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Limitations on Transversal Gates for
Hypergraph Product Codes

Simon Burton and Dan Browne

Abstract— In a fault tolerant quantum computer, quantum
codes are expected to serve the conflicting purposes of protecting
quantum information while also allowing that information to
be manipulated by fault-tolerant gates. We introduce a new
technique for placing limitations on such gates, and apply this
technique to a class of quantum codes known as hypergraph
product codes contained within the vertical sector. These codes
are constructed from input which is a pair of classical linear
codes, and generalize the Kitaev surface code which is the
hypergraph product of classical repetition codes. We provide
a necessary condition on these input codes, under which the
resulting hypergraph product code has transversal gates limited
to the Clifford group. We conjecture that this condition is satisfied
by all [n, k, d] Gallagher codes with d ≥ 3 and k ≤ n/2. This
work is a generalization of an argument due to Bravyi and König,
and we also conjecture this is a refinement of the recent notion
of disjointness due to Jochym-O’Connor et al.

Index Terms— Computers and information processing, quan-
tum computing.

I. INTRODUCTION

S INCE the dawn of time humankind has striven to calculate
and compute. More recently we strive to build a quantum

computer. Like any computer, this has two ingredients: a reli-
able storage of information, and the ability to manipulate this
information. (Input/output comes later.) These two ingredients
are at odds with each other: one tries to prohibit any change,
and the other is all about change. We seek a quantum code
that can do both.

Because of this antagonistic relationship between state
preservation and state manipulation, knowledge of one side
often implies something about the other side. Indeed, the
quantum code literature has many results that explore this
boundary, both “no-go” and “go” results. The first go result
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was the realization that CSS codes allow for transversal CNOT
gates [1]–[3]. One of the first no-go results was by Eastin and
Knill [4] which found that for stabilizer codes the transversal
gateset is finite and therefore not universal. A common proof
technique has emerged, for both go and no-go results. This
technique relates a condition on the intersection of generic
logical operators to the existence of transversal gates. Finding
codes where the logical operators have large overlap with each
other leads to transversal gates, for example the triorthogonal
codes lead to transversal non-Clifford gates [5]–[7] as well as
the color codes [8]. Conversely, showing that generic logical
operators have small overlap with each other restricts the
available transversal gates [9], [10]. These no-go results have
also been weakened to apply to locality preserving logical
gates, both in the stabilizer code setting [11], [12] and for
topological quantum field theories [13].

The Kitaev code, which has the geometry of a torus, and its
flat cousin, called the surface code, are the leading contenders
for quantum codes [14]. Industry has this goal within sight.
To reach universality with these codes we can do so via
braiding [15], lattice surgery [16]–[18], or twists [19]. Other
approaches use a 3D architecture [20], possibly with time
[21], [22] as one of the dimensions. The problem with all
these topological codes is that they have a vanishing rate: as
we build larger codes to decrease the error rate, the number
of logical qubits per physical qubit tends to zero.

Looking over the implementation horizon we find codes
with vastly superior performance: the family of hypergraph
product codes [23]. These still have a bounded number of
interactions between physical qubits; with the additional diffi-
culty that these are non-local interactions. The above story
performed with the surface code has a parallel story for
hypergraph product codes, which are a direct generalization of
the surface code. Good decoders exist [24], and we can braid
punctures to perform Clifford gates [25]. More generally, the
homological product codes [26] can be made universal with
code switching techniques [27].

In this work we show that a family of hypergraph prod-
uct codes are unable to achieve non-Clifford gates transver-
sally. This is a generalization of an argument of Bravyi
and König [9] which applies to surface/toric codes. Note,
we are specifically not referring to the main theorem of Bravyi
and König [9], which applies to topological stabilizer codes
of arbitrary dimension. Instead, we focus on a motivational
heuristic from this paper, which we call the Bravyi-König
argument. This relies on computing the intersections of two
sets of generic logical operators, and showing that this
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intersection is correctable. See Fig. 1. For the surface code,
or toric code, this intersection has size O(1) and so cannot
support any logical operator as the weight of these scales with
the lattice size.

For hypergraph product codes, the situation is more delicate.
In this case the intersection of generic logical operators has
support on an extensive set of qubits, and so we cannot rely
on constant distance bounds. This intersection region will
have size O(k2), where k is the dimension of the underlying
classical codespace. At first glance this region would seem
unlikely to be correctable, as k is comparable to the distance
of the quantum hypergraph product code. However, we show
that under some mild assumptions on the underlying classical
codes (we call this assumption robustness) this region is indeed
correctable and so the Bravyi-König argument can be extended
to these codes. This is the main result of the paper, Theorem 15
below.

The Bravyi and König argument has also been generalized
to arbitrary stabilizer codes by the notion of disjointness due
to Jochym-O’Connor et. al. [10]. This however is still only
sensitive to the distance of the code. Our techniques can
therefore lead the way to a refinement of these disjointness
bounds.

In summary, these hypergraph product codes may be
excellent for protecting quantum information, but there are
restrictions on how this quantum information can then be
manipulated. This work is the first result demonstrating such
restrictions.

