X is defined as

X
1 := Tr

√
X†X and the Schatten-2 norm is defined as


X
2 :=
√

TrXX†. A quantum state is represented by a
density matrix ρ, which is a positive semi-definite operator on
H with trace equal to 1. The quantum state ρ is pure if and
only if its density matrix is rank 1, in which case ρ = |ψ��ψ|
for some unit vector |ψ� ∈ H. Throughout the paper, we may
use ψ to represent the quantum state and also the density
matrix |ψ��ψ|. Given a quantum state ρ on H, the support
of ρ, denoted supp(ρ), is the subspace of H spanned by all
eigenvectors of ρ with positive eigenvalues.

A quantum register A is associated with some Hilbert space
HA. Define |A| := dim(HA). Let L(A) represent the set of
all linear operators on HA. We denote the set of quantum
states on the Hilbert space HA by D(A). The quantum state ρ
with subscript A indicates ρA ∈ D(A). If two registers A,B
are associated with isomorphic Hilbert spaces (that is, of the
same dimension), we write A ≡ B. Two disjoint registers
A and B combined, denoted as AB, is associated with the
tensor product Hilbert space HA ⊗ HB . For two operators
M1 ∈ L(A) and M2 ∈ L(B), M1 ⊗M2 ∈ L(AB) represents
the tensor product (Kronecker product) of M1 and M2. The
identity operator on HA (and its associated register A) is
denoted as IA.
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For any operator MAB ∈ L(AB), the partial trace on A is
defined as:

TrA (MAB) :=
�

i

(�i| ⊗ IB)MAB (|i� ⊗ IB),

where {|i�}i is an orthonormal basis for the Hilbert space HA.
For a quantum state ρAB ∈ D(AB), we use the shorthand

ρB := TrA (ρAB)

and the quantum state ρB ∈ D(B) is referred to as the
marginal quantum state of ρAB . Unless otherwise stated,
a missing register from the subscript of a quantum state
represents a partial trace over that register.

A quantum state ρAB is classical-quantum with A being the
classical register, if it is of the form ρAB =

�
a pA(a)|a��a|⊗

ρa
B , where {|a�}a forms an orthonormal basis, {pA(a)}a is a

probability distribution and ρa
B ∈ D(B). The value a stored

in register A identifies a corresponding quantum state ρa
B on

register B. This convention allows a clear distinction between
having a specimen of the state ρa

B (having system B) and
knowing what it is (having system A). If all ρa

B are diagonal
in the same basis, ρAB is called classical-classical or simply
classical.

A quantum channel E : L(A) → L(B) is a completely
positive and trace preserving (CPTP) linear map. (We some-
times just call it a “map” in this paper.) In particular, it takes
quantum states in D(A) to the quantum states in D(B). A
quantum measurement (or instrument) N : L(A) → L(A�C)
is characterized by a collection of operators {Nc : HA →
HA′} that satisfy

�
cN

†
cNc = IA and is given by

N (ρA) =
�

c

|c��c|C ⊗NcρAN
†
c .

A unitary operator UA : HA → HA is such that U †
AUA =

UAU
†
A = IA.

B. List of Quantum Information Theoretic Quantities

We consider the following information theoretic quantities.
All logarithms are base 2 and only normalized quantum states
are considered in the definitions below. Let ε ∈ (0, 1).

1) Trace distance:. For ρA, σA ∈ D(A),

Δ(ρA, σA) :=
1
2

ρA − σA
1.

2) Fidelity: For ρA, σA ∈ D(A),

F(ρA, σA) := 
√ρA
√
σA
1.

3) ε-ball: For ρA ∈ D(A),

Bε(ρA) := {ρ�A ∈ D(A)| Δ(ρA, ρ
�
A) ≤ ε}.

4) Von Neumann entropy: ([8]) For ρA ∈ D(A),

S(A)ρ := −Tr(ρA log ρA).

5) Conditional entropy: For ρAB ∈ D(AB),

S (A|B)ρ := S(AB)ρ − S(B)ρ.

6) Relative entropy: ([36]) For ρA, σA ∈ D(A) such that
supp(ρA) ⊂ supp(σA),

D(ρA
σA) := Tr(ρA log ρA) − Tr(ρA log σA).

7) Mutual information: For ρAB ∈ D(AB),

I (A :B)ρ

:= S(A)ρ + S(B)ρ − S(AB)ρ = D(ρAB
ρA ⊗ ρB) .

8) Conditional mutual information: For ρABC ∈
D(ABC),

I (A :B |C)ρ := I (A :BC)ρ − I (A :C)ρ .

C. Basic Facts Used in Our Proofs

Fact 1 (Triangle Inequality for Trace Distance, [37], Chap-
ter 9): For quantum states ρ, σ, τ ∈ D(A),

Δ(ρ, σ) ≤ Δ(ρ, τ) + Δ(τ, σ).

Fact 2 (Data-Processing Inequality, [38], [39]): For the
quantum states ρ, σ ∈ D(A), θ ∈ D(AC) and the quantum
channel E : L(A) → L(B), it holds that

Δ(ρ, σ) ≥ Δ(E(ρ), E(σ)),
D(ρ
σ) ≥ D(E(ρ)
E(σ)) ,

I (A :C)θ ≥ I (B :C)E(θ) .

Fact 3 (Pinsker’s Inequality, [40]): For the quantum states
ρ, σ ∈ D(A),

Δ(ρ, σ)2 ≤ 1
2
D(ρ
σ) .

Fact 4 (Dimension Bound): For the quantum state ρXAB ,
with classical register X , it holds that

I (A :X |B)ρ ≤ log |X |.
Fact 5 (Alicki-Fannes-Winter Inequality, [41], [42]): For

quantum-classical states ρAB and σAB satisfying ρB = σB ,

|S (A|B)ρ − S (A|B)σ | ≤ Δ (ρAB, σAB) · log |A| + 1,

|I (A :B)ρ − I (A :B)σ | ≤ Δ (ρAB, σAB) · log |B| + 1.

Fact 6 (Fano’s Inequality, [43]): For any classical state
ρAA′ =

�
a,a′ pAA′(a, a�)|a, a���a, a�|, with pAA′ a probabil-

ity distribution, it holds that

S (A|A�)ρ ≤ 1 + Pr[A �= A�] log |A|.
Note that we have stated weaker versions of Alicki-Fannes-

Winter inequality and Fano’s inequality that simplify the
expressions in our results.

