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Linear Programming Bounds for Approximate
Quantum Error Correction Over Arbitrary
Quantum Channels

Yingkai Ouyang

Abstract— While quantum weight enumerators establish some
of the best upper bounds on the minimum distance of quan-
tum error-correcting codes, these bounds are not optimized to
quantify the performance of quantum codes under the effect of
arbitrary quantum channels that describe bespoke noise models.
Herein, for any Kraus decomposition of any given quantum chan-
nel, we introduce corresponding quantum weight enumerators
that naturally generalize the Shor-Laflamme quantum weight
enumerators. We establish an indirect linear relationship between
these generalized quantum weight enumerators by introducing an
auxiliary exact weight enumerator that completely quantifies the
quantum code’s projector, and is independent of the underlying
noise process. By additionally working within the framework of
approximate quantum error correction, we establish a general
framework for constructing a linear program that is infeasible
whenever approximate quantum error correcting codes with
corresponding parameters do not exist. Our linear programming
framework allows us to establish the non-existence of certain
quantum codes that approximately correct amplitude damping
errors, and obtain non-trivial upper bounds on the maximum
dimension of a broad family of permutation-invariant quantum
codes.

Index Terms— Quantum information science, error correction
codes, linear programming.
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I. INTRODUCTION

HE distance of an error-correcting code is of central
importance in coding theory, because it quantifies the
number of adversarial errors that can be corrected. For codes
of fixed length and rate, upper and lower bounds on their
distance can be determined. The best lower bounds can be
obtained from various randomized code constructions that
yield the Gilbert-Varshamov bound [1] and this is also true in
the quantum case [2]-[4]). On the contrary, markedly different
techniques are used to derive upper bounds. In classical coding
theory, weight enumerators count the weight distribution of
codewords in a code [1]. The MacWilliams identity establishes
a linear relationship between the weight enumerators of a code
and that of its dual code. This allows one to obtain upper
bounds on the distance of codes by linear programming. (This
may be improved via the Terwilliger algebra and semidefinite
programming [5].) Further extensions of this technique leads
to the celebrated algebraic linear programming bounds [6], [7].
The notion of weight enumerators in the quantum setting is
less obvious, because quantum codes on n qubits are subspaces
of C2", and these subspaces do not in general admit a combi-
natorial interpretation. Shor and Laflamme nonetheless intro-
duced a meaningful definition of weight enumerators for quan-
tum codes [8] in terms of the codes’ projectors P and a nice
error basis for matrices. In particular, the Shor-Laflamme (SL)
quantum weight enumerators are sums of terms of the form
|Tr(EP)|? and Tr(EPE" P), respectively, where the sums are
performed over all Paulis E of a given weight. We will call
the vectors of these enumerators labeled by Pauli weights the
A-type and B-type quantum weight enumerators, respectively.
Shor and Laflamme showed that the A-type and B-type quan-
tum weight enumerators are still linearly related in a way rem-
iniscent of the classical relationship [8]. The relation between
the two enumerators is the quantum analogue of the famous
MacWilliams identity. Variations on the SL enumerators were
then studied by Rains, which allowed better bounds on the
parameters of quantum codes [9]. Because of the existence of
a linear relationship between the two types of enumerators,
linear programming techniques can be applied to establish
upper bounds on the minimum distance for (small) quantum
stabilizer codes [10]. Algebraic linear programming bounds
based on the MacWilliams identity, such as the Singleton,
Hamming, and the first linear programming bounds, are also
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derived for general quantum codes [11]. These results have
been extended to entanglement-assisted quantum stabilizer
codes [12], [13] and quantum data-syndrome codes [14]. Also
there is a MacWilliams identity for (entanglement-assisted)
quantum convolutional codes [15]. A generalization of the
MacWilliams identities is developed for the qubit erasure
channel, which leads to lower bounds on the probability of
decoding error [16]. Recently it was shown that the SL. weight
enumerators of a codeword stabilized quantum code has an
interpretation as the enumerator of an associated classical
code [17].