II. QUANTUM STABILIZER CODES

Fix a number of qubits n. The Pauli group Pn is generated
by n-fold tensor products of the Pauli matrices

I2 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
,

Z =

(
1 0
0 −1

)
, Y =

(
0 −i

i 0

)
,

and phases {±1,±i}. Writing V = C2 for the single qubit
Hilbert space, the group Pn acts tautologically on the n-qubit
Hilbert space V ⊗n of dimension 2n. Any subgroup S ≤ Pn

will fix a subspace of V ⊗n pointwise:

Fix⊗n
V (S) := {v ∈ V ⊗n | gv = v, ∀g ∈ S},

and any subspace W ≤ V ⊗n will be stabilized by a subgroup
of Pn:

StabPn(W ) := {g ∈ Pn | gw = w, ∀w ∈ W}.
An abelian subgroup S ≤ Pn that does not contain −I2 has
particularly nice structure. We call any such subgroup S a
stabilizer group. Together with the tautological action this
is known as a (quantum) stabilizer code. The subspace
FixV ⊗n(S) is the protected codespace.

Operators g ∈ Pn built as tensor product of I2 and X are
called X-type operators and denoted PX

n . Similarly, tensor
products of I2 and Z are called Z-type operators and denoted
PZ

n . If g ∈ Pn commutes with every h ∈ S, then G will

preserve the codespace, without needing to fix it pointwise.
Up to stabilizers, these are the logical operators of the code
which form a group isomorphic to Pk, for some k, and so
there are k logical encoded qubits [28].

When S is generated by X-type or Z-type operators (inclu-
sively) we call this a CSS stabilizer code [1], [29]. We state
a simple lemma describing the logical operators of these
codes. Enumerating the n qubits as {1, . . . , n}, we say that
an operator g ∈ Pn has support on a subset γ ⊆ {1, . . . , n}
when the tensor factors of g are equal to I2 at indexes not
in γ.

Lemma 1: In a CSS stabilizer code, if a set of qubits γ
supports a non-trivial logical operator, then γ supports either
a non-trivial X-type logical operator, or a non-trivial Z-type
logical operator (or both).

Proof: An operator g ∈ Pn commutes with every element
of S exactly when it commutes with every generator of S.
Therefore, given a logical operator that is built from both
X and Z Pauli operators, replacing X by I will also give
an operator that commutes with the stabilizers, and similarly
replacing Z by I will give an operator that commutes with
the stabilizers. One or both of these must then be a logical
operator.

We recall the following definition and Lemma about the
Clifford hierarchy [30], which is found in [11] Appendix A.
The n-qubit Clifford hierarchy is a sequence {C1

n, C2
n, . . .} of

sets of unitary operators, Cl
n ⊂ U(V ⊗n). These are defined

inductively as C1
n := Pn, and

Cl+1
n := {u ∈ U(V ⊗n) | upu−1 ∈ Cl

n, ∀p ∈ Pn}
for l ≥ 1. We also define C0

n to be the phase group
C0

n = {±I⊗n
2 ,±iI⊗n

2 }. The sets C0
n, C1

n and C2
n are closed

under inverse and multiplication and so these are groups.
Specifically, C2

n is called the n-qubit Clifford group. For l > 2,
Cl

n is no longer a group [5].
Lemma 2: A unitary u ∈ U(V ⊗n) is in the n-qubit Clifford

group exactly when

[upu−1, q] = upu−1qup−1u−1q−1 ∈ C0
n

for all p, q ∈ Pn.

Proof: The set of all unitaries u ∈ U(V ⊗n) such that
upu−1p−1 = ±I for all p ∈ Pn, equals the Pauli group.
Therefore the result follows from the definition of C2

n.
A transversal gate for a stabilizer code S ≤ Pn is an

operator of the form u = u1⊗. . .⊗un with each ui an arbitrary
unitary on V , such that u commutes with the projector onto
the codespace. Just like the logical operators of the code, these
transversal gates also preserve the codespace, without needing
to fix it pointwise. The set of all such transversal gates is a
subgroup of U(V )⊗n.

For any operator u ∈ U(V )⊗n the support of u is the set
of qubits, or indices, on which u acts non-trivially. Given a
stabilizer code S, a subset of the qubits is called correctable
when the only logical operators supported on the subset are
in C0

n. Any logical operator in C0
n will be called trivial logical

operator.
The central idea behind the proof of Theorem 15 is

summarized in the following result.
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Fig. 1. The intersection of the support of two complete sets of logical
operators is correctable under the hypothesis of Theorem 15.

Theorem 3 (Bravyi-König Argument [9]): Let S be a sta-
bilizer code such that the intersection of the support of some
representatives for any two logical operators is a correctable
set of qubits. Then the action of any transversal gate for
S on the k logical qubits is an element of the Clifford
group C2

k.
Proof: This is a consequence of the previous lemma. Let

u ∈ U(V )⊗n be a transversal gate for S. This operator restricts
to a unitary on the logical qubits ũ ∈ U(V ⊗k). Similarly for
logical operators p, q ∈ Pn and restriction p̃, q̃ ∈ Pk. Then
[upu−1, q] ∈ U(V )⊗n is non-trivial only on the intersection
of the support of p and q. Because this region is correctable,
we have [upu−1, q] ∈ C0

n, which implies [ũp̃ũ−1, q̃] ∈ C0
k.

Note that in the application of this theorem below we choose
representatives for the logical operators when computing these
intersections. This means, for example, that a logical operator
may have trivial intersection with itself, by using two different
representatives.