III. LOWER BOUND ON ENTANGLEMENT-ASSISTED BLIND

DISTRIBUTION COMPRESSION

For our lower bound on the compression rate, we focus
on ensembles of classical states (these can be simultaneously
diagonalized). We will henceforth refer to them as
distributions. We begin with a formal definition of our task.
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Definition 1 (Entanglement-Assisted Blind Distribution
Compression): Consider an ensemble {p(x), ρx

C} where all
ρx

C ’s are diagonal. Let ρXC be as obtained through (1).
Let ε ∈ (0, 1) be an error parameter and n ∈ N. Let
the initial joint state between the Referee and Alice be
ρX1C1 ⊗ ρX2C2 ⊗ . . . ⊗ ρXnCn , with the Referee holding
registers X1, X2, . . . , Xn (each Xi ≡ X) and Alice holding
registers C1, C2, . . . , Cn (each Ci ≡ C). Alice and Bob
share entanglement |θ�EAEB , where EA is with Alice and
EB is with Bob. An (n,R, ε)- entanglement-assisted blind
distribution compression protocol is as follows. Alice applies
an encoding map E : C1C2 . . . CnEA → C1C2 . . . CnT ,
where T is a classical register of size 2nR. She communicates
T to Bob (so the number of bits communicated in the protocol
is nR = log |T |). After receiving T , Bob applies a decoding
map D : TEB → C�

1C
�
2 . . . C

�
n. Here, each C�

i ≡ C. It is
required that

Δ(TrC1...Cn ◦ D ◦ E (ρX1C1 ⊗ . . .⊗ ρXnCn ⊗ θEAEB ) ,
ρX1C′

1
⊗ . . .⊗ ρXnC′

n
) ≤ ε. (4)

The above definition involves a global error for the compres-
sion. Our lower bounds apply also to the more relaxed setting
of the local error model:

∀i Δ
�

TrC′
1...C′

i−1C′
i+1...C′

nC1...Cn
◦ D ◦ E

�
ρX1C1

⊗ . . .⊗ ρXnCn ⊗ θEAEB

�
, ρXiC′

i

	
≤ ε. (5)

Note that the definition uses classical communication, which
is equivalent to quantum communication up to a factor of 2
when entanglement is free.

Since the ensemble is classical, Alice can always retain the
information in the registers C1, C2, . . . , Cn, so, without loss
of generality, we assume the following equality throughout the
discussion.

TrT (E (ρX1C1 ⊗ ρX2C2 ⊗ . . .⊗ ρXnCn ⊗ θEA))
= ρX1C1 ⊗ ρX2C2 ⊗ . . .⊗ ρXnCn . (6)

The following theorem shows a lower bound on the rate of
communication R required for the task.

Theorem 2: Let ρXC be as given in Definition 1, n a natural
number, and ε ∈ (0, 1). For any (n,R, ε)-entanglement-
assisted blind distribution compression, it holds that

R ≥ min
F :C→CC′

(I (C :C� |X)τ ) + I (X :C)ρ − ε log |X | − 1,

where τXCC′ := F(ρXC) and the map F must satisfy
Δ (τXC′ , ρXC′) ≤ ε and τXC = ρXC .

Proof: For brevity, set Xn = X1X2 . . . Xn, Cn =
C1C2 . . . Cn and C�n = C�

1C
�
2 . . . C

�
n. Let σXnCnTEB be the

state after Alice’s encoding, and τXnCnC′n be the final quantum
state at the end of the protocol. Observe that

nR = log |T | ≥ I (XnCn :T |EB)σ

(a)
= I (XnCn :TEB)σ

(b)

≥ I
�
XnCn :C�n�

τ
. (7)

The equality (a) in (7) follows from the fact that
I (XnCn :EB)σ = 0. We apply the data processing inequality

to obtain (b). Note also from this step onwards, entanglement
no longer plays a role in the proof. Now, consider

I
�
XnCn :C�n�

τ

=
n�

i=1

I
�
XiCi :C�n 

X1 . . .Xi−1C1 . . . Ci−1

�
τ

=
n�

i=1

�
I
�
XiCi :C�nX1 . . . Xi−1C1 . . . Ci−1

�
τ

− I (XiCi :X1 . . . Xi−1C1 . . . Ci−1)τ

	
(c)
=

n�
i=1

I
�
XiCi :C�nX1 . . . Xi−1C1 . . . Ci−1

�
τ

≥
n�

i=1

I (XiCi :C�
i)τ . (8)

In (8), the equality (c) holds since (6) ensures that

τXiCiX1...Xi−1C1...Ci−1 = ρXiCiX1...Xi−1C1...Ci−1

= ρXiCi ⊗ ρX1...Xi−1C1...Ci−1 ,

and the last step follows from the data processing inequality.
From (4), we have Δ

�
τXiC′

i
, ρXiC′

i

� ≤ ε. Thus, using the
Alicki-Fannes-Winter inequality (Fact 5), we obtain

I (XiCi :C�
i)τ

= I (Ci :C�
i |Xi)τ + I (Xi :C�

i)τ

≥ I (Ci :C�
i |Xi)τ + I (Xi :Ci)ρ − ε log |X | − 1. (9)

Combining (7)-(9), we obtain

nR ≥ nmin
i

�
I (Ci :C�

i |Xi)τ + I (Xi :Ci)ρ − ε log |X | − 1
�
.

We can now convert the above asymptotic inequality
to a single-letter bound. For an i that achieves
the minimum, define Fi to be the map that acts
on register Ci as follows. It first creates the state
ρX1C1 ⊗ . . .⊗ρXi−1Ci−1 ⊗ρXi+1Ci+1 ⊗ . . .⊗ρXnCn ⊗θEAEB .
Then it applies D ◦ E and traces out registers
X1, . . . , Xi−1, Xi+1, . . . , Xn, C1, . . . , Ci−1, Ci+1, . . . , Cn,
C�

1, . . . , C
�
i−1, C

�
i+1, . . . , C

�
n. From (4), we conclude that

Δ
�
TrCiFi(ρXCi), ρXC′

i

� ≤ ε.

