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ABSTRACT Combinatorial optimization on near-term quantum devices is a promising path to demon-
strating quantum advantage. However, the capabilities of these devices are constrained by high noise or
error rates. In this article, inspired by the variational quantum eigensolver (VQE), we propose an iterative
layer VQE (L-VQE) approach. We present a large-scale numerical study, simulating circuits with up to
40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate
quantum optimization heuristics on the problem of detectingmultiple communities in networks, for whichwe
introduce a novel qubit-frugal formulation. We numerically compare L-VQE with the quantum approximate
optimization algorithm (QAOA) and demonstrate that QAOA achieves lower approximation ratios while
requiring significantly deeper circuits. We show that L-VQE is more robust to finite sampling errors and has
a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results
show that L-VQE performs well under realistic hardware noise.

INDEX TERMS Combinatorial optimization, hybrid quantum-classical algorithm, quantum optimization.

I. INTRODUCTION
Recent advances in quantum computing hardware open the
possibility of demonstrating quantum advantage in practical
applications [1], [2]. A promising target application domain
is combinatorial optimization with problems becoming clas-
sically intractable (in the current state of theory) to solve
exactly even for moderately sized instances. This situation
suggests that the requirement for the number of qubits needed
to tackle certain classically hard combinatorial optimization
problems is relatively low, leading to the possibility of noisy
intermediate-scale quantum (NISQ) [3] devices becoming
competitive with classical state-of-the-art methods for such
problems.

Near-term quantum devices are expected to have high
noise levels, and only partial error mitigation is currently
possible. This situation leads to a constraint on the maximum
depth of the quantum circuit that can be reliably executed on
NISQ devices. This constraint motivated the development of
a number of hybrid quantum-classical algorithms for opti-
mization, most notably the quantum approximate optimiza-
tion algorithm (QAOA) [4]–[6] and variational quantum al-
gorithms for optimization [7], [8]. These algorithms execute
only a short parameterized circuit on the quantum computer
and use a classical outer-loop procedure to find “good” pa-
rameters [9]. The short parameterized circuit is often referred
to as the ansatz. The goal of the outer-loop procedure, in
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general, is to find parameters such that the output of the
quantum circuit includes high-quality solutions to the com-
binatorial optimization problem being solved.
The choice of the ansatz is a key problem in hybrid algo-

rithms. One major concern is the expressivity of the chosen
ansatz. The ansatz has to be sufficiently expressive, mean-
ing that there should exist parameters with which the ansatz
prepares a state suitably close to the solution of the problem
(note that we are not referring to the expressibility formally
defined in [10]). Another thing to consider is the optimization
of the parameters, sufficiently good parameters have to be
tractable to find [10].
For combinatorial optimization problems, the solution is

classical; in other words, it is a computational basis state.
Therefore, the expressivity of the ansatz reduces the ability
to prepare a state with a sufficiently large overlap with the
computational basis state encoding the solution of the prob-
lem. This means that the ansatz can be sufficiently expressive
without generating any entanglement or having any quantum
properties whatsoever; one layer of single-qubit rotations is
sufficient to prepare an arbitrary computational basis state.
However, finding good parameters may be challenging for
such ansätze. Their structure leads to localized optimization,
which is prone to local minima. As we discuss in the fol-
lowing, class of ansätze may be extended to enhance the
ability to find good parameters by introducing a correla-
tion between distant parts of the system. A commonly used
class of highly expressive ansätze are those with alternating
layers of single-qubit and two-qubit gates, where the two-
qubit gates are aligned with the connectivity available on
the hardware. These ansätze are known as quantum neural
networks [11] or hardware-efficient ansätze [12]. An alter-
native and “natural” approach is the Hamiltonian-evolution
ansatz used in QAOA. Such ansätze can be less expressive;
however, since the state it has to prepare is a nontrivial en-
tangled state due to the symmetry-preserving properties of
the ansatz [13]. This observation has been used by Bravyi
et al. [14] to show that because of the Z2 symmetry of the
ansatz, QAOAwith the constant depth is outperformed by the
classical Goemans–Williamson algorithm for MaxCut. As a
result, QAOA needs a comparatively large circuit depth to
achieve the same (classical) expressivity as compared with
hardware-efficient ansatz.
For ansätze with a large number of parameters, the high-

quality parameters are typically found by using a classical
optimizer. Thus, the second criterion, the ability to find suf-
ficiently good parameters, is typically framed in terms of
the cost function landscape that the classical outer-loop rou-
tine has to optimize over. Recent results show that highly
expressive ansätze, such as hardware-efficient ansätze, suf-
fer from “barren plateaus” in the optimization landscape,
making finding high-quality parameters intractable [11],
[15]–[24]. At the same time, a series of recent results show
that because of the structured nature of the ansatz used in
QAOA, one may be able to find high-quality parameters

by using machine learning approaches [25]–[27] or by re-
stricting the parameters to a specific physically motivated
class [28]–[30].
In this article, we propose a practical approach to combi-

natorial optimization on near-term quantum computers. We
introduce an iterative approach, which we call Layer VQE
(L-VQE), inspired by recent advances in hybrid quantum-
classical algorithms with an adaptive ansatz [31]–[33]. In
L-VQE, we start with one layer of parameterized rotations
and increment the size of the ansatz systematically by in-
troducing entangling gates and additional parameterized ro-
tations. To heuristically decrease the likelihood of getting
trapped in a local optimum of the parameters, we incre-
ment the ansatz before reaching convergence. To guaran-
tee that at each step the quality of the solution does not
decrease, we initialize the added ansatz such that it eval-
uates to identity. We work with qubits aligned in a chain
and assume nearest neighbor connectivity, which is a rea-
sonable assumption as the most common hardware topol-
ogy includes line as a subgraph. Restricting ourselves to
this class of problems allows us to benchmark the proposed
methods on large problems in simulation by using tensor
network techniques. We expect that in practical applications
on real quantum hardware, one would organize ansatz layers
according to (typically two-dimensional) qubit connectiv-
ity to further enhance circuit expressiveness. Quantum cir-
cuits on such layouts cannot be, in general, classically effi-
ciently simulated and are, thus, not considered in the present
study.
Fig. 1 gives a schematic presentation of L-VQE. We study

the algorithm for the problem of detecting k communities
in networks, and we propose a novel qubit-frugal formula-
tion with many-body interactions in the Hamiltonian. For
a network with n nodes, n

⌈
log2 k

⌉
qubits are required for

the circuit. We present a large-scale numerical study of the
proposed approach, simulating circuits with up to 40 qubits
and 352 rotational gates (i.e., parameters). Our numerical
simulation results show that the proposed approach achieves
a higher approximation ratio compared with QAOA while
requiring significantly lower circuit depth. The proposed ap-
proach is more robust to finite sampling error (i.e., if the
objective value is not known exactly and is estimated by
drawing samples from the quantum state) and performs better
than hybrid approaches with a fixed ansatz. Moreover, we
show that the proposed approach performs well under real-
istic hardware noise by using a trapped ion noisy quantum
simulator.
The rest of this article is organized as follows. In

Section II, we review the relevant background of solving
combinatorial optimizations on quantum computers. In Sec-
tion III, we review related work. Section IV introduces our
L-VQE approach, and in Section V, we discuss our novel for-
mulation of the k-community detection problem. Section VI
presents our numerical simulation results, and finally in Sec-
tion VII, we summarize our conclusions.
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FIGURE 1. Layer-VQE: start from a simple and shallow ansatz with one ry act on each qubit; optimize and update the parameters; after some predefined
number of iterations, increment the size of the ansatz, and optimize and update all parameters. The ansatz can be incremented multiple times.