The groups PX
n and PZ

n are abelian, and moreover, these
groups are isomorphic to the additive group of the F2-linear
vector space Fn

2 . In the remainder of this work, we switch
to this additive group notation. Products of operators are
computed as sums of F2 vectors. Commutators of X-type
and Z-type operators are calculated via the evident F2 inner
product. For u ∈ Fn

2 an X-type operator, and v ∈ Fn
2 a Z-type

operator, this is just u�v ∈ F2.

III. LINEAR CODES

We work using linear vector spaces over the field with two
elements F2. Such vector spaces are constructed as Fn

2 for
some number n. In order to simplify notation, we denote such
vector spaces of dimension n using boldface: n := Fn

2 . The
idea is to confuse the distinction between the vector spaces and
their dimensions. This is because the one determines the other,
and calculations done with dimensions often have formally
identical calculations done with vector spaces. Dimensions of
direct sums add, dimensions of tensor products multiply, etc.

In this paper we make use of an arrow notation for linear

maps. In terms of matrices, a linear map n
f−→ m has n

columns and m rows. This is a kind of “dimensional analysis”
that keeps track of what we are allowed to multiply f with.
Any arrow terminating on n can multiply on the right of f ,
and any arrow starting on m can multiply on the left of f . This
has the effect, as with all dimensional analysis, of suggesting
calculations to do, by combining arrows together. We use this
in the proof of Lemma 7 below.

A linear map n ∂−→ m has a kernel which records dependen-

cies among the columns of ∂. This is a linear map k
ker(∂)−−−−→ n

such that ∂·ker(∂) = 0. Furthermore, this map is characterized

by a universal property: any other linear map • f−→ n with
∂f = 0 factors uniquely through ker(∂). In other words, there
is a unique map f ′ : • → k such that f = ker(∂) · f ′.

Similarly, the cokernel records dependencies among the

rows of ∂. This is a linear map m
coker(∂)−−−−−→ k� such that

coker(∂) · ∂ = 0. (Here, the symbol � in the notation k�

is a formal decoration on the symbol k.) Any other linear
map m

g−→ • with g∂ = 0 factors uniquely through coker(∂).
Evidently we have the relation ker(∂)� = coker(∂�).

Using both the kernel and the cokernel we can construct the
following sequence of linear maps:

0 → k
ker(∂)−−−−→ n ∂−→ m

coker(∂)−−−−−→ k� → 0.

This sequence is exact, so we have the fundamental identity

k − n + m − k� = 0. (1)

This is the Euler characteristic of this sequence. (See the
book [31], in particular section 5.9, for a user-friendly intro-
duction to sequences, homology and the Euler characteristic.)

The span of n ∂−→ m is a linear map m − k� span(∂)−−−−−→ m
that factors through ∂. This map is also characterized by a
universal property: any other linear map with codomain m that
factors through ∂ factors uniquely through span(∂). The span
is also called the column-span, or image. One way to construct
span(∂) is to take m − k� linearly independent columns of

the matrix for ∂. Dually, the cospan of n ∂−→ m is a linear

map n
cospan(∂)−−−−−−→ n− k that factors through ∂ (on the other

side). The universal property characterizing the cospan is that
any other linear map with domain n factoring through ∂ will
factor uniquely through cospan(∂). The cospan is also called
the row-span. One way to construct cospan(∂) is to take n−k
linearly independent rows of the matrix for ∂. From Eq. (1)
we find that m − k� = n − k which is the familiar fact
that the column-span and row-span of a matrix have the same
dimension.

A classical linear code is usually defined to be a subspace
of some finite dimensional vector space Fn

2 . We are taking
a relentlessly “active” approach to linear algebra: the maps
are primary, not the spaces. For our purposes, a classical
linear code is a linear map n ∂−→ m. The codespace is the
kernel of this map. We will avoid the temptation to define the
cocodespace as the cokernel. We also call n ∂−→ m a parity
check matrix, and ker(∂)� the generator matrix for this code.

A quantum code is defined to be a pair of linear maps

mZ
H�

Z−−→ n HX−−→ mX

such that HXH�
Z = 0. From this identity it follows we can

take the quotients

L�
Z =ker(HX)/span(H�

Z ), LX = coker(H�
Z )/cospan(HX)
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which we call the logical operators for the code. We will use
the following block matrix notation for these quotients:

L�
Z =

(
ker(HX) H�

Z

)
, LX =

(
coker(H�

Z )
HX

)
,

where the dashed line indicates the modulo (quotient). This
is read as “logical operators modulo stabilizers.” The dashed
line separates the subspace of n spanned by logical operators
from the subspace of n spanned by stabilizer operators.

Example 4: The Steane code is a quantum code that uses
7 qubits, with 3 stabilizers of X-type and 3 stabilizers of
Z-type:

3
H�

Z−−→ 7 HX−−→ 3

The matrices for HX and HZ are the same:

HX = HZ =

⎛
⎜⎝ 1 1 1 1 . . .

1 1 . . 1 1 .

1 . 1 . 1 . 1

⎞
⎟⎠ ,

ker(HX) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, coker(H�
Z ) =

(
1 1 1 1 1 1 1

)
,

and we package all this information into the block matrix
notation for the logical operators:

L�
Z =

(
ker(HX) H�

Z

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1
1 1 1 .

1 1 . 1
1 1 . .

1 . 1 1
1 . 1 .

1 . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

LX =

(
coker(H�

Z )
HX

)
=

⎛
⎜⎜⎜⎝

1 1 1 1 1 1 1
1 1 1 1 . . .