Moreover, TrC′
i
F(ρXCi) = ρXCi , as the maps E and D do

not change the state in registers XCi. Since Ci ≡ C, C�
i ≡ C�

and ρXCi = ρXC , the proof concludes.
Theorem 2 shows that the communication cost for

entanglement-assisted blind mixed distribution compres-
sion can exceed the Holevo information of the distribu-
tion I (X :C)ρ. We now show that this additional cost
of R− I (X :C)ρ can be quantitatively bounded by some
measure of indistinguishability of the states in the ensemble,
and also by some measure of the inability to clone the
states. To proceed with this, consider a simple example of
compressing two equiprobable distributions, with ρXC =
1
2 (|0��0|X ⊗ ρ0

C + |1��1|X ⊗ ρ1
C). For a map F satisfying
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Δ(TrC (F(ρXC)) , ρXC′) ≤ ε and TrC′F(ρXC) = ρXC , let
τXCC′ = F(ρXC). We will prove the following:�

I (C :C� |X)F(ρXC)

(a)
=

�
1
2

(D(τ0
CC′ ||τ0

C ⊗ τ0
C′) +D(τ1

CC′ ||τ1
C ⊗ τ1

C′))

(b)

≥
�

Δ(τ0
CC′ , τ0

C ⊗ τ0
C′)2 + Δ(τ1

CC′ , τ1
C ⊗ τ1

C′)2

(c)

≥ 1√
2

�
Δ(τ0

CC′ , τ0
C ⊗ τ0

C′) + Δ(τ1
CC′ , τ1

C ⊗ τ1
C′)
�

(d)

≥ 1√
2

�
Δ(τ0

C ⊗ τ0
C′ , τ1

C ⊗ τ1
C′) − Δ(τ0

CC′ , τ1
CC′)

�
(e)

≥ 1√
2

�
Δ(ρ0

C ⊗ ρ0
C′ , ρ1

C ⊗ ρ1
C′) − Δ(τ0

CC′ , τ1
CC′) − 2ε

�
(f)

≥ 1√
2

�
Δ(ρ0

C ⊗ ρ0
C′ , ρ1

C ⊗ ρ1
C′) − Δ(ρ0

C , ρ
1
C) − 2ε

�
.

(10)

Here, (a) uses the expansion

I (C :C� |X)F(ρ) = I (C :C� |X)τ

=
�

x

p(x)D(τx
CC′
τx

C ⊗ τx
C′) ,

and (b) uses Pinsker’s inequality (Fact 3), (c) follows from
the inequality a2 + b2 ≥ (a + b)2/2, (d) uses the triangle
inequality for trace distance, (e) uses the identity τx

C =
ρx

C and the inequality Δ(τXC′ , ρXC′) = 1
2Δ(τ0

C′ , ρ0
C′) +

1
2Δ(τ1

C′ , ρ1
C′) ≤ ε and (f) uses the data-processing

inequality (Fact 2) to conclude that Δ(τ0
CC′ , τ1

CC′) =
Δ
�F �ρ0

C

�
,F �ρ1

C

�
) ≤ Δ(ρ0

C , ρ
1
C

�
.

Furthermore, the above chain of inequalities quantitatively
relate the gap between the communication cost and the Holevo
information to other quantitative properties of the ensemble.
Recall that τx

C = ρx
C , so the RHS of the inequality (c) lower-

bounds the gap by a “classical no-cloning bound”, which is
the average distance between two copies of ρx

C and the actual
Alice-Bob joint-output. Furthermore, the RHS of the inequal-
ity (f) says that the gap is lower-bounded by the increase in
distinguishability of ρ0

C and ρ1
C if a second copy is available,

which is a measure of the indistinguishability between ρ0,1
C .

This gap can be strictly positive for some ensemble. For
example, consider:

ρ0
C =

�
1
2 0
0 1

2

	
, ρ1

C =
�

1
3 0
0 2

3

	
.

We evaluate

Δ(ρ0
C , ρ

1
C) =

1
2

�



12 − 1
3





+




12 − 2

3






	

=
1
6

and

Δ(ρ0
C ⊗ ρ0

C , ρ
1
C ⊗ ρ1

C)

=
1
2

�



14 − 1
9





+ 2




14 − 2

9





+




14 − 4

9






	

=
7
36
.

We conclude that Δ(ρ0
C ⊗ ρ0

C , ρ
1
C ⊗ ρ1

C) − Δ(ρ0
C , ρ

1
C) = 1

36 .
Thus,

I (C :C� |X)F(ρ) ≥
(1 − 72ε)2

2 · 64
.

This example demonstrates a constant lower bound on the
information defect. In the next section, we develop a large
lower bound that is nearly maximal given the dimension of C.

IV. NEAR MAXIMAL SEPARATION BETWEEN

INFORMATION COST AND THE COMMUNICATION COST

In this section, we prove Theorem 1. The proof will proceed
in the following steps.

• We will simplify the form of the map F by observing
that the input and the output are classical. This will also
lead to a simpler lower bound than given in Theorem 2,
in terms of stochastic maps.

• We will show the utility of the simpler lower bound
first in the case of zero error. We will show that the
stochastic map under consideration is actually doubly
stochastic, since one of the two distributions in the
ensemble is uniform. Then we apply the Birkoff-von
Neumann theorem to show that the only relevant doubly
stochastic map is the identity map, which implies our
lower bound.

• Finally, we will consider the case of non-zero error.
We will show that the stochastic map under considera-
tion is close to a doubly stochastic map. Then we will
analyze the action of this doubly stochastic map on the
distributions in the ensemble. Since the doubly stochastic
map keeps the distributions approximately unchanged,
we bound its distance from the identity map. This will
lead to the desired lower bound for the communication
cost.