Although the distance of a quantum code is a meaningful
metric with respect to adversarial noise, estimates on the
performance of a quantum code derived from the distance
under specific noise models are often overly pessimistic. For
instance, while a minimum of five qubits is needed to perfectly
correct an arbitrary error [8], four qubits suffice to correct
a single amplitude damping (AD) error [18]. However, most
quantum weight enumerators give no direct result regarding
the non-existence of approximate quantum error correcting
codes for various noisy quantum channels, even in the simple
case of AD errors. To better understand this, it would be
advantageous to have MacWilliams-type identities for different
quantum weight enumerators defined for various noisy quan-
tum channels, from which corresponding linear programming
bounds can be obtained. Currently, most linear programming
bounds for quantum codes use quantum weight enumerators
only to describe quantum error correction in the perfect
setting [9]. Because of this, these methods do not readily
extend to quantum codes under the action of arbitrary quantum
channels and in the paradigm of approximate quantum error
correction (AQEC).

To address the aforementioned problems, we extend the
theory of quantum weight enumerators to deal with AQEC
codes for any given quantum channel. Namely, we generalize
the two SL quantum weight enumerators to address quantum
codes under the influence of any set of Kraus operators.
This goes beyond the theory that the authors previously
introduced in Ref [19], where only amplitude damping errors
were discussed. While we do not have a MacWilliams identity
that establishes a direct linear relationship between these two
generalized quantum weight enumerators, we do establish
an indirect linear relationship between them. To enable this,
we rely on an auxiliary exact weight enumerator with respect
to Pauli operators, which contains a complete description of
the Pauli decomposition of the code projector. We thereby
show linear connections between this enumerator and our two
generalized quantum weight enumerators. This allows us to
establish a linear program that if infeasible shows that AQEC
codes do not exist.

To illustrate the utility of our framework, we apply it in
two different scenarios. In the first scenario, we establish the
non-existence of quantum codes that approximately correct
amplitude damping errors. In particular, we numerically rule
out the existence of three-qubit AQEC AD codes that are
capable of correcting an arbitrary AD error over a certain range
of AD noise strength. Our linear program cannot eliminate the
existence of a four-qubit code that can correct one AD error
and this agrees to the four-qubit AD code proposed in [18].
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In the second scenario, we show how our framework can be
adapted to quantum codes that must be permutation-invariant,
and provide linear-programming bounds for the non-existence
of permutation-invariant quantum codes of prescribed
distance.

This paper is organized as follows. In Sec. II, we review
notation for Pauli operators (Sec. II-A), quantum chan-
nels (Sec. II-B), quantum codes and weight enumerators
(Sec. II-C), and the space of complex square matrices
(Sec. II-D). In Sec. III, we introduce our quantum weight enu-
merators for general Kraus operators in AQEC. In Sec. IV-A,
we introduce auxiliary weight enumerators, and in Sec. IV-B,
we propose connection matrices that establish linear rela-
tionships between our quantum weight enumerators and the
auxiliary weight enumerators. In Sec. IV-C, we formulate
a linear program for general quantum channels. We discuss
applications of the linear program bounds for AD errors in
Sec. V-A and for permutation-invariant quantum codes in
Sec. V-C. We conclude our results in Sec. VI,

II. PRELIMINARIES
A. Pauli Operators

A single-qubit state space is a two-dimensional complex
Hilbert space C2, and a multiple-qubit state space is simply

the tensor product space of single-qubit spaces (C?)®" = c?".
The Pauli matrices
10 0 1 1 0 .
o e e R R

form a basis of the linear operators on C2. Let
Gn={Mi®@M>y®---®@ M, : M; €{l, XY, Z}},

which is a basis of the linear operators on the n-qubit state
space C2". The weight of an element £ = M; @ --- ® M,
in G,, denoted wt (E), is the number of M;’s that are non-
identity matrices.