II. BACKGROUND
We begin by briefly reviewing our notion of combinatorial
optimization on quantum computers and relevant concepts.
Suppose we have an objective function C(x) defined on the
Boolean cube x = {xi}ni=1 ∈ {0, 1}n and a corresponding op-
timization problem

max
x∈{0,1}n

C(x) (1)

where the objective function C(x) can be formulated in the
following form:

C(x) =
∑
q

wq

∏
i∈q

xi
∏
j �∈q

(1 − x j ). (2)

Here, q ⊂ {1, 2, . . . , n} are given index sets, andwq are given
coefficients. The objective function C(x) is said to be faith-
fully represented by a Hamiltonian H if it acts as H|x〉 =
C(x)|x〉 for each x ∈ {0, 1}n. For a function given in the form
(2), such a Hamiltonian representation can be constructed by
substituting every xi with the matrix xi → 1

2 (i − zi), where i
is the identity matrix and zi is the Pauli z operator that acts
on qubit i

H =
∑
q

wq

∏
i∈q

i − zi
2

∏
j∈qC

i − z j
2

. (3)

Note that the operator H ∈ C2n is never constructed explic-
itly. Instead, we construct a compact representation of it as a
combination of Pauli z operators.

A. COMBINATORIAL OPTIMIZATION ON NEAR-TERM
QUANTUM COMPUTERS
The two most prominent candidate algorithms for combina-
torial optimization on noisy near-term quantum computers
are the variational quantum eigensolver (VQE, originally
proposed in the context of quantum chemistry [34]) and the
QAOA [4]. Both algorithms are hybrid quantum-classical
algorithms that combine a parameterized trial state |ψ (θ)〉
prepared on a quantum computer with a classical routine

used to find high-quality parameters θ. The goal is to find
parameters θ such that when the state |ψ (θ)〉 is measured,
the measurement result corresponds to a good solution to the
classical optimization problem. The parameterized trial state
|ψ (θ)〉 is commonly called the ansatz.
In VQE, for optimization, the ansatz is frequently tailored

to the hardware [8], [35], and the parameters θ are found by
using a classical outer-loop optimizer. The expectation value
〈ψ (θ)|H|ψ (θ)〉 is commonly used as the metric for the opti-
mizer, although other approaches have been suggested [36].
QAOA uses a problem-dependent ansatz given by

|ψp(γ,β)〉 = e−iβpBe−iγpH · · · e−iβ1Be−iγ1H|+〉⊗n (4)

where B = ∑n
i=1 xi is the mixing Hamiltonian, xi is the Pauli

x operator acting on qubit i, H is the Hamiltonian faithfully
representing the objective function, and p is a parameter
controlling the depth. The special structure of the QAOA
ansatz enables finding high-quality parameters γ,β purely
classically in many settings [4], [37], [38] or using very few
iterations of the outer-loop optimizer [25], [39], [40].
We evaluate the quality of the final quantum state |ψ (θ)〉

by computing the approximation ratio ρ defined as follows:

ρ = 〈ψ (θ)|H|ψ (θ)〉
Cbkv

(5)

whereCbkv is either the global optimum of the objective func-
tionC(x) if available, or the best known value otherwise. We
defined approximation ratio with respect to the best known
value since the global optimal maxx∈{0,1}n C(x) may not be
accessible for sufficiently large problem instances.

B. k-COMMUNITY DETECTION
The k-community detection, also known as modularity clus-
tering, is a famous problem in network science. The goal is
to partition network nodes into k communities (also known
as clusters or parts) such that the modularity metric [41]
defined in (6) is maximized. There are several graph parti-
tioning problems whose goal is to split the graph nodes into

VOLUME 3, 2022 3100920



Engineeringuantum
Transactions onIEEE

Liu et al.: LAYER VQE: A VARIATIONAL APPROACH FOR COMBINATORIAL OPTIMIZATION

disjoint k parts in such a way that most edges will connect
the nodes within the parts and the number of edges that span
two parts is minimized [42]. The modularity optimization
is one of them. The modularity metric measures how far is
the number of edges that appear within the parts from that
in the random graph model [43] with the same number of
nodes and expected number of edges. This metric has been
confirmed to reflect the properties of community existence in
many applications. Intuitively, when the assignment of nodes
to partitions produces large modularity, the partitions are
likely to be real communities in many different applications,
including social networks and biological and engineered
systems.
For a formal definition, let G = (V,E ) be an undirected

simple graph with |V | = n nodes and |E| = m edges. The ad-
jacency matrix of G is denoted by A = {Au,v}1≤u,v≤n, where
Au,v = 1 if there is an edge between node u and node v, and
0 otherwise. The degree of a node v is denoted by dv . A
k-community clustering C = {C1, . . . ,Ck} is a partition of V
into k disjoint sets, namely,

⋃k
i=1Ci = V , and Ci

⋂
Cj = ∅

for all 1 ≤ i �= j ≤ k. Furthermore, cv denotes the member-
ship of node v for a given clustering, i.e., if v ∈ Ci, then
cv = i. The modularity of a clustering C is given by

Q(C) = 1

2m

n∑
u,v=1

Bu,vδ(cu, cv ) (6)

where the modularity matrix B is given by Bu,v = Au,v −
dudv

2m , 1 ≤ u, v ≤ n, and δ is the Kronecker delta

δ(cu, cv ) =
{
1, if cu = cv
0, otherwise

. (7)

Our goal is to find the clustering C∗ such that the modularity
is maximized

C∗ = argmaxC Q(C).

The problem has applications in chemistry [44], biol-
ogy [45], social sciences [46], and other fields. The task of
solving the modularity maximization problem to optimality
is NP-complete [47].
Community detection has been extensively studied classi-

cally [41], [48], as well as by using the D-Wave quantum an-
nealer [49]–[52] and QAOA [50], [52], [53]. In these hybrid
quantum-classical approaches, the optimization problem is
encoded as an Ising model Hamiltonian that has only two-
body terms. In the formulations, for a graph with n nodes,
solving the two-community modularity maximization prob-
lem requires n qubits, where each qubit encodes the member-
ship of a node. For the k-community problem, to encode the
membership of each node, one will need to associate k qubits
to each node while introducing quadratic penalty constraints
into the Ising Hamiltonian to enforce that each node belongs
to only one community. The formulation requires kn qubits.