A. Stochastic Maps and the Distribution

Recall the state ρXC , the map F and the state τXCC′ in
Theorem 2. We start with the observation that, despite the
fact that the map F involves entanglement, the state τXCC′ =
F (ρXC) can be considered to be completely classical, without
loss of generality. To see this, consider the constraints

Δ(TrC (F(ρXC)) , ρXC′) ≤ ε

and TrC′F(ρXC) = ρXC as in Theorem 2. Let F � be the map
resulting from measuring the register C� after applying F to
ρXC . Then it still holds that

Δ(TrC (F �(ρXC)) , ρXC′) ≤ Δ(TrC (F(ρXC)) , ρXC′) ≤ ε

and TrC′F �(ρXC) = ρXC , so the constraints are still satisfied,
and moreover

I (C :C� |X)F ′(ρ) ≤ I (C :C� |X)F(ρ)

by the data processing inequality. Therefore in Theorem 2,
it suffices to restrict to maps F with completely classical
τXCC′ , which has the form

τXCC′ =
�

x,c,c′
pXCC′(x, c, c�)|x, c, c���x, c, c�|. (11)

Note that pXCC′(x, c, c�) satisfies the Markov chain condition
pXC′|C=c(x, c�) = pX|C=c(x) pC′|C=c(c�), as the map F
produces C� from C. Define a matrix M with

Mc,c′ = pC′|C=c(c�). (12)
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Clearly, M is a stochastic matrix: ∀c

�
c′ Mc,c′ = 1. There-

fore each distribution on C is mapped to a distribution
on C�. The rest of the paper revolves about understanding this
stochastic matrix M . First, we view M as a ‘channel’ between
Alice and Bob that inputs C and outputs C�, and appeal to
Fano’s inequality (Fact 6) to bound the information between
C and C� in terms of the probability of C being equal to C�.
This is shown in the following claim.

Claim 1: Given the states ρ, τ and the associated stochastic
matrix M defined above, it holds that

I (C :C� |X)τ

≥ S (C|X)ρ − 2 −



1 −
�

c

pC(c)Mc,c + ε

�
log (|C|) .

Proof: Using the definition for conditional entropy, the
Markov chain property S (C�|CX)τ = S (C�|C)τ on τ ,
and applying the Alicki-Fannes-Winter inequality along with
the condition Δ(TrC (F(ρXC)) , ρXC′) ≤ ε to S (C�|X)τ ,
we obtain

I (C :C� |X)τ
= S (C�|X)τ − S (C�|CX)τ

= S (C�|X)τ − S (C�|C)τ

≥ S (C�|X)ρ − S (C�|C)τ − Δ(ρXC′ , τXC′) log(|C|) − 1

≥ S (C|X)ρ − S (C�|C)τ − ε log(|C|) − 1. (13)

Using Fano’s inequality (Fact 6)

S (C�|C)τ ≤ 1 + Pr[C �= C�] log (|C|)

= 1 +
�
1 −

�
c

pC(c)Mc,c

�
log (|C|) .

This concludes the proof.
The Ensemble: Using Claim 1, our strategy to obtain a large

gap between the communication cost for compression and
the Holevo information is to construct ensembles for which�

c pC(c)Mc,c ≈ 1, which implies I(C :C� |X)τ ≈ S (C|X)ρ.
We now define our ensemble using the following notations. Let
d = |C|, c ∈ {1, 2, . . . d}, x ∈ {0, 1}, and pX(0) = pX(1) =
1/2. We choose the states ρ0

C and ρ1
C to correspond to the

uniform and ‘staircase’ distributions (see Figure 1 and also
Theorem 1), defined as follows.

pC|X=0(c) =
1
d

=: uc, pC|X=1(c) =
d− c+ 1

η
=: vc,

(14)

where η = d(d + 1)/2. We use u to denote the row vector
with the c-th entry being uc, and similarly for v.

B. Lower Bound in the Zero Error Case

To illustrate the principles in the general case, we first
consider the zero-error case where ε = 0. In this case, we have
τXC′ = ρXC′ . From the definition of the stochastic matrix M
in Equation 12 and the choice of distributions pC|X=0, pC|X=1

given above, we arrive at the following set of equations.

uM = u, vM = v, (15)

so both u, v are fixed points of the transition matrix M .
We have the following theorem.

Theorem 3: Using aforementioned definitions, (15) implies
that Mc,c′ = 1 iff c� = c (i.e., M = I).

Proof: Using the conditions uM = u and uc = 1
|C| for

all c, (15) implies that

∀c′
�

c

Mc,c′ = 1.

Thus the matrix M is doubly stochastic. From the Birkoff-von
Neumann theorem [44]–[46], there exist permutation matrices
Π1,Π2, . . .Πk and a probability distribution (q1, . . . qk) such
that

M =
�

i

qiΠi. (16)

Next, we show that M = I. Without loss of generality, Π1 = I,
0 ≤ q1 ≤ 1. Suppose, by contradiction, q1 < 1, so there
exists i ≥ 2 with qi > 0 and Πi �= I. Using vM = v and
applying (16), �

i

qi (vΠi) = v.

Since vΠ1 = v, we obtain

1
1 − q1

k�
i=2

qi (vΠi) = v. (17)

We will argue that this is a contradiction for the vector v.
A permutation Πi is said to act “non-trivially” on an index
j ∈ [d] if j is not invariant under Πi. Let j0 ∈ [d] be the
smallest index such that at least one of the permutations in
the set {Πi}k

i=2 act non-trivially on j0. Since Πi �= I for
i = 2, 3, · · · , k, such an index j0 must exist. This implies the
following:

1) (vΠi)j = vj for all j < j0, that is, all the permutations
act trivially on indices smaller than j0.

2) (vΠi)j0
≤ vj0 , as any permutation Πi swaps the element

vj0 with a potentially smaller element vj .
3) There is a permutation Πi0 such that (vΠi0)j0

< vj0 ,
by the definition of j0.

But items 2, 3 jointly contradict what is implied by the j0-th
entry of the vector equality in (17):

1
1 − q1

k�
i=2

qi (vΠi)j0
= vj0 .

Hence we must have q1 = 1 and M = I. This completes the
proof.

We conclude this subsection with a lower bound on the
rate in the zero error case. When ε = 0, Theorem 3 implies
that

�
c pC(c)Mc,c = 1. Substituting this into Claim 1,

I (C :C� |X)τ ≥ S(C|X)ρ − ε log(|C|). Substituting this into
Theorem 2,

R ≥ I (X :C)ρ + S(C|X)ρ − ε(log(|C|) + 1) − 1
≈ I (X :C)ρ + α log(|C|)

for some constant α. In the next subsection, we proceed to the
case of small error ε. We will generalize the intuition from the
zero-error case in which v is a vertex of the polytope formed
by the convex hull of {vΠi}k

i=1.
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C. Lower Bound for the Case of Non-Zero Error

In this case, Theorem 2 ensures that Δ (τXC′ , ρXC′) ≤ ε.
Using the distribution pXCC′ from Equation 11, this translates
to �

x

pX(x)
�
c′




 pC|X=x(c�) − pC′|X=x(c�)



 ≤ 2ε.