B. Quantum Channels

A quantum channel that takes an n-qubit state to an n-qubit
state is a completely positive and trace-preserving linear
map from L(C?") to L(C?"), where L(C?") is the set of
all linear maps from C2" to C2". In particular, every quantum
channel A/ admits a (non-unique) decomposition into Kraus
operators Q = {W} C L(C?") such that for any 2" x 2"
matrix M, we have

NOM) =Y WMWT, (1)
weQ
where
S WIW = I, )
weQ

where I~ denotes the 2™ x 2™ identity matrix.

C. Quantum Codes and Weight Enumerators

An 7n-qubit quantum code Q is a subspace of C2". Let
P denote the codespace projector onto Q. The quantum
code Q satisfies the Knill-Laflamme quantum error correction
criterion [20] with minimum distance d if and only if

PEP = gpP A3)
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for some complex coefficients gp for every E € G,, of weight
at most d — 1. This means that any Paulis of weight at most
d — 1 can be detected since it brings logical codewords to
orthogonal subspaces. An n-qubit quantum code of dimension
M and minimum distance d is denoted ((n, M, d)).

Shor and Laflamme defined two weight enumerators { A5}
and {B"} of Q by

1
" Te(P)2 2

EcG, wi(E)=i

SL
A7

Tr (EP)Tr (E'P), (4

and
1
Bt =—— Tr (EPE'P 5
o Tr(P) Z , r( ) ©
Ee€g, wt(E)=i
for i = 0,...,n [8]. These two weight enumerators will be

called SL enumerators in this article.

Since G, is a basis for the linear operators on C2", we have
P = ZEEQ” agE, where ap € R because P is Hermitian.
It follows that Tr(EP) = ap. Since P is a projector,
we have P = P2, and it follows that Tr(P) = Tr(P?) =

2" peq, a2E. Hence
Z i 2 Z
(2

Also ASF = 1.

The power of the SL enumerators is that the (perfect)
quantum error correction criterion of Knill and Laflamme are
equivalent to certain linear constraints on these SL enumera-
tors. This is because A" = B" if and only if (3) holds for
every £ € G, of weighti <d—1 [11].

22"Tr(P) 2"
T Te(P)2 . Te(P)

(6)

D. The Space of Complex Square Matrices

The Hilbert-Schmidt inner product of two square complex
matrices U, V' is defined by

(U, V) =Te(UV), )

and induces a norm, called the Frobenius norm. Namely, the
Frobenius norm of U is defined as ||U||r = /(U,U).

Given any complex square matrices U and V' of the same
size, we can use the Gram-Schmidt process to get

W =U — R, (8)
where
(V,U)
R = %4 )
V1%

denotes the component of U that is parallel to V, and W
denotes the component of U that is orthogonal to V/||V||r.
Geometrically, R and W are orthogonal, and they satisfy the
Pythagoras theorem in the sense that

IRI% + W[5 = U|% (10)
Now using the fact that || R||% = K‘K’/ﬁ%‘z, we have
(V.U)P?
Vg U = W% (11
F
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III. QUANTUM WEIGHT ENUMERATORS FOR SETS
OF KRAUS OPERATORS

In what follows, we generalize the SL enumerators to allow
direct consideration of an arbitrary set of Kraus operators.
For the SL enumerators, the error operators considered are
the Pauli operators, which form a nice error basis. In gen-
eralizing these Pauli operators to general Kraus operators,
we will no longer be able to leverage many properties that
the nice error basis affords. (In particular, it is unknown
how to generalize the MacWilliams identity between the SL
enumerators.) We nonetheless can generalize the definition of
SL enumerators to general Kraus operators.