III. RELATED WORK
The question of ansatz choice is central to the success of hy-
brid quantum-classical methods introduced in Section II-A.
In VQE, the choice of the ansatz determines the expressiv-
ity of the trial state and the hardness of finding parameters;
therefore, the quality of VQE is only as good as the ansatz.
Different strategies of parameterizing the ansatz and updat-
ing the parameters will also affect the performance of the
algorithm. While being able to reach any state requires a
circuit with exponential depth, shallow circuits are preferred
in applications, especially if the goal is to run the circuits
on modern NISQ devices. McClean et al. [11] show that
with random parameterized circuit initialization, the expo-
nential dimension of the Hilbert space and the gradient es-
timation complexity make the optimization impossible for
deep circuits. Moreover, Wang et al. [54] show that another
type of “barren plateau” is induced by hardware noise. More
specifically, given local Pauli noise, the gradient vanishes
exponentially with the depth of the circuits. Similar results
have been demonstrated for QAOA [55].
There are fundamentally two ways to approach the prob-

lem of designing compact ansätze. We classify ansätze
into two groups. The first way is to start with physics-
or chemistry-inspired ansätze generated by a Hamiltonian.
These circuits in the first group typically have high depth.
For example, in quantum chemistry, wewould use the unitary
coupled-cluster method ansatz. In particular, unitary coupled
clusters with singles and doubles (UCCSD) [56] ansatz can
be used in VQE simulations [34]. Each parameter in UCCSD
ansatz parametrizes a coupled-cluster amplitude for each
fermionic excitation from a reference state, either single or
double. Since it is an accurate ansatz, it has many redundant
and unimportant parameters corresponding to the excited
states that are not contributing to the ground energy giving
a lot of room for optimization. One strong idea is to use
symmetry to generate compact circuits [57] and another is to
use MP2 amplitude to screen out UCCSD parameters [58].
The issue is that there is a limit to the reduction, and typically,
such circuits are still too deep to execute on NISQ devices,
especially for large and moderate size problems. In the sec-
ond group, they are the so-called “hardware-efficient” (HE)
ansätze. These ansätze contain sequences of parametrized
single-qubit and two-qubit gates that can be easily imple-
mented on NISQ devices because of their by-design com-
pact nature [12], [57], [59]–[61]. The key aspect is that no
information about the physics or chemistry of the system
is used. The major plus of HE ansätze is that they are very
expressible and the circuits to implement them are shallower
compared to the first group of ansätze such as UCCSD and
contain a much smaller number of two-qubit gates. The
downside of HE ansätze is that they can have too many pa-
rameters to optimize and suffer from the barren plateaus [11],
[15], [54] problem, which was discussed earlier in this
article.
Another way to build ansätze is to dynamically gener-

ate them using some criteria (for example, using largest
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gradients or resolutions of identity as a criterion to
minimize total energy) [31], [62]–[67]. We will refer to these
ansätze as “iterative ansätze.” In quantum chemistry, one
of the first proposed iterative ansätze is ADAPT-VQE [31],
where fermionic operators are added to the ansatz based on
the energy gradients with respect to variational parameters.
Later, qubit-ADAPT-VQE [62] method was invented, where
the fermionic operators are broken down into Pauli strings
and used as building blocks for constructing an ansatz. Other
important contributions to this field were made based on
Yordanov et al. [68] work to use the so-called qubit exci-
tations [69] instead of the fermionic excitations in ADAPT-
VQE simulations and qubit-coupled cluster [63] method and
its iterative version [64], where the ansatz is constructed
directly in the qubit space. In general, the iterative circuits
are somewhere in the middle between Hamiltonian ansätze
and HE ansätze in terms of depth and the number of pa-
rameters. In the same spirit, Zhu et al. propose an adaptive
version of QAOA, called ADAPT-QAOA [32]. Compared
with the standard QAOA ansatz, which alternates between
the predefined exponentiated cost and mixing Hamiltonian
operator, ADAPT-QAOA grows the ansatz with two opera-
tors at a time. It also uses a gradient criterion to select the
mixing operator from a predefined operator pool. On a class
of MaxCut graph problems, ADAPT-QAOA demonstrates
faster convergence while also reducing the number of op-
timization parameters and the cnot gate counts, compared
with standard QAOA. Our L-VQE approach can be consid-
ered as a new evolution of iterative ansätze. The traditional
iterative ansätze are still based on using insights from the
physics and chemistry of the problem with some criterion to
build ansätze. In L-VQE, HE ideas are used to grow circuits.
As a result, our circuits are more compact than Hamiltonian
or iterative ansätze.
The optimization of the parameters is also a key compo-

nent in hybrid quantum-classical algorithms. For example,
in quantum machine learning, Skolik et al. [33] propose
a layerwise learning strategy that grows the circuit depth
incrementally during optimization and only updates subsets
of parameters in training. However, a recent paper [22] shows
that this type of layerwise training strategy, namely, training a
circuit piecewise in sequence, could encounter abrupt transi-
tions in the training process as the depth of the circuit grows.

IV. LAYER VQE
We advocate an iterative hybrid approach to quantum opti-
mization on NISQ devices: L-VQE. L-VQE combines ideas
from recent developments in adaptive variational algorithms,
such as [31]–[33]. In this section, we describe L-VQE in
detail.
Suppose we use a problem encoding that requires n qubits.

We start the algorithm with an ansatz with no entangling
gates and one ry gate acting on each qubit, where ry is the
single-qubit rotation through an angle θ around the y-axis,
the unitary matrix is defined as ry(θ ) ≡ e−i

θ
2 y, and y is the

Algorithm 1: L-VQE With � Layers.
1: Initialize the ansatz with one ry acting on each

qubit.
2: Update the parameters to minimize

〈ψ0(θ)|H|ψ0(θ)〉; stop after k0 iterations (before
reaching convergence).

3: for l = 1, . . . , � do
4: Add a new layer to the ansatz and initialize it

such that it evaluates to identity.
5: Update all parameters to minimize

〈ψ�(θ)|H|ψ�(θ)〉; stop after k� iterations (before
reaching convergence).

6: end for
7: Update all parameters to minimize 〈ψ (θ)|H|ψ (θ)〉

until convergence.