For the rest of this paper, we continue to use the symbols
M,u, v defined earlier (see Equations 12 and 14). Translating
the above in terms of M,u, v, and using the fact pX(0) =
pX(1) = 1

2 ,

1
2
�
u− uM
1 + 
v−vM
1

� ≤ 2ε.

In particular,


u− uM
1 ≤ 4ε and 
v − vM
1 ≤ 4ε. (18)

We are ready to obtain our lower bound in spirits similar to
the zero-error case. First, we will use the condition concerning
u in (18) to approximate M by a doubly stochastic matrix
N (Lemma 1 part (a)). Then we approximate vM by vN
(Lemma 1 part (b)). With this approximation, and with the
condition on v in (18), we lower bound the identity component
of N which in turns lower bound Nc,c and then Mc,c and
the last bound gives us the desired lower bound on the
communication cost for the compression.

Lemma 1: Let d ≥ 2 and M as defined before. There exists
a doubly stochastic matrix N such that

(a) ∀c,c′ |Nc,c′ −Mc,c′ | ≤ 12dε,

(b) 
vN − vM
1 ≤ 12dε. (19)

Proof: Rewriting the condition 
u − uM
1 ≤ 4ε
from (18) using uc = 1

d for all c,

�
c′





�
c

Mc,c′ − 1




 ≤ 4dε. (20)

Thus, the matrix M is a stochastic matrix, but “approxi-
mately” a doubly stochastic matrix. In particular, define αc′ =�

cMc,c′ −1 which measures how far M deviates from being
doubly stochastic. Using (20),

∀c′ |αc′ | ≤ 4dε. (21)

We can now follow the idea from [47] to find a doubly
stochastic matrix N that approximates M . Define

Nc,c′ =
1

1 + 4dε

�
Mc,c′ +

4dε− αc′

d

	
.

First, note that the entries of Nc,c′ are non-negative, asMc,c′ ≥
0 and 4dε ≥ αc′ for all c� (according to (21)). Second, N is
stochastic:

�
c′
Nc,c′ =

1
1 + 4dε


�
c′
Mc,c′ +

�
c′

4dε− αc′

d

�

=
1

1 + 4dε
(1 + 4dε) = 1,

where we have used the stochastic property of M to substitute�
c′ Mc,c′ = 1, and also

�
c′ αc′ =

�
c,c′ Mc,c′−d = 0. Next

we show that N is doubly stochastic.

�
c

Nc,c′ =
1

1 + 4dε


�
c

Mc,c′ +
�

c

4dε− αc′

d

�

=
1

1 + 4dε
(1 + αc′ + 4dε− αc′) = 1.

Now, we bound the entry-wise difference between M and
N . Consider

Nc,c′ −Mc,c′ =
1

1 + 4dε

�
Mc,c′ +

4dε− αc′

d

	
−Mc,c′

=
1

1 + 4dε

�
4dε− αc′

d
− 4dεMc,c′

	
. (22)

Thus,

|Nc,c′ −Mc,c′| ≤ 1
1 + 4dε

�



4dε− αc′

d





+ 4dε




Mc,c′






	

(a)

≤ 8ε+ 4dε ≤ 12dε,

where (a) uses |Mc,c′ | ≤ 1 and |4dε − αc′ | ≤ 8dε, in turns
followed from (21). This proved claim (a).

For claim (b), define a matrix W as Wc,c′ = 4dε−αc′
d(1+4dε) .

Equation (22) states that

N −M = W − 4dε
1 + 4dε

M.

Thus,��vN − vM
��

1

=
���� vW − 4dε

1 + 4dε
vM

����
1

≤ 
vW
1 +
4dε

1 + 4dε

vM
1

(a)
= 
vW
1 +

4dε
1 + 4dε

=
1

1 + 4dε


�
c′





 4dε−αc′

d

��
c

vc

	 




�

+
4dε

1 + 4dε

≤
�
c′





4dε− αc′

d





+ 4dε

(b)

≤ 8dε+ 4dε ≤ 12dε.

In the above, step (a) uses the fact that vM is a probability
distribution so 
vM
1 = 1 and step (b) uses (20) to substitute�

c′ |αc′ | ≤ 4dε. This completes the proof.
Now, we are ready to prove our main result, using the

condition 
v − vM
1 ≤ 4ε from (18).
Theorem 4: Let d ≥ 2 and M as defined before. It holds

that
∀c Mc,c ≥ 1 − 24d4ε.

Proof: Let N be the doubly stochastic matrix as promised
in Lemma 1. We start with


v−vN
1 ≤ 
v − vM
1 + 
vM − vN
1

(a)

≤ 4ε+ 12dε ≤ 16dε. (23)

Here, (a) uses (18) and Lemma 1.
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Now, we apply the Birkoff-von Neumann theorem to write
N =

�k
i=1 qiΠi, where Π1 = I and Π2, · · · ,Πk are permuta-

tion matrices not equal to the identity. If q1 = 1 then we are
done so assume q1 < 1, and there exists i ≥ 2 with qi > 0.
We lower bound 
v − vN
1 as follows.


v − vN
1 =
����v −

k�
i=1

qi (vΠi)
����

1

=
����v − q1v −

k�
i=2

qi (vΠi)
����

1

=
����(1 − q1)v −

k�
i=2

qi (vΠi)
����

1

= (1 − q1)
����v −

k�
i=2

qi
1 − q1

(vΠi)
����

1

. (24)

The last expression in (24) is lower bounded by the minimum

1 distance between the vector v and the convex hull of the
vectors {vΠi}k

i=2. As shown in Claim 2 below, this distance
is lower bounded by

����v −
k�

i=2

qi
1 − q1

(vΠi)
����

1

≥ 1
v1

⎛
⎝�

j

v2
j − max

i>1

��
j

vj (vΠi)j

	⎞⎠ .

From Claim 3,

max
i>1

⎛
⎝�

j

vj (vΠi)j

⎞
⎠ ≤

�
i

v2
i − 1

η2
.