1 1 . . 1 1 .

1 . 1 . 1 . 1

⎞
⎟⎟⎟⎠.

IV. PUNCTURES

We write the generic set of size j as [j], which we also
identify with the canonical basis of F

j
2. Given a subset γ ⊂ [j],

we say a vector v ∈ F
j
2 has support on γ if the non-zero

components of v form a subset of γ, in symbols: {i|vi 
=
0} ⊂ γ.

A linear map G : n → k is called e-puncturable, for some
natural number e, if there exists a subset γ ⊂ [n] of size e
such that no non-zero vector in the cospan of G has support
on γ. In terms of the matrix for G this corresponds to being

able to delete the columns indexed by γ while maintaining
the rank of G. We call such a set γ an e-puncture of G, or a
puncture of G when e is understood. When G is the generator
matrix of a classical code we recover the notion of puncturing
a classical code (e times) well known in the literature; in this
case γ corresponds to a correctable set of erasures for the
code [32]. However, we also apply this definition to arbitrary
linear maps.

Going further, a linear map G : n → k is called e-
bipuncturable, for some natural number e, if there exists two
disjoint subsets γ ⊂ [n], δ ⊂ [n], such that γ is an e-puncture
of G and δ is an e-puncture of G. We call such a pair of sets
(γ, δ) an e-bipuncture of G or a bipuncture of G when e is
understood.

Example 5: The repetition code 4 ∂−→ 3 is given by the
parity check matrix

∂ =

⎛
⎜⎝ 1 1 . .

. 1 1 .

. . 1 1

⎞
⎟⎠ .

This linear map is only 1-puncturable because it contains all
the weight two vectors in its cospan. (If we added a column
of zeros to this matrix then there would be certain weight two
vectors missing from the cospan, and the map would become
2-puncturable.) The generator matrix for the code 4 ∂−→ 3 is
given by G = ker(∂)� = (1111), and we can choose any
three element subset of [n = 4] as a puncture of G. Moreover,
we can choose any two element subset γ ⊂ [4] as a 2-puncture,
and then letting δ = [4]−γ, we see that δ is also a 2-puncture
of G such that γ∩δ is empty. Therefore we have demonstrated
that G is 2-bipuncturable.

More generally, given a classical code with distance d, any
subset of [n] with size less than d serves as a puncture for the
generating matrix, and so this matrix is (d − 1)-puncturable.

Lemma 6: Any linear map ∂ : n → m with ker(∂) : k →
n, is k-puncturable.

Proof: We can row-reduce ∂ without changing any of the
punctures. By reordering the columns, the row-reduced ∂ has
block matrix form

∂ =

(
In−k J

0 0

)

where J is an arbitrary matrix with k columns. Puncture these
k columns.

V. HYPERGRAPH PRODUCT CODES

Given classical codes A = {na
∂a−→ ma} and B = {nb

∂b−→
mb} we define a quantum code A ⊗ B as:

na ⊗ nb
H�

Z−−→ na ⊗ mb ⊕ ma ⊗ nb
HX−−→ ma ⊗ mb. (2)

Using block matrix notation,

H�
Z =

(
Ina ⊗ ∂b

∂a ⊗ Inb

)
, HX =

(
∂a ⊗ Imb

Ima ⊗ ∂b

)
.

(3)
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A quick calculation shows that HXH�
Z = 2∂a⊗∂b = 0 thanks

to F2 arithmetic, and so this is indeed a quantum code. This
hypergraph product code A ⊗ B can also be notated as the
following diagram

where the inner square is not commutative in general. We are
using the tensor symbol for the hypergraph product A ⊗ B,
because this is indeed the tensor product of A and B as chain
complexes. This product is also known as the homological
product [26].

The following result counts the number of independent
logical operators. A similar result is found in the [23], and
for completeness we provide another proof.

Lemma 7: With the above notation, the quantum code A⊗
B has k logical qubits given by k = kak�

b + k�
a kb.

Proof: By inspecting (3) we find linear maps:

ka ⊗ kb
ker(H�

Z )−−−−−→ na ⊗ nb

and

ma ⊗ mb
coker(HX )−−−−−−−→ ka

� ⊗ kb
�.

Now use this to extend the sequence (2):

0 → ka ⊗ kb
ker(H�

Z )−−−−−→ na ⊗ nb

H�
Z−−→ na ⊗ mb ⊕ ma ⊗ nb

HX−−→ ma ⊗ mb
coker(HX)−−−−−−−→ ka

� ⊗ kb
� → 0.

This sequence is exact everywhere except in the middle
where the homology is k (dimensional). Therefore, the Euler
character is:

k = kakb − nanb + namb + manb − mamb + k�
a k�

b

= kakb + (na − ma)(mb − nb) + k�
a k�

b

= kakb + (ka − k�
a )(k�

b − kb) + k�
a k�

b using (1)

= kak�
b + k�

a kb.

The qubits (vectors) in na ⊗mb are called vertical qubits,
and the qubits in ma ⊗ nb are called horizontal qubits. This
convention is motivated by the following example.

Example 8 (Surface Code): Continuing to use the above
notation, we take A = {na

∂a−→ ma} to be a repetition code

and B = {nb
∂b−→ mb} to be the dual (transpose) code:

∂a =

⎛
⎜⎜⎝

1 1 . .

. 1 1 .