Pauli y operator. The parameters of these ry gates are initial-
ized uniformly randomly on [0, 2π ]. We denote the param-
eters for this layer of gates (Layer 0 in Fig. 2) as θ0 and the
layer asU0(θ0). The quantum state after applying the circuit
to the initial state |0〉 is denoted as |ψ0(θ0)〉 ≡ U0(θ0)|0〉.
We then proceed to the conventional VQE routine and itera-
tively update the parameters θ0 to minimize the cost function
〈ψ0(θ0)|H|ψ0(θ0)〉. In conventional VQE, this iterative pro-
cedure is run until convergence; but in L-VQE, we stop after
a fixed number of iterations and then add another set of gates
to the ansatz. The conventional strategy can indeed produce
a better result at this step, but after adding the new set of
gates, it may more easily get trapped in a local minimum in
the subsequent optimization procedure. In our experiments,
the number of iterations is picked empirically and increases
linearly as the system size grows.
The newly added set of gates includes the ry gates and

cnot gates that act on nearest-neighbor qubits. Another way
to describe this whole procedure is that we embed the ob-
tained parameterized circuit into a deeper circuit. We denote
this newly added layer of the circuit by U1(θ1) (Layer 1 in
Fig. 2). The newly added parameters θ1 are initialized as
zero. Note that here since ry(0) = i and cnot2 = i, where
i is the identity matrix, the quantum state becomes

|ψ1(θ0, θ1)〉 ≡ U1(θ1)U0(θ0)|0〉 = U0(θ0)|0〉 = |ψ0(θ0)〉.
(8)

Therefore, initializing the newly added parameters as zeros
guarantees that the cost function that we are optimizing will
not change after adding this new layer. At this point, we can
either let the optimization run until convergence or repeat the
previous process, stop at a fixed number of iterations, and
add another set of gates to the circuit and then optimize. The
pseudocode of the algorithm is presented in Algorithm 1.
In simulations, the cost function 〈ψ (θ)|H|ψ (θ)〉 can be

evaluated exactly. When executing the algorithm on hard-
ware, we have to repeat the state preparation and measure-
ment multiple times to generate a number of samples and use
the samples to estimate the cost function, introducing an error

VOLUME 3, 2022 3100920
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FIGURE 2. L-VQE ansatz for a six-qubit quantum state. ry denotes rotation around the y-axis defined as ry (θ) ≡ e−i θ
2 y. Every ry contains a parameter

that is optimized over in the outer loop.

due to the finite number of samples. In our experiments, we
investigate the performance of the algorithm in both cases.
The solution of a combinatorial optimization problem is

classical, i.e., it is a computational basis state. Therefore,
suppose we can find optimal parameters for the ansatz; the
ansatz contains only single-qubit rotations on each qubit,
thus should be able to prepare the state that contains the
computational basis state we want. However, ansatz as such
is prone to local minima. Therefore, in L-VQE, we start
from an ansatz that only contains single-qubit rotation gates,
then iteratively add entanglement to the ansatz to help the
optimization process. Another motivation is to speed up the
optimization process. Random initialization of deep circuits
leads to difficult optimization, so we “pretrain” with shal-
lower circuits. Importantly, we do not converge the optimiza-
tion for a single layer (or other shallow circuits). Indeed,
this would cause the algorithm to get stuck in a local min-
imum, which might be hard to escape after a new layer is
added. Instead, we added a new layer before convergence
is reached to avoid the above-mentioned issues. Empirical
results show that this strategy increases the probability of
finding the ground state or finding the state that is sufficiently
close to the ground state.
Similar to ADAPT-VQE [31] and ADAPT-QAOA [32],

we grow the size of the ansatz as we iteratively update the
parameters. The added parameterized ansatz is initialized
such that the new circuit parts evaluate to identity in order
to avoid deterioration of the optimization. In ADAPT-VQE
and ADAPT-QAOA, however, the algorithm will identify an
operator that has the largest gradient from a collection of
operators and then adds this operator to the ansatz. In L-VQE,
we define the newly added ansatz upfront.
As discussed in [22], the conjecture that a circuit can be

trained piecewise turns out not to always be true. In the finite
setting, there are abrupt transitions in the ability of quantum
circuits to be trained. In layerwise learning [33], when adding

a new set of layers, a part of the previous layer’s parameters is
frozen, and additional optimization sweeps are performed on
subsets of parameters. Each layer contains rotation gates on
each qubit and also operators that connect the qubits. L-VQE,
on the other hand, optimizes all parameters where none of the
previous layers are fixed. Furthermore, the initial ansatz for
L-VQE only contains rotation gates on each qubit. There-
fore, we start from a product state, where no entanglement
is involved. After some iterations, we add entanglement to
help the optimization process. This is different from [33],
where the initial layer already contains operators connecting
qubits. This strategy may reduce the limitations of the lack
of layerwise trainability [22]. In addition, layerwise learning
is a general approach; for L-VQE, we focus on solving com-
binatorial optimization problems.

V. k-COMMUNITY DETECTION
We propose a novel qubit-frugal formulation for the
k-community detection problem. When the problem is to di-
vide the network into two communities, namely, with k = 2,
we can associate a binary variable with each node v ∈ V such
that

xv =
{
1, if cv = 1

0, if cv = 2.

Then, we can rewrite the Kronecker delta (7) in terms of
these binary variables

δ(cu, cv ) = δ(xu, xv ) = 2xuxv − xu − xv + 1. (9)

Plugging (9) into (6) leads to the expression of modularity:

Q(C) = 1

2m

n∑
u,v=1

Bu,v (2xuxv − xu − xv + 1).

For larger k, we can use a binary encoding by associating
N = �log2 k binary variables {x j,v}Nj=1 ⊂ {0, 1}N with each
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node v ∈ V . We can rewrite the membership of node v as

cv =
N∑
j=1

2 j−1x j,v.

Again, we can rewrite the Kronecker delta (7) in terms of
these binary variables

δ(cu, cv )=
N∏
j=1

δ(x j,u, x j,v )=
N∏
j=1

(2x j,ux j,v−x j,u−x j,v+1).

(10)
Plugging (10) into (6), we obtain for the modularity

Q(C) = 1

2m

n∑
u,v=1

Bu,v

N∏
j=1

(2x j,ux j,v − x j,u − x j,v + 1).

(11)
Following the construction described in Section II, maximiz-
ing the modularity in (11) can be formulated in terms of
finding the ground state of the following Hamiltonian:

H = − 1

2m

n∑
u,v=1

Bu,v

N∏
j=1

I + z j,uz j,v
2

(12)

where binary variables x j,v have been substituted with
1
2 (I −

z j,v ),∀ j ∈ {1, 2, . . . ,N},∀v ∈ V . Here, z j,v is the Pauli z
operator that acts on qubit ( j, v).
Other formulations have been proposed to tackle the prob-

lem of specific quantum architecture. Ushijima-Mwesigwa
et al. [51] use an Ising Hamiltonian formulation to detect
two communities using quantum annealing on the D-Wave
system, which requires n qubits. Negre et al. [49] extend
it to detect k communities, which requires kn qubits. In
contrast, the Hamiltonian we propose in this work requires
only n

⌈
log2 k

⌉
qubits, thanks to the encoding introduced

above. Note that the many-body interactions present in the
proposed Hamiltonian do not introduce significant overhead,
as simulating a product of N Pauli z operators requires only
2(N − 1) cnots.

VI. EXPERIMENTS
In this section, we present the numerical results. Since
QAOA is considered the leading approach for combinatorial
optimization on NISQ devices, we begin in Section VI-A
with a numerical comparison of L-VQE and QAOA.We then
compare L-VQE with the second leading approach, which
is VQE in Section VI-B. To highlight the potential of the
proposed L-VQE approach on NISQ devices, we present
some further evidence in Section VI-C. This includes a scal-
ability analysis and simulation results of L-VQE on a trapped
ion noisy quantum simulator with a realistic noise level. To
highlight the importance of entanglement for optimization, in
Section VI-D, we present results comparing VQE with and
without entanglement.