This implies

����v −
k�

i=2

qi
1 − q1

(vΠi)
����

1

≥ 1
v1η2

.

From (24), we conclude


v − vN
1 ≥ (1 − q1)
1

v1η2
,

and combining this with (23), we find

(1 − q1)
1

v1η2
≤ 16dε =⇒ 1 − q1 ≤ 16dεv1η2 ≤ 16d4ε.

(25)

Since Nc,c ≥ q1, we finally conclude from Lemma 1 and (25)
that

Mc,c ≥ Nc,c − 12dε ≥ q1 − 12dε ≥ 1 − 24d4ε.

Here we used d ≥ 2 to substitute 16d4ε+12dε ≤ 24d4ε. This
completes the proof.

The following claims were used in the proof.
Claim 2: Let v, w1, . . . ws be vectors in R

n with non-
negative entries. Suppose v1 is the largest entry of v, and

v1 > 0. It holds that

min
r1,...rs∈[0,1]:

�
i ri=1


v −
�

i

riwi
1

≥ 1
v1

⎛
⎝�

j

v2
j − max

i

⎛
⎝�

j

vj (wi)j

⎞
⎠
⎞
⎠

Proof: We use the fact that


u
1 = max
m1,...mn∈[−1,1]

�
j

ujmj

to write

min
r1,...rs∈[0,1]:

�
i ri=1


v −
�

i

riwi
1

= min
r1,...rs∈[0,1]:

�
i ri=1

max
m1,...mn∈[−1,1]⎛

⎝�
j

mj



vj −

�
i

ri (wi)j

�⎞
⎠

= min
r1,...rs∈[0,1]:

�
i ri=1

max
m1,...mn∈[−1,1]⎛

⎝�
j

mjvj −
�
i,j

rimj (wi)j

⎞
⎠

(a)
= max

m1,...mn∈[−1,1]
min

r1,...rs∈[0,1]:
�

i ri=1⎛
⎝�

j

mjvj −
�
i,j

rimj (wi)j

⎞
⎠

(b)
= max

m1,...mn∈[−1,1]

⎛
⎝�

j

mjvj − max
i

⎛
⎝�

j

mj (wi)j

⎞
⎠
⎞
⎠

(c)

≥ 1
v1

⎛
⎝�

j

v2
j − max

i

⎛
⎝�

j

vj (wi)j

⎞
⎠
⎞
⎠ .

Here (a) uses the minimax theorem [48], (b) chooses the
optimal {r1, . . . rs} to maximize

�
i,j

rimj (wi)j =
�

i

ri

⎛
⎝�

j

mj (wi)j

⎞
⎠

and (c) chooses mi = vi

v1
∈ [0, 1]. This completes the proof.

Claim 3: Let {v1, v2, . . . vn} be a vector and define γ :=
mini�=j |vi − vj |. It holds that

max
Π �=I

⎛
⎝�

j

vj (vΠ)j

⎞
⎠ =

�
j

v2
j − γ2,

where the maximization is over all permutations Π not equal
to identity. In particular, for the vector v in our ensemble (see
Equation 14, with n replaced by d), we have γ = 1

η and

max
Π �=I

⎛
⎝�

j

vj (vΠ)j

⎞
⎠ =

�
j

v2
j − 1

η2
.

Proof: We recall that Π can be decomposed as a
product of disjoint cycles C1, C2, . . . Cs. If Π leaves an index
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unchanged, we will view the action of Π on this index as a
‘trivial cycle’ of size 1. Let Lk be the set of indices on which
the cycle Ck acts. Since the cycles are disjoint,

�
j

vj (vΠ)j =
s�

k=1

�
j∈Lk

vj (vCk)j . (26)

Consider the expression
�

j∈Lk
vj (vCk)j . Let |Lk| be the

number of elements in Lk. Relabel the elements in Lk with
integers {0, 1, . . . |Lk| − 1} in a manner that Ck(m) = m+ s
mod |Lk|, for some integer s. Then�

j∈Lk

vj (vCk)j

=
|Lk|−1�
m=0

vmvm+s mod |Lk|

=
1
2

|Lk|−1�
m=0

�
v2

m + v2
m+s mod |Lk|

− �vm − vm+s mod |Lk|
�2	

=
|Lk|−1�
m=0

v2
m − 1

2

|Lk|−1�
m=0

(vm − vm+s mod |Lk|)
2

(a)

≤
|Lk|−1�
m=0

v2
m − γ2 · �|Lk|/2�

=
�
j∈Lk

v2
j − γ2 · �|Lk|/2�.

Here (a) follows by noticing that

(vm − vm+s mod |Lk|)
2 ≥ γ2.

Combining with (26), we find that

�
j

vj (vΠ)j ≤
s�

k=1

⎛
⎝�

j∈Lk

v2
j − γ2 · �|Lk|/2�

⎞
⎠

=
�

j

v2
j − γ2 ·



s�

k=1

�|Lk|/2�
�
.

Since Π is not the identity permutation, there is a Ck of length
at least 2. Thus,

�s
k=1�|Lk|/2� ≥ 1 and

max
Π

⎛
⎝�

j

vj (vΠ)j

⎞
⎠ ≤

�
j

v2
j − γ2.

To show that the right hand side is achieved, choose Π to
be any permutation that swaps a pair of consecutive indices
and leaves every other index unchanged. This completes the
proof.

D. Final Lower Bound

Theorem 4 says that Mc,c ≥ 1 − 24d4ε for all c. If we
choose ε = 1

24d4 log d , we conclude that for all c

Mc,c ≥ 1 − 1
log d

.

Thus, the lower bound in Claim 1 takes the form

I (C :C� |X)τ

≥ S (C|X)ρ − 2 −



1 −
�

c

pC(c)Mc,c + ε

�
log (d)

≥ S (C|X)ρ − 4.

The conditional entropy can be evaluated to be

S (C|X)ρ

=
1
2
�
S(C)ρ0 + S(C)ρ1

�
=

1
2

log d+
1
2


�
c

vc log
1
vc

�

=
1
2

log d+
1
2


�
c

vc log
η

d− c+ 1

�

=
1
2

log d+
1
2



log η −

�
c

vc log(d− c+ 1)

�

(a)

≥ 1
2

log d+
1
2



log η − log


�
c

vc(d− c+ 1)

��

=
1
2

log d+
1
2



log η − log


�
c

(d− c+ 1)2

η

��

(b)
=

1
2

log d+
1
2

�
log

d(d+ 1)
2

− log
�
d(d+ 1)(2d+ 1)

3d(d+ 1)

		

=
1
2

log d+
1
2

�
log

3d(d+ 1)
4d+ 2

	
≥ (log d) − 1.