. . 1 1

⎞
⎟⎟⎠ , ∂b =

⎛
⎜⎜⎜⎜⎜⎝

1 . .

1 1 .

. 1 1

. . 1

⎞
⎟⎟⎟⎟⎟⎠ .

We have ∂a : 4 → 3 and ∂b : 3 → 4, and also

ka = 1, kb = 0,

k�
a = 0, k�

b = 1.

The quantum code A ⊗ B is then:

4⊗ 3
H�

Z−−→ 3⊗ 3 ⊕ 4⊗ 4 HX−−→ 3⊗ 4.

Pictorially this corresponds to 4 × 3 faces, 3 × 3 horizontal
edges, 4 × 4 vertical edges, and 3 × 4 vertices:

The surface code is a peculiar example because we are able
to combine the 3⊗ 3 horizontal qubits and the 4⊗ 4 vertical
qubits together into this single picture. This does not work in
general; in Fig. 2 below the sectors are shown separately.

The next theorem describes the structure of the logical
operators as illustrated in Fig. 2. It is a concrete restatement of
the formula k = kak�

b + k�
a kb from the previous lemma. The

standard basis for na we write as [na], similarly for ma,mb

and nb. Notation such as [na] × [mb] denotes the basis for
na ⊗ mb, which is the space for the vertical qubits.

Theorem 9: Let A ⊗ B be a hypergraph product code as
above. A complete set of LZ operators is supported on the
qubits:

(LZ-vertical) [na] × γZv where γZv is any

k�
b -puncture of ∂�

b , and

(LZ-horizontal) γZh × [nb] where γZh is any

k�
a -puncture of ∂�

a .

A complete set of LX operators is supported on the qubits:

(LX-vertical) γXv × [mb] where γXv is any

ka-puncture of ∂a, and

(LX-horizontal) [ma] × γXh where γXh is any

kb-puncture of ∂b.
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Fig. 2. Illustrating the construction of the logical operators in the hypergraph product code, from the underlying classical codes. (i) There are namb vertical
qubits. A complete set of kak�

b many purple LX operators is supported on ka many horizontal strips, each of which supports k�
b many operators from the

rows of coker(∂b). Similarly, we have k�
b ka many green LZ operators supported on vertical strips. (ii) The manb horizontal qubits support kbk�

a many
purple LX , and k�

a kb many green LZ operators.

Specifically, we have the following block matrix form for
the logical operators

L�
Z =

(
ker(HX) H�

Z

)

=

(
ker(∂a) ⊗ γ�

Zv 0 Ina ⊗ ∂b

0 γ�
Zh ⊗ ker(∂b) ∂a ⊗ Inb

)
,

where the basis for the rows is v = na⊗mb and h = ma⊗nb,
and

LX =

(
coker(H�

Z )
HX

)

=

⎛
⎜⎝

γXv ⊗ coker(∂b) 0
0 coker(∂a) ⊗ γXh

∂a ⊗ Imb
Ima ⊗ ∂b

⎞
⎟⎠ ,

where the basis for the columns is v and h. In this notation,
a puncture γ ⊆ [n] is promoted to a |γ| × n matrix by taking
the rows of the identity matrix In indexed by γ. The dashed
line separates “generators” from “relations,” as in Section III.

Proof: We claim that the kernel of HX is spanned by the
columns of a matrix as:

ker(HX) =

span

(
ker(∂a) ⊗ Imb

0 Ina ⊗ ∂b

0 Ima ⊗ ker(∂b) ∂a ⊗ Inb

)
, (4)

and the cokernel of H�
Z is spanned by the rows of a matrix

as:

coker(H�
Z ) = cospan

⎛
⎜⎝Ina ⊗ coker(∂b) 0

0 coker(∂a) ⊗ Inb

∂a ⊗ Imb
Ima ⊗ ∂b

⎞
⎟⎠ .

That these matrices lie within ker(HX) and coker(H�
Z )

respectively can be seen by composing with HX , H�
Z respec-

tively. We next count the independent logical operators and

find kak�
b + k�

a kb many, then by Lemma 7 we will have
found all of them.

Let γZv be any k�
b -puncture of ∂�

b . This puncture always
exists by Lemma 6. We claim that any solution of

(
ker(∂a) ⊗ γ�

Zv 0 Ina ⊗ ∂b

0 Ima ⊗ ker(∂b) ∂a ⊗ Inb

)⎛⎜⎝ x

y

z

⎞
⎟⎠ =

(
0
0

)

will have x = 0. To see this, we need only consider solutions
of

(ker(∂a) ⊗ γ�
Zv)x + (Ina ⊗ ∂b)z = 0.

If z = 0 then x = 0 because ker(∂a) has linearly independent
columns. If z 
= 0 then we have x = 0 because γ�

Zv cannot
be in the column space of ∂b.

Counting the columns of ker(∂a) ⊗ γ�
Zv we find kak�

b .
Therefore, we have found kak�

b linearly independent LZ

logical operators:(
ker(∂a) ⊗ γ�

Zv Ina ⊗ ∂b

0 ∂a ⊗ Inb

)
.