A. L-VQE AND QAOA
For the first set of experiments, we run simulations for the
L-VQE and QAOA algorithms with the proposed Hamil-
tonian (12). The goal is to find a clustering of up to four
communities that maximize the modularity. We are, thus,
simulating 2n qubits for a graph with n nodes. For L-VQE,
we run our simulations of the quantum circuits in MATLAB.
We use matrix product states (MPS) techniques to simulate
quantum circuits, which allow us to reach large system sizes
(up to 40 qubits and 352 parameters). TheHamiltonian is also
represented in the form of a matrix product operator [70],
allowing access to full-precision energy computation. Our
proprietary MPS simulator uses an exact representation of
the wave function without any truncation. The complexity of
simulations in the MPS simulator scales linearly with system
size and exponentially with circuit depth. Since the ansatz
in L-VQE is one-dimensional and shallow, the MPS simu-
lator can simulate L-VQE circuits for relatively large sys-
tem sizes. The QAOA circuits we consider are deep; there-
fore, there is no benefit to using the MPS simulator. We use
the high-performance simulator Qiskit Aer [71] to simulate
QAOA circuits due to its convenience. Because of the sim-
ulation complexity and the need to optimize parameters for
the benchmark instances, we limit the simulations of QAOA
to 20 qubits. The choice of a simulator (MPS or Qiskit Aer) is
inconsequential as both methods simulate the quantum state
exactly and produce the same outcomes.
In variational algorithms, the choice of the classical outer-

loop optimizer is central to the performance of the method.
However, in this work, we do not specifically investigate
the performance of various optimizers and do not perform
any hyperparameter tuning on the optimizers. We only test
L-VQE with a sequential minimal optimizer (SMO) [72]
and COBYLA [73], [74]. SMO is implemented using the
recommended settings [72], and COBYLA is implemented
in the SciPy [75] package with the default setting. We ob-
serve that SMO performs slightly better than COBYLA;
therefore, we advocate for SMO over COBYLA. For op-
timization in QAOA, we also use COBYLA with the de-
fault setting (we do not consider SMO as it is not designed
for QAOA). Furthermore, we exhaustively optimized the
parameters by using COBYLA as a local optimizer in the
libEnsemble [76] implementation of APOSMM [77], [78].
Given a fixed number of iterations, APOSMM, as a mul-
tistart method, will run the local optimizer until conver-
gence and then restart the optimization. This approach has
been shown to work well in our previous study [40]. Ad-
ditional details of the QAOA experiments are provided in
Appendix A.
We run QAOA experiments on four gnp random

graphs, with 7–10 nodes, respectively, and with p up to
10. All graphs are generated with Networkx. We give
APOSMM a limit of 30 000 iterations. The limit is chosen
based on an empirical observation that with this parameter
choice, APOSMM will restart COBYLA at least ten times,
usually much more. To compare, we run our L-VQE on each
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FIGURE 3. Compare QAOA and L-VQE on graphs of size from 7 to 10,
simulating 14–20 qubits. L-VQE ansatz is iteratively increased up to � = 2
layers. L-VQE finds the ground state or a state that is close (with an
approximation ratio of at least 0.99) to the ground state for each graph.

TABLE 1. Assuming Full Connectivity and Compiling the Higher Order
Terms in the Hamiltonian (12) Into Gate Sets {rz, cnot}, the Gate Count of
QAOA Scales Quadratically With n, While L-VQE Scales Linearly

In our experiments presented in Fig. 3, QAOA circuits with p steps consists of
77p single-qubit gates and 210p cnot gates, while L-VQE with � layers contains
52�+ 14 single-qubit gates and 26� cnot gates. Thus, we expect that the L-VQE
approach will be more robust to noise in real-life experiments. cnot count of
QAOA can be decreased by further circuit optimizations andmore efficient native
gates. On the other hand, it would be increased if the connectivity is not full.

graph ten times given different random seeds using SMO and
COBYLA as the optimizer. Each run is given a limit of 3000
iterations, and we report the best result found by L-VQE.
The results of the experiments are shown in Fig. 3. For each
graph, L-VQE finds an estimate of the ground state with an
approximation ratio ρ of at least 0.99, despite having a much
lower budget of function evaluation.
For a graph with n nodes, our approach requires 2n qubits

in order to detect four communities. Assuming full connec-
tivity and compiling the higher order terms in the Hamilto-
nian (12) into gate sets {rz, cnot}, the product of four Pauli
z operators is decomposed into six cnots and one rz in
the middle. Single-qubit gates are cheap, so one is primarily
interested in the cnot gate counts. The gate counts of QAOA
and L-VQE circuits are summarized in Table 1. When p
is small, the Hamiltonian evolution ansatz used in QAOA
is less expressive as compared with the hardware-efficient
ansatz used in L-VQE. Therefore, a large number of QAOA
layers and large circuit depth are needed to achieve the re-
quired overlap with the target state. At the same time, the
cost function landscape of QAOA is highly nonconvex and
contains many low-quality local optima, which makes find-
ing high-quality parameters difficult for larger p. In addition,
the Hamiltonian (12) contains many-body terms, which can
be hard to compile into gates in practice due to the limited
connectivity of the hardware. In contrast, L-VQE follows
the connectivity of the hardware as the Hamiltonian structure
does not enter the ansatz explicitly.

TABLE 2. Graph Information of the Networkx Generated Instances for
Comparing VQE and L-VQE

TABLE 3. Best Approximation Ratio Achieved by VQE and L-VQE Using
SMO

As the number of layers in the ansatz increases, results of VQE deteriorates. L-VQE
does not suffer from that problem, and we achieve better results as the number of
layers grows.

B. VQE AND L-VQE
To further examine the performance of L-VQE, we compare
the results of VQE with fixed ansatz and L-VQE on larger
problems. In Section VI-B1, we compare the performance
of VQE and L-VQE, and in Section VI-B2, we compare
the performance with full-precision energy computation, that
is, with energy computed as the expectation of the problem
Hamiltonian with the full simulated quantum state. The re-
sults are summarized in Section VI-B3.
We generated 16 graph instances with NetworkX. Graph

information is summarized in Table 2. The goal is to find
a clustering of up to four communities that maximize the
modularity; thus, we are simulating 34 qubits forwindmill
and 40 qubits for all other graphs.
For VQE, we define a fixed form of the ansatz upfront and

then iteratively optimize and update over all parameters. We
compare three sets of ansätze, which are shown in Fig. 2 as
Layer 0 only (� = 0), Layer 0 to 1 only (� = 1), and Layer 0
to 2 (� = 2), respectively. For L-VQE with � = 0, the ansatz
will not grow; thus, the algorithm is the same as VQE with
one ry gate acting on each qubit. For L-VQE with � = 1
and � = 2, we set the parameter k0 = 200 in Algorithm 1.
In other words, we first run L-VQE with Layer 0 ansatz for
200 iterations and then reuse the parameters to the ansatz
with 1 layer and 2 layers, respectively. Again, we run our
simulations of the quantum circuits in the MPS simulator.
For optimization, we use the SMO [72] and COBYLA [73].
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TABLE 4. Average Approximation Ratio Achieved by VQE and L-VQE Using SMO

As the number of layers in the ansatz increases, results of VQE deteriorate; but for L-VQE, we achieve better results.