Here (a) follows from concavity of log and (b) follows by
substituting the value of η. This leads to the lower bound

I (C :C� |X)τ ≥ (log d) − 5.

Thus, from Theorem 2, we have a state ρXC such that the
asymptotic rate of communication for local error ε = 1

24d4 log d

is at least (log d)−7 while the Holevo information is at most 1.
Note that d is independent of the number of copies n, and ε
is independent of n and only depends on d.

APPENDIX A
KOASHI-IMOTO CHARACTERIZATION AT

NON-VANISHING ERROR

Koashi and Imoto [15]–[17] provide a characterization of
the optimal rates of quantum communication, classical com-
munication, and entanglement for (n,R, ε)- blind compression
of general quantum states (defined similarly to the task of blind
distribution compression) in the limit where n → ∞ and the
local error ε → 0. These results apply to both the unassisted
and the entanglement-assisted scenarios.

The Koashi-Imoto characterization of (n,R, ε)- blind com-
pression is achieved by the following structure theorem for
any ensemble {pi, ρi}. There exists a decomposition of the
Hilbert space H as H =

�L
	=1 H(	)

J ⊗ H(	)
K , in a manner

that ρi =
�L

	=1 qi,	ρ
(i,	)
J ⊗ ρ	

K . Here, ρ(i,	)
J and ρ	

K are
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normalized density matrices acting on H(	)
J and H(	)

K respec-
tively, and qi,	 ≥ 0,

�L
	=1 qi,	 = 1. Furthermore, for each


, {ρ(1,	)
J , ρ

(2,	)
J , · · · } cannot be expressed in a simultaneously

block-diagonal form. The register K is viewed as redundant,
as it has no dependence on i. Without loss of generality,
one can restrict the attention to ensembles which have no
redundant register K , as the register K can be removed by
Alice and later be generated by Bob without communication
between them. The average state ρ =

�
i piρi can also be

written as ρ =
�L

	=1 p
(	)ρ

(	)
J where p(	) =

�
i piqi,	 and

ρ
(	)
J = 1

p(�)

��
i piqi,	ρ

(i,	)
J

�
. Furthermore, the authors proved

that any channel E satisfying E(ρi) = ρi acts as the identity
map on J .

The characterization in the case of zero error (ε = 0)
is now immediate. Let P be the combined encoding and
decoding map in the protocol. Since the protocol makes no
error, P(ρi) = ρi for all i and hence P acts as the identity
map on the J register, leading to log(|J |L) as the optimal rate
in this case.

To address the regime n → ∞, ε → 0, Koashi and
Imoto [16] define IC = −�	 p

(	) log p(	) and IQ =�
	 p

(	)S
�
ρ
(	)
J

�
. The ensemble can be compressed at the rates

of IC bits and IQ qubits combined, whereas IC + IQ = S(ρ).
To prove optimality of this rate, they introduce two error
functions

f(P) = 1 −
�

i

piF(ρi,P(ρi))

and
g(P) = H(λ) + λ log(d− 1),

where λ = 1−�a r(a)Tr(|a��a| P(|a��a|)) and |a�, r(a) are
the eigenvectors and eigenvalues of the average state of the
ensemble, ρ =

�
i piρi. The parameter f(P) captures the error

ε (up to the difference that we are working in trace distance,
whereas they work in fidelity). The parameter g(P) appears
in their lower bound R ≥ S(ρ)− g(P) on the communication
cost. They give a continuity argument that if f(P) → 0, then
g(P) → 0.

For non-vanishing error, the dependence of λ on f(P)
and in turn, the dependence of g(P) on f(P) (via λ) is
important. While λ → 0 as f(P) → 0, it is unclear how
quickly λ vanishes as f(P) → 0. Consequently, g(P) need
not vanish quickly enough to provide a strong lower bound.
In our context, we construct a protocol in Theorem 5 exhibiting
this sensitivity. We show an example where g(P) becomes
close to log d, even if f(P) ≈ 1√

d
. Thus we know from the

example that for two distributions, the lower bound proved by
Koashi and Imoto only works for error substantially smaller
than 1/

√
d.

Another reason to expect that the Koashi-Imoto charac-
terization is sensitive to errors, is as follows. Consider an
equiprobable ensemble of two states ρ and σ. When the error ε
(defined in (5)) is finite, we have the conditions Δ(P(ρ), ρ) ≤
2ε,Δ(P(σ), σ) ≤ 2ε. Does this guarantee that ρ and σ are
respectively close to states ρ̃ and σ̃ that are fixed points of
P? If this were the case, we could apply the Koashi-Imoto

decomposition to ρ̃, σ̃ to obtain a large lower bound for the
rate for finite ε. Unfortunately this is not true, as witnessed
by the channel E(τ) = (1 − ε)τ + ε I

d . This channel satisfies
Δ(E(τ), τ) ≤ ε for all τ , but its only fixed point is I/d.

Our arguments are made precise in the following protocol
for the blind compression of any pair of commuting states
ρ, σ, with rate significantly less than log(d) for non-vanishing
local error.

Theorem 5: Let n be a positive integer and δ ∈ (0, 1
2 ), γ ∈

(0, 1). Consider the local error model. Given two commuting
states ρ, σ, there exists an (n,R, δ + γ) blind distribution
compression protocol P with R = 2 log log( d

γ ) + 2 log 1
δ + 3.

Proof: Without loss of generality, ρ, σ are both diagonal
in the computational basis, so, they can be written as ρ =�

a p(a)|a��a| and σ =
�

a q(a)|a��a| where p(a), q(a) ≥ 0,�
a p(a) =

�
a q(a) = 1. Let u =

�
log d

γ

log 1
1−δ

�
, so that (1 −

δ)u ≤ γ
d . For i, j ∈ {1, 2, · · · , u}, define the sets

Ti,j := { a : p(a)∈((1−δ)i, (1−δ)i−1],

q(a)∈((1−δ)j , (1−δ)j−1] },
Ti,u+1 := { a : p(a)∈((1−δ)i, (1−δ)i−1], q(a) ≤ (1−δ)u },
Tu+1,j := { a : p(a) ≤ (1−δ)u, q(a)∈((1−δ)j , (1−δ)j−1]},

Tu+1,u+1 := { a : p(a) ≤ (1−δ)u, q(a) ≤ (1−δ)u}.