The other k�
a kb operators for LZ are found similarly, and also

for the LX operators.
The form of the logical operators in the above theorem has

a particular structure which we will use repeatedly below. An
X-type or Z-type logical operator is called taut when it is
“as straight and thin as possible.” Within the vertical sector
na ⊗mb, the taut LZ logical operators are of the form v ⊗ j
with v ∈ cospan(ker(∂a)�) ⊂ na and j ∈ [mb] a basis vector
of mb. Taut LX logical operators are of the form i ⊗ u with
u ∈ cospan(coker(∂b)) ⊂ mb and i ∈ [na] a basis vector of
na. See Fig. 2i. We view the space na⊗mb as an array with
na rows and mb columns, and see that a taut LZ operator
is supported on a vertical strip, and a taut LX operator is
supported on a horizontalX strip. A similar definition holds
for taut logical operators in the horizontal sector ma ⊗
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nb. Note that taut operators are not necessarily of minimal
weight, for example, the sum of taut operators supported on
the same vertical (or horizontal) strip is another taut operator.
In general there will be many more taut logical operators than
are contained within the complete set of logical operators of
Theorem 9.

Example 10: Continuing with the surface code from exam-
ple 8, for the LZ-vertical logical operators we compute
ker(∂a) ⊗ γ�

Zv:

ker(∂a) =

⎛
⎜⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎟⎠

and we take γZv to be a 1 × 4 matrix that is non-zero at any
one coordinate, to get a 1-puncture of ∂�

b . For the LX -vertical
logical operators we compute γXv⊗coker(∂b). In this case we
have coker(∂b) = (1111) and γXv is a 1× 4 matrix non-zero
at any one coordinate. The LZ-horizontal logical operators
are trivial because k�

a = 0, and the LX-horizontal logical
operators are trivial because kb = 0.

VI. MAIN RESULT

We say that a hypergraph product code A ⊗ B is con-
tained within the vertical sector when ker(∂b) is trivial and/or
coker(∂a) is trivial. See Fig. 2. This happens precisely when
k�

a kb = 0. The surface code of Example 8 is one such
code. The toric code is a counter-example, in this case
ka = k�

a = kb = k�
b = 1. The next lemma shows how to

restrict Theorem 9 to the vertical sector.
Lemma 11: Given a hypergraph product code A ⊗ B con-

tained within the vertical sector, we have (i) a complete set
of LZ operators is supported on [na] × γZ where γZ is any
k�

b -puncture of ∂�
b , and (ii) a complete set of LX operators is

supported on γX × [mb] where γX is any ka-puncture of ∂a.
Proof: We use Theorem 9 and assume k�

a kb = 0. If kb =
0 then ker(∂b) = 0 so LZ-horizontal is trivial, and any kb-
puncture of ∂b is empty so LX -horizontal is trivial. Similarly,
if k�

a = 0 then coker(∂a) is trivial so LX -horizontal is
trivial, and any k�

a -puncture of ∂�
a is empty so LZ-horizontal

is trivial. The remaining operators are LZ-vertical and
LX -vertical, as required.

In Theorem 9 we showed how representatives of the logical
operators can be chosen to be taut. The next result shows how
more general logical operators can be decomposed into taut
logical operators.

Lemma 12: Given a hypergraph product code A ⊗ B con-
tained within the vertical sector, any Z-type (resp. X-type)
logical operator supported on the vertical qubits is a product
of disjoint taut Z-type (resp. X-type) logical operators.

Proof: From the form of the logical operators in the proof
of Theorem 9, Eq. (4), we have the block matrix

L�
Z =

(
ker(∂a) ⊗ Imb

0 Ina ⊗ ∂b

0 Ima ⊗ ker(∂b) ∂a ⊗ Inb

)
.

This notation is to be read as “column vectors modulo column
vectors” with the dashed line acting as the modulo. Assuming

the hypothesis we have that k�
a kb = 0 which implies, also

from Theorem 9, that the second column is trivial modulo the
third column. This gives

L�
Z =

(
ker(∂a) ⊗ Imb

Ina ⊗ ∂b

0 ∂a ⊗ Inb

)
.

An arbitrary logical Z-type operator l�Z is got from the span
of this matrix, which by the hypothesis must be zero on the
bottom row:

l�Z = L�
Z

(
x

y

)
=

(
z

0

)
,

for some matrices x, y, z. Solving this equation in generality,
we require (∂a ⊗ Inb

)y = 0 which gives y = ker(∂a) ⊗ Inb
.

Expanding out, we get:

z = (ker(∂a) ⊗ Imb
)x + ker(∂a) ⊗ ∂b

= (ker(∂a) ⊗ Imb
)x + (ker(∂a) ⊗ Imb

)(Ika ⊗ ∂b)
= (ker(∂a) ⊗ Imb

)(x + Ika ⊗ ∂b).

This means that l�Z is got from the span of(
ker(∂a) ⊗ Imb

0

)

which is precisely the form of disjoint Z-type operators we
seek. Note that individual columns of this matrix may not be
disjoint, but the sum of any non-disjoint columns will be a new
taut logical operator. See Example 13 below. The expression
ker(∂a)⊗Imb

can be read as taking logical operators from the
A code and “copying” them onto vertical strips of the na×mb

array of vertical qubits; see Fig. 2.
The same calculation transposed shows the result for

X-type logical operators:

LX =

⎛
⎜⎝

Ina ⊗ coker(∂b) 0
0 coker(∂a) ⊗ Inb

∂a ⊗ Imb
Ima ⊗ ∂b

⎞
⎟⎠

=

(
Ina ⊗ coker(∂b) 0

∂a ⊗ Imb
Ima ⊗ ∂b

)
,

and so on.
So far, we have seen that we can construct a complete set

of logical operators from taut logical operators (Theorem 9
and Lemma 11) and conversely, how to write a more general
logical operator as a product of disjoint taut logical operators
(Lemma 12). The following example is intended to clarify
the relationship between taut logical operators in general, and
those that we use to form a complete set of logical operators.