TABLE 5. Best Approximation Ratio Achieved by VQE and L-VQE Using
COBYLA

As the number of layers in the ansatz increases, results of VQE deteriorate; but for
L-VQE, we achieve better results.

For each graph and each approach, we initialize the ansatz
with ten different random seeds.

1) VQE AND L-VQE
We report the results of VQE and L-VQE in Tables 3–6. To
evaluate the cost function 〈ψ (θ)|H|ψ (θ)〉, we execute the
circuit and generate 2000 samples and use the mean of the
samples as an estimator. Having a finite number of samples
is a realistic setup since when the scale of the system gets
larger, the exact computation of the cost function becomes
intractable.
In Table 3, we report the best approximation ratio (ρbest)

achieved from the ten runs using SMO for each graph.
In Table 4, we report the average and standard deviation
(ρaverage ± σ ) of the approximation ratio from the ten runs
for each graph. We additionally report the results that use
COBYLA as the optimizer in Tables 5 and 6.

2) VQE AND L-VQE WITH FULL-PRECISION ENERGY
COMPUTATION
We report the results of VQE and L-VQE with full-precision
energy computation in Tables 7 and 8. In each iteration, we
evaluate the cost function exactly. In Table 7, we report the
best approximation ratio (ρbest) achieved from the ten runs
using SMO for each graph. In Table 8, we report the average
and standard deviation (ρaverage ± σ ) of the approximation
ratio from the ten runs for each graph.

3) SUMMARY OF VQE AND L-VQE
Across all instances, we set the threshold of approximation
ratio to 0.99, 0.95, and 0.90, respectively, and in Table 9, we
report the percentage of the local optimizer runs that find the
quantum state with a higher approximation ratio at the end
of the algorithm. The rows in blue are the experiments with a
finite number of samples (i.e., the cost function is estimated
by the mean of the samples), and the rows in white are the
experiments with full-precision energy computation (i.e., the
cost function is evaluated exactly).
Intuitively, when we increase the size of the ansatz, the

ansatz becomes more expressive, and we should have a better
chance of finding the ground state. However, we can see that
for VQE, when the cost function is estimatedwith finite num-
ber of samples, as the number of layers in the ansatz increase,
the results deteriorate. But for L-VQE, as we increase the size
of the ansatz, the results improve.Moreover, it is not practical
to evaluate the energy exactly in applications when the size of
the system gets larger. In L-VQE, by iteratively growing and
reoptimizing the ansatz, we can achieve a higher probability
of finding the ground state or a state that is sufficiently close
to the ground state. By comparing the results of our L-VQE
with or without full-precision energy computation, we see
no significant difference, which suggests that our approach
is relatively robust to finite sampling errors. We expect that
this behavior is caused by the complicated landscape of VQE
spanned by many parameters. A large circuit, even though
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TABLE 6. Average Approximation Ratio Achieved by VQE and L-VQE Using COBYLA

As the number of layers in the ansatz increases, results of VQE deteriorate, but for L-VQE, we achieve better results.

TABLE 7. Best Approximation Ratio With Full-Precision Energy
Computation Achieved by VQE and L-VQE Using SMO

Comparing this table with Table 3, L-VQE is clearly more robust to finite sampling
errors.

it is shallow, is hard to optimize if one does not use any
mitigation strategies. L-VQE can be understood as one such
strategy in which the circuit is carefully grown. This provides
a good starting point for the optimization of a deeper circuit.
Once the deeper circuit is initialized closer to the solution,
the optimizer is less likely to hit the local minimum or spend
more shots to escape from the neighborhood of the local
minimum.

Additional evidence of L-VQE performance
We now provide additional evidence for the effects of reusing
parameters and adding layers of the ansatz in L-VQE to
complement the high-level statistics given in Tables 3–8.
We observe that for the runs of experiments that start from
the same initial Layer 0 ansatz by reusing the parameters
obtained from that ansatz, in most cases, the results improve.
Across all runs of the experiments, with finite samples, for

one layer, 147 out of the 160 (91.88%) runs to find a state
with a better or equal approximation ratio compared with
the ansatz with 0 layer only. For two layers, 151 out of
the 160 (94.38%) runs to find a state with a better or equal
approximation ratio compared with the ansatz with 0 layers.
Similarly, with full-precision energy computation, across all
runs of the experiments, for one layer, 150 out of the 160
(93.75%) runs to find a state with a better or equal approx-
imation ratio compared with the ansatz with 0 layers. For
two layers, 151 out of the 160 (94.38%) runs find a quantum
state with a better or equal approximation ratio compared
with the ansatz with 0 layers. We present the violin plot of a
representative instance caveman here in Fig. 4. Additional
violin plots of the experiments for each graph can be found
in Appendix C. Finally, we present the average number of
iterations needed for L-VQE and VQE on all 20 nodes graph
(40 qubits) in Fig. 5. When using SMO as the optimizer,
L-VQE needs fewer iterations in general. At the same time,
VQE requires fewer iterations if it is used with COBYLA
optimizer. It should be pointed out, however, that L-VQE
obtains higher quality results. In near-term applications, it
is reasonable to use a slightly more expensive technique if it
gives more accurate results. As demonstrated here, this is the
case with L-VQE versus VQE.

C. FURTHER EVIDENCE OF THE POTENTIAL OF L-VQE
To provide further evidence of the potential of L-VQE, we
present a scaling analysis of L-VQE in Section VI-C1 and
discuss the simulation results of L-VQE on a trapped ion
noisy quantum simulator in Section VI-C2.

1) SCALING ANALYSIS
In this set of experiments, we generate random graphs
with nodes ranging from 8 to 20. This means that in our
application of finding a clustering up to four communities
that maximize the modularity, we need to simulate qubits
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TABLE 8. Average Approximation Ratio With Full-Precision Energy Computation Using SMO

Comparing this table with Table 4, L-VQE is clearly more robust to finite sampling errors.

FIGURE 4. Violin plots of L-VQE versus VQE on graph caveman, and finite samples versus full-precision energy computation, using SMO and COBYLA as
optimizers. The plots show the probability density of the results, with the kernel density estimator truncated to (min(ρ), max(ρ)) (since the
approximation ratio cannot exceed 1). Comparing the results of L-VQE and with finite samples or full-precision energy computation, we see no
significant difference. But for VQE with finite samples, as the number of layers in the ansatz increases, the results deteriorate. L-VQE is relatively robust
to sampling noise.