Let P be the projector onto a quantum code, and let € be
a set of Kraus operators for a quantum channel. In general,
the set of Kraus operators {2 does not necessarily span the
space of linear operators on C2", and need not even be a
basis for C2". Suppose that € is partitioned into the disjoint
sets €, ...,€,_1 in accordance to the severity of the Kraus
operators therein. Here, w counts the number of such sets.
We can choose how we want to quantify the severity of a
Kraus operator. For instance, when we quantify the severity
of a Kraus operator by the number of qubits on which it acts
non-trivially, 2; can be the set of Kraus operators that act
non-trivially on i qubits. If Q@ = G,, we could choose €;
to be the set of Pauli operators of weight :. We define two
enumerators (vectors) with coefficients

o f _
A; (Trp)2 > TH(EP)TH(E'P), i =0,...,w—1,
EeQ;
(12)
1
b tp) - _
Bi=——> > TH(EPE'P), i=0,...,w—1, (13)

EeQ;

respectively. In what follows, we use the Dirac ket notation
to represent weight enumerators as in [15]. We denote the A
and B-type enumerators as

w—1

= Aili), (14)
i=0
w—1

=Y Bili), (15)
=0

where |i) are computational basis vectors. Note that

ZB —TP > Tr(EPE'P)
()]

EE€Q
where the inequality is because both EPET and P are positive
semidefinite and P < Ion.

Hence we have

< P ZTr EPE" =

By+-++ 4+ By-1 < 1. (16)

Another interpretation of this inequality is that the sum of
the coefficients of the B-type enumerator retains interpretation
as the fidelity of a quantum code after the action of the
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quantum channel with Kraus operators in () without quan-
tum error correction [8]. We can see this by evaluating the
fidelity of a maximally entangled state over the codespace

ﬁ >, i) ®ljr) with respect to the noisy version of the

state where the noisy channel acts on only the first register,
where |j1,) denote the logical codewords of the code.
It can be shown, as in [11], that

BizAi; i:O,...,w—l, (17)

by the Cauchy-Schwarz inequality. Furthermore, since the
code projector P is Hermitian and we have the cyclic
property of the trace, it is clear that Tr(EP)Tr(ETP) =
Tr(EP)Tr(PTET) = |Tr(EP)>. This implies that A; is
always a sum of non-negative terms, and hence we must have

A; >0, i=0,...,w—1. (18)

In this paper, we will define approximate quantum error
correction using the language of quantum weight enumerators.
In fact, we will see that B; — A; = 0 is equivalent to saying
that the Knill-Laflamme quantum error criterion is satisfied
for every Kraus operator in the set ;. When B; — A; is non-
zero, we quantify this non-zero quantity precisely in terms
of the deviations from the Knill-Laflamme conditions in the
Frobenius norm.

For every E € (, let

P
&g = PEP — (PEP,P)———.

1
Te(P) (1

Then we have the following lemma.

Lemma 1: [Quantum weight enumerators and approximate
quantum error correction] Let A; and B; be quantum weight
enumerators defined by (12) and (13), respectively, using the
code projector P and the subsets €g,...,€,_1. Then for

every 1 =0,...,w — 1, we have
1
Bi—Aj = —— z. 20
EcQ;
Proof: By identifying U = PEP and V = P and
substituting into (11), we get
(PEP,P)? 2 2
-~ = ||PEP||% — ||€ . 21
e - WPEPIE—leslE @b
Rewriting (21), we get
Tr(EP)|? 2
L —Tr(EPE'P) — ||€g|%. 22
This implies that
1
A =B — —— Exl% 23
T T TI'(P) Z || E||F7 ( )
EeQ;
from which the lemma follows. O

From this lemma, we obtain a perturbed quantum error
correction criterion using the language of quantum weight
enumerators. In particular, we can say that B; — A; is pro-
portional to the sum of the squares of the Frobenius norms
of &g, where E € ();. The matrices £ have been previously
studied in Ref. [21], where their connection to the infidelity
of a quantum code is elucidated.
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Given the form of Lemma 1, we define a notion of AQEC
with respect to the perturbation of the KL conditions as
follows.

Definition 2: A quantum code with code projector P is
(€0, - .-, €w—1)-AQEC with respect to the sets Qo, ..., Q2,1
if

1
Py 2 leelr<a 24)

EeQ;
foralli=0,...,w—1.

From this context, perturbations to the Knill-Laflamme
quantum error correction criterion (BfY — ASY > 0) can be
understood by directly perturbing the linear constraints on the
quantum weight enumerators.