Example 13: We take A = {3 ∂a−→ 1} and B = {1 ∂b−→ 2}
with

∂a = (1 1 1) , ker(∂a) =

⎛
⎜⎝ 1 .

1 1
. 1

⎞
⎟⎠ ,

∂b =

(
1
1

)
, coker(∂b) = (1 1).
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The A code has parameters na = 3, ma = 1, ka = 2, k�
a = 0,

and the B code has parameters nb = 1, mb = 2, kb = 0, k�
b =

1, therefore we have A⊗B contained within the vertical sector.
We focus on the logical Z-type operators. From Theorem 9
we choose a 1-puncture γZv = (1 0) of ∂�

b = (1 1). Then
the logical Z-type operators correspond to the columns of the
matrix:

L�
Z =

(
ker(∂a) ⊗ γ�

Zv Ina ⊗ ∂b

0 ∂a ⊗ Inb

)
.

Ignoring the bottom row, which corresponds to the horizontal
sector, we compute:

ker(∂a) ⊗ γ�
Zv =

⎛
⎜⎝ 1 0

1 1
0 1

⎞
⎟⎠⊗

(
1
0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
1 1
0 0
0 1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Each column of this matrix is a taut logical operator, and these
columns are not disjoint. So it would seem that this presents a
counterexample to Lemma 12, as the logical operator defined
by the sum of these columns is a sum of non-disjoint taut
logical operators. However, the sum is itself another taut
logical operator and so this is not a counterexample to
Lemma 12. Finally, we obtain another set of taut logical
operators by choosing the other 1-puncture of ∂�

a , which
is γZv = (0 1).

Two regions (subsets) α, β ⊂ [na] × [mb] are called
horizontally separated when for any j ∈ [mb] we have that
[na] × {j} intersects at most one of α or β. Similarly, α and
β are called vertically separated when for any i ∈ [na] we
have that {i} × [mb] intersects at most one of α or β.

Lemma 14 (Union Lemma): Consider a hypergraph prod-
uct code A⊗B contained within the vertical sector, with two
regions α, β ⊂ [na] × [mb] that are separated horizontally
and vertically. If there exists a non-trivial logical operator
supported on α ∪ β then there exists a non-trivial logical
operator supported on α, or there exists a non-trivial logical
operator supported on β (inclusive or).

Proof: By Lemma 1 we need only consider X-type
and Z-type operators. Suppose that α ∪ β supports a non-
trivial X-type logical operator. Then by the previous lemma,
α ∪ β must support a non-trivial taut X-type operator. This
operator is supported on {i} × [mb] for some i ∈ [na], which
intersects at most one of α or β because these are vertically
separated. Therefore we must have that at most one of α or β
supports this taut X-type logical operator. Using the horizontal
separation of α and β a similar argument applies to the Z-type
logical operators.

We call a classical code {n ∂−→ m} robust if the generator
matrix ker(∂)� and the parity check matrix ∂ are simulta-
neously k-bipuncturable, where k is the dimension of the
codespace.

Theorem 15: Let A = {na
∂a−→ ma} and B = {nb

∂b−→
mb} be classical codes such that A ⊗ B is contained within

the vertical sector. If A is robust and B� = {mb
∂�

b−−→ nb} is
robust, then any transversal gate for A⊗B is restricted to the
Clifford group C2.

Proof: We assume the hypothesis of the theorem.
Let (γZ , δZ) be a simultaneous k�

b -bipuncture of ∂�
b and

ker(∂�
b )� = coker(∂b). Let (γX , δX) be a simultaneous ka-

bipuncture of ∂a and ker(∂a)�. From Lemma 11 we have a
complete set of LZ operators supported on [na] × γZ and a
complete set of LZ operators supported on [na]×δZ . Similarly
for LX operators supported on γX × [mb] and δX × [mb].
Combining these, we find that γ := γX × [mb] ∪ [na] × γZ

supports a complete set of logical operators, as does δ :=
δX × [mb] ∪ [na] × δZ . See Fig. 1. We now claim that the
intersection of these two sets γ∩δ is correctable, that is, does
not support any non-trivial logical operator. The result then
follows from Theorem 3.

Using the disjointness of γX and δX , and the disjointness
of γZ and δZ we find

γ ∩ δ = (γX × [mb] ∪ [na] × γZ) ∩ (δX × [mb] ∪ [na] × δZ)
= (γX × [mb] ∩ [na] × δZ) ∪ ([na] × γZ ∩ δX × [mb])

and the RHS then satisfies the hypothesis of Lemma 14. There-
fore we need only show the correctability of the two pieces,
α := γX × [mb]∩ [na]× δZ and β := [na]× γZ ∩ δX × [mb].

From the hypothesis, δZ punctures coker(∂b) and so α
cannot support any taut LX logical operator, and by Lemma 12
cannot support arbitrary LX logical operator. Also, γX punc-
tures ker(∂a)� and so α cannot support any taut LZ logical
operator, and by Lemma 12 cannot support arbitrary LZ log-
ical operator. By Lemma 1 we find that α cannot support any
logical operator, and so α is correctable. A similar argument
applies to show that β is correctable.