TABLE 9. Percentage of Runs of Local Optimizers That Reach a Given
Approximation Ratio. Blue Rows Show Results From Experiments With
the Energy Computed From a Finite Number of Samples (Mean of 2000
Samples). White Rows are From Experiments With Full-Precision Energy
Computation

The optimizer is SMO.With finite sampling errors, as the number of layers
in the ansatz increases, the results of VQE deteriorate. But for L-VQE, we
achieve better results. Thus, L-VQE ismore robust to finite sampling errors
compared with VQE.

ranging from 16 to 40. For each graph and each approach,
we run the experiments ten times and record the average

number of iterations needed for convergence of each graph.
The results are shown in Fig. 6. We can see that the number
of iterations scales up polynomially as the number of nodes
increases. Here, since within each iteration the number of ry
gates in the ansatz scales linearly with respect to the number
of qubits needed (ansatz shown in Fig. 2), the number of
parameters that need to be optimized, therefore, scales up
linearly. In addition, the number of samples produced for
evaluating the cost function is fixed as constant. Thus, the
resources required for the entire algorithm scale polynomi-
ally. We point out, however, that our algorithm is heuristic by
design and there is no guarantee of obtaining a solution with
specified quality.

2) NOISY SIMULATIONS
The experiments described in the preceding sections are sim-
ulated in a setting that has no gate noise. For demonstration
purposes, in the next set of experiments, we also investigate
the performance of L-VQE using a trapped ion noisy quan-
tum simulator. We use realistic error rates in our simulations.
Details of the noise model are given in Appendix B. We
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FIGURE 5. Average number of iterations needed for L-VQE and VQE on all 20 nodes graph (40 qubits), using SMO and COBYLA as optimizers. When
using SMO as the optimizer, L-VQE needs fewer iterations in general. When using COBYLA, VQE needs fewer iterations. However, there is a tradeoff
between the quality of the solution and the number of iterations.

FIGURE 6. Average number of iterations until convergence scales up
polynomially with respect to the size of the graph.

run the experiments on all 16 graphs and show a represen-
tative instance caveman here; more results can be found in
Appendix D. For L-VQE with Layers 1 and 2, we run the
experiments ten times each. Fig. 7 gives a violin plot of the
results. We observe that, in general, as the size of the ansatz
increases, the probability of finding the ground state or a state
that is sufficiently close increases. This suggests that L-VQE
is also relatively robust to hardware noise and can be adapted
to different quantum architecture.

D. ENTANGLEMENT VERSUS NO ENTANGLEMENT
Our next experiment is aimed at understanding the role of
entanglement in VQE. We use the same methodology as
proposed in [8]. That is, the experiment is based on replacing
the entanglement gates cnot with a t gate acting on both
qubits. Compared with previous work, with our simulator we
can investigate the algorithm’s performance on larger prob-
lems. We run the experiments on four graphs: (caveman,
gnp, random, and gaussian). For each graph, we repeat

FIGURE 7. Violin plot of L-VQE performance on a trapped ion noisy
quantum simulator. The plot shows the probability density of the results,
with the kernel density estimator truncated to (min(ρ), max(ρ)) (since
the approximation ratio cannot exceed 1). As the size of the ansatz
increases, the probability of finding the ground state or a state that is
sufficiently close increases.

TABLE 10. Percentage of Experiments Given the Approximation Ratio
Threshold

the experiments ten times with a different random seed. For
the set of experiments with entanglement, we use the ansatz
described in Fig. 2 with Layer 0 and Layer 1. For the set
of experiments without entanglement, we replace all cnot
gates with a t gate acting on both qubits. The results are
summarized in Table 10, where we report the percentage of
runs that reach the approximation threshold 0.99, 0.95, and
0.90, respectively. As we can see from the results, under both
cases, with and without full-precision energy computation,
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using the ansatz with entanglement performs better than us-
ing the ansatz without entanglement.

VII. CONCLUSIONS AND DISCUSSION
Combinatorial optimization on near-term quantum devices is
a leading candidate to demonstrate quantum advantage, and
hybrid quantum-classical algorithms have been developed
to solve this problem. In this work, we propose an iterative
L-VQE approach inspired by VQE. We specifically studied
the application of k-communities detection. In existing
works, for a graph with n nodes, solving the k-communities
modularity maximization problem requires kn qubits that
encode the problem as an Ising model Hamiltonian. We
propose a novel qubit-frugal formulation that requires only
n �log k qubits.

We compared the performance of L-VQE with QAOA,
which is widely considered to be a strong candidate for
quantum advantage in applications with NISQ computers.
However, the many-body terms in the Hamiltonian make it
harder to implement in the QAOA setting. Moreover, the nu-
merical results show that the optimization indeed gets harder,
thus suggesting that L-VQE provides a practical alternative
to QAOA for combinatorial optimization on noisy near-term
quantum computers.
Unlike VQE, which has an ansatz fixed upfront, L-VQE

starts from a simple and shallow hardware efficient ansatz
with a small number of parameterized gates and then adds
layers to the ansatz systematically. This strategy allows us
to make the ansatz more expressive and reduces the opti-
mization overhead. Our numerical results suggest that adding
layers of the ansatz indeed increases the probability of find-
ing the ground state or finding the state that is sufficiently
close to the ground state. With finite samples, however, VQE
is more likely to fail. We empirically observe L-VQE to be
more robust to finite sampling errors, making it a promising
approach for NISQ devices. We use MPS representation to
perform large-scale simulations of the quantum circuits in
MATLAB. Doing so allowed us to explore problems of larger
size (simulations up to 40 qubits and 352 parameters). We
also studied the performance of L-VQE using a simulator
of a noisy trapped-ion quantum computer. The results sug-
gest that our approach is relatively robust to hardware noise
and can be adapted and generalized to different quantum
architecture. Finally, we present numerical results of the role
of entanglement in VQE. The results clearly show that the
ansatz with entanglement performs better than the ansatz
without entanglement.
Our results are the first indication that the introduction of

additional entangling parameters in VQE for classical prob-
lems, as proposed in [79, Sec. V-B], break down the barriers
in the optimization landscape, making it more convex and,
therefore, more amenable to simple local outer-loop opti-
mizers to find a minimum. This is in sharp contrast with the
previous results of Nannicini [8], who did not observe any
beneficial effects of entanglement. The difference in findings

FIGURE 4. Best approximation ratio QAOA found for the seven-node
graph (shown in the inset) with p ranging from 1 to 30. Even with the
multistart method APOSSM to improve the optimizer COBYLA, we at
most find an estimate of the ground state up to approximation ratio
0.817.

between our results and those presented in [8] suggests the
importance of the parameterization choice and the overall
VQE procedure design to the success of such methods. We
hope that this work will lead to even better algorithms to
design ansätze for NISQ devices.