IV. ESTABLISHING AN INDIRECT RELATIONSHIP
BETWEEN THE A- AND B-TYPE ENUMERATORS

In this section, we establish an indirect relationship
between A- and B-type enumerators given in (12) and (13),
respectively.

A. Auxiliary Weight Enumerators

Without the existence of a MacWilliams identity, we can
nonetheless establish a linear relationship between |A) and | B)
by introducing additional vectors that reside on an auxiliary
space. Recall that the projector P of a quantum code, when
decomposed in the Pauli basis, can be written as

Tr(oP)
P = Z on o.
oeGy,

(25)

We introduce a 4"-dimensional vector space )V with an
orthonormal basis {|o) : o € G,} such that for o,7 € G,
(o|t)y =11if 0 = 7, and (o|7) = 0 otherwise. Then we define
an auxiliary weight enumerator in V®2 as follows.

Definition 3: The auxiliary (exact) weight enumerator cor-
responding to code projector P is given by

AUX) = [¢) @ [9), (26)

where

) = > Tr(aP)lo). 27)

o€Gn
The auxiliary weight enumerator is exact in the sense that it
encompasses complete information about the quantum code’s
projector. We emphasize that the state |¢) depends only on the
code’s projector P. Hence |¢) is independent of the channel
in consideration.
Define a swap operation

M= 3 |o)r|@ 7)ol (28)
0,7€Gn
It follows that |AUX) is an eigenvector of II with

eigenvalue +1
IT|aUX) = |AUX), (29)

since Tr(oP)Tr(7P) is invariant under the swap of o and
7. We later exploit this permutation symmetry to introduce
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additional constraints in our linear program for amplitude
damping channels.

In the lemma below, we discuss what |AUX) is for stabilizer
codes.

Lemma 4: Let P be the code projector of a stabilizer
code, defined by a stabilizer group S C G, that encodes k
logical qubits into n physical qubits. Then the auxiliary weight
enumerator of the stabilizer code is |[AUX) = |¢) ® |¢), where

=2k Z sgn(E)|E/sgn(E)),
EeS

where sgn(E) = 1if £ € G, and sgn(E) = —1if —F € G,,.
Proof: LetGh,...,G,_i be independent generators of an
n-qubit stabilizer code that encodes £ logical qubits Note that

its code projector can be written as P =[] ((1+G )/2) =
27tk g0, where 1 denotes the n- qublt identity matrix.
Hence for every E € G,,, we find that Tr(EP) = 2*§[F € 9],
and for every —F € G,,, we find that Tr(EP) = —2k§[E € 9],
where 0[FE € S] is an indicator function and its value is 1 if
E € S and 0, otherwise. 0
Example 1: Let us consider the four-qubit code in [18],

which has two logical codewords

(30)

10) —7 (10000) + [1111)),

ﬁ
This code is a stabilizer code with three independent Pauli
generators ZZI1, 1177 and XXX X. The stabilizers are
I, ZZILIIZZ, 272727, XXXX,-YYXX,-XXYY
and YYYY. Hence the auxiliary enumerator is

1), =—— (|0011) + |1100))..

\AUX) =(2|TI11) +2|ZZII) +2[1ZZ) +2|ZZZZ)
R2IX XX X) 2[YYX X) 2| X XYY)£2|YYYY)®2

€1V

B. Connection Matrices

To establish the connection between our auxiliary weight
enumerator |AUX) with the two generalized weight enumera-
tors |A) and |B), we define two matrices as follows:

My = z_j Z Z 272" Tr(Eo)Tr(ET7)|i) (o|(], (32)

i=0 E€Q; 0,7€G,

Mg = i S>> 27 Te(EoE )iy (o|(7].

i=0 E€Q; 0,7€G,

(33)

The matrices M 4 and M g establish an indirect linear relation-

ship between the generalized enumerators |A) and |B) via an

additional linear relationship with the auxiliary weight enu-

merator. Namely, we have the following linear relationships.
Lemma 5: The following matrix identities hold.