By swapping the factors A ⊗ B to B ⊗ A we see that
this theorem also applies with “vertical sector” replaced with
“horizontal sector.”

In the next section we show that some mild conditions on
a classical code will guarantee it is robust.

VII. CHARACTERIZING ROBUSTNESS

In this section we take H = ∂ to be a parity check matrix
that has full rank, without loss of generality. Adding linear
dependant rows to H does not change the punctures on H .
We also write G = ker(H)� for the generator matrix.

Lemma 16 (Canonical Form): Any k-dimensional code
with length n has canonical form for generator matrix G and
parity check matrix H ,

G = (Ik J)

H = (J� Im)

up to reordering of columns, with m = n − k.
Proof: Row-reduction and column reordering gives the

form

G = (Ik J)
H = (K Im).

Using HG� = 0 we get K = J�.
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Writing such a code in this form, the set of indices
{1, . . . , k} are called pivots and the set of indices {k +
1, . . . , n} are called copivots. We also use this terminology
for matrices in arbitrary row-reduced form (not necessarily
column re-ordered to make the pivots sequential).

Next, we show how to puncture the copivots.
Lemma 17 (Copivot Lemma): With G written in canonical

form G = (Ik J) any set of indices γ ⊂ {k + 1, . . . , n}
punctures G.

Proof: For v ∈ Fk
2 any non-zero vector, vG has non-

zero components on {1, . . . , k} and so cannot be supported
on γ.

Slightly more tricky is puncturing the pivots.
Lemma 18 (Pivot Lemma): With G written in canonical

form G = (Ik J) a set of indices γ ⊂ {1, . . . , k} punctures
G if and only if γ punctures coker(J).

Proof: The only way γ ⊂ {1, . . . , k} can support a non-
zero vector in the cospan of G is for γ to index a linear
dependant set of rows of J . This is precisely the cokernel
of J .

The result we are leading to characterizes robust classical
codes as being equivalent to a row-reduction condition on the
generator matrix. The proof is by successive applications of
the Pivot Lemma and the Copivot Lemma.

Theorem 19 (Robustness Theorem): Let A be a classical
code of length n, with generator matrix G. Then A is robust
if and only if there is some permutation of the columns of G
such that G has a canonical form G = (Ik J) with J full
rank.

Proof: Firstly, to prove the “if” part, we assume that G =
(Ik J) with J full rank. We will find disjoint sets δ, γ ⊂ [n]
that simultaneously puncture G and H .

By Lemma 16, this code has parity check matrix

H = (J� Im)

where m = n− k. Choose γ = [k], so that γ is supported on
the pivots of G and the copivots of H . Because J is full rank,
the cokernel of J is trivial and so by the Pivot Lemma we
have that γ punctures G. From the Copivot Lemma we have
that γ punctures H .

Also by the Copivot Lemma we have any δ ⊂ {k+1, . . . , n}
punctures G, we just need to find such a δ, with |δ| = k, that
also punctures H . This δ is a subset of the pivots of H so
we use the Pivot Lemma to see that δ must also puncture
coker(J�) = ker(J)�. We show how to achieve this. The
matrix J is full rank so from Eq. (1) a matrix for coker(J�)
has m−k rows and m columns. This (m−k)×m matrix is full
rank and so has m − k pivots and k copivots. We therefore
choose δ to be these k copivots of coker(J�) and by the
Copivot Lemma, δ will puncture coker(J�).

Secondly, to prove the “only if” part, assume we have
disjoint sets γ, δ ⊂ [n] that simultaneously puncture G and
H . The goal is to find a canonical form G = (Ik J) with
J full rank. To do this, permute the columns of G and H
so that γ = {1, . . . , k} and δ = {k + 1, . . . , 2k}. With this
column order, row-reduce G to produce the form G = (Ik J).
Using the Pivot lemma, we see that γ = {1, . . . , k} punctures

coker(J) which implies this cokernel is trivial, and so J is
full-rank.

VIII. DISCUSSION

We have shown that this ensemble of good quantum codes
nevertheless fails to support transversal gates beyond the
Clifford group. This no-go result rules out a wide class of
codes, and so assists the search (construction) of codes that
do have non-Clifford transversal gates.

The toric code, which is a hypergraph product code, does
not satisfy the hypothesis of Theorem 15. This theorem applies
to codes which are a generalization of the surface code. It is
a natural question to ask if this result can be strengthened
to cover these other hypergraph product codes. However, the
argument as it stands cannot be strengthened: we have found
examples where the region γ∩δ (see Fig. 1) is not correctable,
even though it satisfies the hypothesis of the Union Lemma.
But it may be that a more refined argument does work:
numerics suggest that the support of specific commutators
pqp−1q−1 of logical operators p, q is always correctable.

The reader may wonder exactly how “mild” is the robust-
ness condition. We numerically searched through the Gal-
lagher code ensembles used for building hypergraph product
codes in [33], [34], and did not find any non-robust instance.
Specifically, we found evidence that any [n, k, d] Gallagher
code with d ≥ 3 and k ≤ n/2 is robust.

Another natural question to ask is the existence of transver-
sal gates for higher degree hypergraph (homological) product
of classical codes A ⊗ B ⊗ C, etc. [35]. We expect these
codes also have a theory of taut logical operators. Given the
intricacy of the calculations in the present work, it seems that
better techniques, and deeper insights, are needed before these
results can be pushed further.
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