APPENDIX A
QAOA EXPERIMENTS
In this Appendix, we provide some additional details of the
QAOA experiments on the gnp random graph with seven
nodes, as shown in the inset of Fig. 4, simulating 14 qubits.
The maximal modularity with up to four communities of this
graph can be found by brute force (0.1790). We report the
approximation ratio ρ [defined in (5)] found by QAOA in
Fig. 4.We first run QAOAwith p ranging from 1 to 30 for ten
times for each p, using COBYLA to optimize the parameters.
Each run is given a different random seed and is run until
convergence. In Fig. 3, we report the best approximation ratio
we find from the ten runs. Note that local optimizers such as
COBYLA cannot guarantee to find the optimal parameters,
especially as p increases. This is the reason that the data
points of approximation ratio do not grow monotonically
with p. Therefore, to further improve the optimizer, we use
the multistart method APOSMMwith COBYLA, which uses
an ensemble of local optimization solvers. We use COBYLA
as the local optimization solver within APOSMM. We give
APOSMM a limit of 30 000 iterations. The limit is chosen
based on an empirical observation that with this parameter
choice, APOSMM will restart COBYLA at least ten times,
usually much more. Using the multistart method, the results
improve compared with using only COBYLA. We observe
that with this small graph, even if we increase p up to 30,
QAOA at most finds an estimate of the ground state up to
approximation ratio 0.817.
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FIGURE 5. Violin plots of L-VQE versus VQE: finite samples versus full-precision energy computation, using SMO and COBYLA as optimizers. The plots
show the probability density of the results with the kernel density estimator truncated to (min(ρ), max(ρ)) (since the approximation ratio cannot exceed
1). In general, as the number of layers in the ansatz increases, results of VQE deteriorate, but for L-VQE, we achieve better results.

APPENDIX B
TRAPPED-ION QUANTUM COMPUTER NOISE MODEL
In this Appendix, we give details on the error model that was
used in Section VI-C2 of the main text. The error model
is derived for a near-term trapped-ion quantum computer
with realistic error rates specified in the following. Trout
et al. [80] develop errormaps tomodel errors that accumulate
during the execution of single-qubit rotations X (θ ) = eiθX ,
Y (θ ) = eiθY , and Z(θ ) = eiθZ , as well as during the execu-
tion of Molmer–Sørensøn gate XX (θ ) = eiθX⊗X . X , Y, and
Z denote spin- 12 Pauli matrices. The quantum channels rep-
resenting the noisy action of the above-mentioned gates take

the following form:

EX (θ ) = D(pd) ◦ W (pdep) ◦ RX (pα ) ◦ UX (θ ) (13)

EY (θ ) = D(pd) ◦ W (pdep) ◦ RY (pα ) ◦ UY (θ ) (14)

EZ (θ ) = D(pd) ◦ W (pdep) ◦ RZ (pα ) ◦ UZ (θ ) (15)

EXX (θ ) = (D(pd,1) ⊗ D(pd,2)
) ◦ (W (pdep) ⊗ W (pdep)

)
◦ H(pxx) ◦ H(ph) ◦ UXX (θ ). (16)
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FIGURE 6. Violin plots of L-VQE versus VQE: finite samples versus full-precision energy computation, using SMO and COBYLA as optimizers. The plots
show the probability density of the results with the kernel density estimator truncated to (min(ρ), max(ρ)) (since the approximation ratio cannot exceed
1). In general, as the number of layers in the ansatz increases, results of VQE deteriorate, but for L-VQE, we achieve better results.

Here, UV (θ ) represents an ideal unitary evolution according
to unitary V . That is

UV (θ )ρ = e−iθVρeiθV . (17)

D(pd ) is a dephasing channel defined as

D(pd)ρ = (1 − pd)ρ + pdZρZ. (18)

Note that in the definition of EXX (θ ), we use separate dephas-
ing channels for each qubit with (potentially different) error
rates pd,1, pd,2.

Depolarizing channel W (pdep) is defined as follows:

W (pdep)ρ=(1−pdep)ρ+ pdep
3

XρX+pdep
3
YρY+ pdep

3
ZρZ.

(19)
Imprecise rotation is implemented withRV (pα ). It is defined
with

RV (pα ) = (1 − pα )ρ + pαV
†ρV (20)

where V = X,Y,Z.
Finally,H(pxx) represents the effects of two-qubit impre-

cise rotation andH(ph) implements ion heating. The channel
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FIGURE 7. Violin plots of L-VQE versus VQE: finite samples versus full-precision energy computation using SMO and COBYLA as optimizers. The plots
show the probability density of the results, with the kernel density estimator truncated to (min(ρ), max(ρ)) (since the approximation ratio cannot
exceed 1). In general, as the number of layers in the ansatz increases, results of VQE deteriorate, but for L-VQE, we achieve better results.

is defined in the following way:

H(p)ρ = (1 − p)ρ + p(X ⊗ X )ρ(X ⊗ X ). (21)

We also model the effects of noisy initial state preparation. In
our simulations, the perfect state ρ0 = diag(1, 0) is replaced
with the state affected by depolarizing channel: W (pdep)ρ0.
Similarly, the measurement error is modeled with the depo-
larizing channel. It is implemented by preceding the ideal
POVM element with an action of depolarizing channel.
We used the following realistic values of noise rates:

pd = 1.5 × 10−4

pdep = 8 × 10−4

pd,1 = pd,2 = 7.5 × 10−4

pα = 1 × 10−4

pxx = 1 × 10−3

ph = 1.25 × 10−3. (22)

APPENDIX C
ADDITIONAL L-VQE AND VQE SIMULATION RESULTS
In this Appendix, we present more detailed simulation results
of L-VQE and VQE using MPS simulator for all 16 graphs.
Figs. 5–8 show the violin plots of L-VQE versus VQE, finite
samples versus full-precision energy computation, using
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FIGURE 8. Violin plots of L-VQE versus VQE: finite samples versus full-precision energy computation using SMO and COBYLA as optimizers. The plots
show the probability density of the results, with the kernel density estimator truncated to (min(ρ), max(ρ)) (since the approximation ratio cannot
exceed 1). In general, as the number of layers in the ansatz increases, results of VQE deteriorate, but for L-VQE, we achieve better results.

SMO and COBYLA as optimizers. In general, as the number
of layers in the ansatz increases, results of VQE deteriorate,
but for L-VQE, we achieve better results. This suggests that
L-VQE is more robust to finite sampling errors as compared
with VQE.

APPENDIX D
ADDITIONAL L-VQE SIMULATION RESULTS ON TRAPPED
ION NOISY SIMULATOR
In this Appendix, we present the simulation results of L-VQE
using trapped ion noisy quantum simulator for all 16 graphs
in Fig. 9. In general, as the size of the ansatz increases,
the probability of finding the ground state or a state that is

sufficiently close increases. Therefore, we suggest that L-
VQE is relatively robust to hardware noise.
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FIGURE 9. Violin plot of L-VQE performance on a trapped ion noisy quantum simulator. The plot shows the probability density of the results with the
kernel density estimator truncated to (min(ρ), max(ρ)) (since the approximation ratio cannot exceed 1). In general, as the size of the ansatz increases,
the probability of finding the ground state or a state that is sufficiently close increases.
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