Ma|AUX) = (TrP)?| A),
Mpg|aux) = TrP|B).

(34)
(35)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Proof: By (25), we get

w—1

TrP 5 ). Y. 27 Y Tr(Eo)Tr(E'T)

i=0 BeQ; o, 7€G,

x Tr(o P)Tr(1P)|i). (36)

Also we can see that

3>

i=0 FEeQ;
07T€g7L

Tr(Eo)Tr(EtT)
22n

Malaux) = —| i)Tr(o P)Tr(7P).

(37)

Hence (34) holds.
To obtain the second identity, we also expand the code
projector P in the Pauli basis to get

w—1

2n Z Tr(EcE'r)Tr(o P)Tr(7P)|i).

i=0E€e; o, 7TEG,

(38)

Next, note that

=wz_:l > 27 "Te(EoE'7)|i)Tr(o P)Tr(r P).

Mp|AUX)
i=0 EeQ
a,7€G,
(39)
The result Mp|AUX) = Tr(P)|B) then follows. O

While we do not have a direct linear relationship between
the generalized quantum weight enumerators |A) and |B),
Lemma 5 establishes a linear relationship between each gen-
eralized quantum weight enumerator and the auxiliary weight
enumerator. This thereby establishes an indirect linear rela-
tionship between |A) and |B), which allows us to establish
linear programming bounds for AD codes later.

We explain how we define |AUX) such that the A- and
B-type enumerator can be both linearly related to |AUX). First,
we note for both the A-type enumerator in (12) and B-type
enumerator in (13), the code projector P appears twice in
every term of the summands. Second, we note that the code
projector PP can be written in the Pauli decomposition (or a
nice error basis) as in (25). Hence the vector |¢) contains
complete information about P. Third, because of the first
point and the second point, we expect that both the A- and
B-type enumerators can be linearly dependent on a vector of
the form |¢) ® |¢).

It is also important to note the following properties of
connection matrices.

1) The connection matrices M4 and Mp are devoid of
information about the code, because they are both inde-
pendent of the code projector P.

2) The connection matrices M4 and Mp depend on the
set of Kraus operators () that describe the underlying
quantum channel.

We give examples of connection matrices in the following.

Example 2: Let us consider an n-qubit Pauli channel that
introduces an n-qubit Pauli error ' € G,, with probability pp.
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For i =0,...,n, let us have Q; = {\/prF € G, : wt(F) =
i}. Then it follows that

Ma=Y" > prli)(FI(F],

i=0 wi(F)=i

(40)

and

Mp=Y" > Y 27ppTr(FoFo)li)(o|(c]. (41)

i=0 wi(F)=i 0€Gn

For an n-qubit depolarizing channel that introduces on each
qubit an X, Y or Z error with probability p/3 and no error
with probability 1 — p, we have pp = p™F) (1 — p)n—¥(P),

C. Linear Programming Bounds for General
Quantum Channels

Here, given a quantum channel with a set of Kraus
operators €2, partitioned into disjoint subsets Qq,...,Qy_1,
we introduce a linear program with optimization variables
Ag, ..., Aw-1, Bo,...,By—1, which are non-negative. The
constraints in this linear program arise from relating the
A- and B-type quantum weight enumerators introduced in
(12) and (13). While the A- and B-type enumerators do not
necessarily have a direct linear relation to one another, they
are both directly linearly related to the auxiliary exact weight
enumerator of a quantum code (26) via the connection matrices
(32) and (33). Infeasibility of this linear program allows us to
establish the non-existence of certain AQEC quantum codes.
Since it is only the infeasibility of the linear program that
is important, we can always set the objective function of the
linear program to be a constant, that is for instance 0.

Consider the feasibility problem.

Find Ao,...,Ay-1,Bo,..., By_1, |AUX)
subject to (TrP)%|A) = M4|AUX)
TrP|B) = Mp|AUX)
0<B;—A4;<¢, 0<i<w-—-1

BO+"'+BU)—1S1
A;>0, 0<i<w-—1

IT]AUX) = |AUX). (42)

Then we have the following result.