The protocol P is as follows.

• Alice receives a sample a. She finds the unique (i, j) such
that a ∈ Ti,j and communicates (i, j) to Bob.

• Receiving (i, j), Bob outputs an a� drawn uniformly
from Ti,j .

If the input given to Alice is drawn from ρ (σ), let the output
produced by Bob be drawn from ρ� (σ�). The analysis of the
protocol is as follows.

• Communication cost: Since there are at most (u + 1)2

(i, j)’s, it suffices for Alice to communicate 2 log
(u+1) ≤ 2((log u)+1) ≤ 2 log log d

γ +2 log 1
log 1

1−δ

+3 ≤
2 log log d

γ + 2 log 1
δ + 3 bits to Bob. Note that we have

used the inequality 1
− log(1−δ) ≤ 1

δ derived from the
Taylor series expansion of log(1 − δ).

• Error analysis: Let p(Ti,j) :=
�

a∈Ti,j
p(a) and

q(Ti,j) :=
�

a∈Ti,j
q(a). We can rewrite ρ and σ as

ρ =
u+1�
i,j=1

p(Ti,j)
�

a∈Ti,j

p(a)
p(Ti,j)

|a��a|,

σ =
u+1�
i,j=1

q(Ti,j)
�

a∈Ti,j

q(a)
q(Ti,j)

|a��a|.

Observe from the protocol that

ρ� =
u+1�
i,j=1

p(Ti,j)
�

a∈Ti,j

1
|Ti,j| |a��a|,

σ� =
u+1�
i,j=1

q(Ti,j)
�

a∈Ti,j

1
|Ti,j | |a��a|.
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So,

Δ(ρ, ρ�) = Δ
� u+1�

i,j=1

p(Ti,j)
�

a∈Ti,j

p(a)
p(Ti,j)

|a��a|,

u+1�
i,j=1

p(Ti,j)
�

a∈Ti,j

1
|Ti,j | |a��a|

	

=
u+1�
i,j=1

p(Ti,j) Δ
� �

a∈Ti,j

p(a)
p(Ti,j)

|a��a|,

�
a∈Ti,j

1
|Ti,j | |a��a|

	
. (27)

By definition of the set Ti,j with i ≤ u, it holds that
1 − δ ≤ p(a1)

p(a2)
≤ 1

1−δ for all a1, a2 ∈ Ti,j . Thus, for all

a ∈ Ti,j with i ≤ u,

(1 − δ)
1

|Ti,j | ≤
p(a)
p(Ti,j)

≤ 1
1 − δ

1
|Ti,j |

=⇒




 p(a)p(Ti,j)

− 1
|Ti,j|





 ≤ δ

1 − δ

1
|Ti,j| .

So,

Δ
� �

a∈Ti,j

p(a)
p(Ti,j)

|a��a|,
�

a∈Ti,j

1
|Ti,j | |a��a|

	

≤ 1
2

�
a∈Ti,j

δ

1 − δ

1
|Ti,j | ≤

δ

2(1 − δ)
. (28)

Furthermore,

u+1�
j=1

p(Tu+1,j) =
�

a:p(a)≤(1−δ)u

p(a) ≤ (1 − δ)u · d ≤ γ.

(29)
Applying (28), (29), and δ ≤ 1

2 to (27),

Δ(ρ, ρ�) ≤
u�

i=1

u+1�
j=1

p(Ti,j)
δ

2(1 − δ)
+

u+1�
j=1

p(Tu+1,j)

≤ δ

2(1 − δ)
+ γ ≤ δ + γ.

A similar argument shows that Δ(σ, σ�) ≤ δ + γ. This
completes the error analysis.

The correctness of the protocol concludes by running the
above protocol independently for each copy to obtain an
(n,R, δ + γ) protocol.

Theorem 5 immediately implies that g(P) is close to S(ρ)
for constant δ, γ, else the lower bound R ≥ S(ρ) − g(P)
would contradict the statement of the theorem. We can see
this explicitly by evaluating the functions f(P) and g(P).
Let us continue using the notation in Theorem 5. Since
Δ(ρ,P(ρ)) ≤ δ+γ, the Fuchs-van de graaf inequality implies
that F(ρ,P(ρ)) ≥ 1 − 2δ − 2γ. Similarly, F(σ,P(σ)) ≥
1 − 2δ − 2γ. Hence f(P) ≤ 2δ + 2γ. Now, for the given

ensemble, r(a) = 1
2p(a) + 1

2q(a). Then,

1 − λ

=
�

a

r(a)Tr(|a��a| · P(|a��a|))

=
u+1�
i,j=1

�
a∈Ti,j

r(a)Tr

⎛
⎝|a��a| ·

⎛
⎝ �

a′∈Ti,j

|a���a�|
|Ti,j |

⎞
⎠
⎞
⎠

=
u+1�
i,j=1

�
a∈Ti,j

r(a) · 1
|Ti,j|

≤ max
a′

r(a�) ·
u+1�
i,j=1

�
a∈Ti,j

1
|Ti,j |

= max
a′

r(a�) · (u+ 1)2 ≤
4 log2 d

γ

δ2
· max

a′
r(a�).

Suppose p and q are the uniform and the staircase distributions
(Figure 1). That is, p(a) = 1

d for all a and q(a) = 2(d−a+1)
d(d+1) =

2
d − 2a

d(d+1) (note that these distributions have no redundant

part). Then maxa r(a) ≤ 3
2d , which leads to 1− λ ≤ 6 log2 d

γ

dδ2 .

This gives us g(P) ≥ λ log(d−1) ≥ log(d−1) − 6 log3 d
γ

dδ2 .

If δ = γ = log2 d√
d
, then g(P) ≥ log(d−1)− 20

log(d) and f(P) ≤
4 log2 d√

d
. So, g(P) is close to log d, even when f(P) ≈ 1√

d
.
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