Theorem 6: Suppose that a quantum code is (eo,...,
ew—1)-AQEC with respect to the sets g, . . ., 1. Then (42)
has a feasible solution.

Proof: Given an arbitrary noisy quantum channel, the A
enumerator defined in (12) must have non-negative compo-
nents (see (18)). Moreover, by the Cauchy-Schwarz inequality,
B; > A, for all i (see (17)), and ), B; < 1 (see (16)). The
first two equalities of (42) hold because of Lemma 5. Using
the fact that the code is an (e, ..., €y—1)-AQEC, we have,
by Lemma 1 and Definition 2, that B; — A; < ¢;. For any
quantum code, we can write down its auxiliary exact weight
enumerator |AUX). Since |[AUX) = |¢) ® |¢) where |¢) is as
defined in (26), the auxiliary exact weight enumerator must
be invariant under swapping of the two registers, and we must
have II|AUX) = |AUX) as described in (29). O
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Conversely, we have the following.

Corollary 7: Suppose that (42) is infeasible. Then there
does not exist any quantum code that is (¢q, . . ., €,y—1)-AQEC
with respect to the sets Qq, ..., Qy_1.

Here at this abstract level, the distance d does not appear.
We have thereby derived a linear programming bound that
applies to any quantum error-correcting code given under the
influence of any noisy quantum channel. Note that TrP is
the dimension of the quantum code and hence a constant in
the linear program. We would like to emphasize that if (42)
holds, it does not necessarily mean that a quantum code that is
(€0, - - -, €w—1)-AQEC exists. We can only make a conclusive
statement about (e, ..., €,-1)-AQEC codes when (42) is
infeasible, and this statement is on the non-existence of such

AQEC codes.
Our method can specialize to exact quantum error correc-
tion. In this scenario, we have ¢g = --- = €,_1 = 0. We can

also adapt our linear program to establish the non-existence of
AQEC stabilizer codes. For this, note that Lemma 4 implies
that for a stabilizer code, the components of |AUX) must be
either 0,22% or 272*, Thus we can impose these additional
integer constraints on |AUX) in (42) for stabilizer codes.

The independence of the auxiliary weight enumerator on
the underlying quantum channel allows us to establish a single
linear program for an entire family of quantum channels with
respect to a fixed quantum code, and we illustrate this using
the amplitude damping channel in the next section.

V. APPLICATIONS
A. Amplitude Damping Errors

AD errors model energy relaxation in quantum harmonic
oscillator systems and photon loss in photonic systems.
By ensuring that each quantum harmonic oscillator couples
identically to a unique bosonic bath, in the low temperature
limit, the effective noise model can be described by an AD
channel. When quantum information lies in a qubit, the cor-
responding AD channel AV, models energy loss in a two-level
system, where <y is the probability that an excited state relaxes
to the ground state. A, has two Kraus operators K and K7,

where
1 0 10
KO_[O \/ﬁ} Kl_{o 0]
When energy loss occurs independently and identically in
an n-qubit system, the corresponding noisy channel can be
modeled as N, , = N". The set of all Kraus operators of
N, ~ can be written as

K={Ky =K, ® - ®K,, :xe€{0,1}"}. (43)

Since the Kraus operator K7 models energy loss on one qubit,
it is useful to know how many times the Kraus operator
K occurs in K. Hence we define the following property
of K.

Definition 8: The weight of Ky for z € {0,1}" is wt (x).

The weight of Ky counts the number of qubits where
K induces energy loss. For example, wt (K; @ Ko ® K1) =
wt (K101) = wt(101) = 2, which corresponds to energy loss
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in two qubits. Using this notion of weight, we partition the
set of Kraus operators KC accordingly. Namely, by denoting

Ki={EeK:wt(E)=i}, (44)

we have K = KoU- - -UK,,. In this terminology, a code corrects
t errors perfectly if all the errors in K; for ¢ < ¢ satisfy the
Knill-Laflamme quantum error correction criterion [20]. Note
that we will need to correct errors not only in K1, ..., K, but
also errors in KCg.

Specializing to the case of AD errors, our enumerators are
vectors with coefficients

1
A = TPy > TH(EP)Te(E'P), i=0,...,n, (45)
Eek;

1
Bi = E%CTr(EPE P), i=0,...,n. (46)

The corresponding connection matrices are

Ma=>"3" 3 27 TH(Eo)Tr(EM)|i)o|(r], @47)

1=0 E€K; o,7€Gn

Mg = Z Z Z 27 Tr(Ea ET7)|i) (o |(7].

i=0 E€K; 0,7€Gn
From Section III, we know that B; > A; > 0 for all i =
0,...,n.
Since the only Kraus operator in /Cy has a minimum singular
value of (1 — )"/? for Ay, we have the lower bound

Ao Z (1 — ,y)n

(48)

(49)

This is reminiscent of the scenario for SL weight enumerators,
where we have AJ" = 1.

Furthermore, it is easy to see that every B; is at most
O(~"), Since the operator norm of Kraus operators from ;
is 4*/2, the operator norm of EPE' for any E € K; is at
most *Tr(P). It follows from the Holder inequality on the
Hilbert-Schmidt inner product that

Te(EPE'P)| = (EPE", P)| < | EPE'|||| P,

where ||-||1 denotes the trace norm and ||-|| denotes the operator
norm, which is the maximum singular value of a matrix. Thus
by counting the number of terms in K;, we have

B;/y' < (?)

We can obtain another upper bound on B;. Note that

1
o T
Bz_TrP E Tr(EPE'P)
EeKk;

(50)

1

< Tr(EPE"
—TrP r( )

Eek;

Tr(EET)
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The quantum weight enumerators of Q for AD channels are

|A) = Ao|0) + -+ + An|n),

We have the following definition of AQEC criterion for AD
channels, using the language of quantum weight enumerators.

Definition 9: An ((n,M)) quantum code is called a
(t,c)-AD code if its quantum weight enumerators satisfy the
constraints

B —A; <eytli=0,...,t, (54)

where 0 < v < 1.
In the language of Definition 2, a (¢,¢) AD code is
(vt ... ey!t1)-AQEC with respect to the sets Ko, . . ., Ky.
Example 3: We consider again the four-qubit code in
Example 1 [18] The code has weight enumerators

Ag=7"/64—v*/4+ 5y /4 — 27+ 1;
A=Ay =A3=0;

Ay =~"/64.

By =+1/16 — 43 /4 4+ 572 /4 — 2y + 1;
By =37"/8 = 37%/4 + 37%/4;

By :74/16;

B = Bs; =0.

Therefore, this code cannot be a (2, ¢)-AD code for any ¢ > 0.
Conversely, this code is known to correct an arbitrary single
AD error [18].

Example 4: The weight enumerators of the nine-qubit Shor
code are as follows. Note that (17) holds here. In addition,
by Definition 9, this code cannot correct each AD error of
weight three.

Ag=By=1-9v/2+153y%/16
—399+%/32 4 3517%/32 + O(7°);

Ai=B; =0, i=124,5"7,8:
Az = Ag = 0;

By =37 /4+ 0(y");

By =+°/32;

Ag = 37°/16 + —977/32 4 4578 /256 + O(1?);
Bs = 375/16 — 997 /32 + 97 /32 + O (7).

Since the leading order of B3 — A3 in «y is cubic, the Shor
code cannot be a (3,¢)-AD code for any ¢ > 0. Hence, this
is consistent with the fact that the Shor code corrects two AD
errors [22].

From the above discussion, the weight enumerators |A) and
|B) of a (t,c)-AD code must satisfy (54), (34), and (35).
We formulate a linear program with a constant objective func-
tion, and find non-negative variables Ay, ..., A,, Bo,..., By
that belong to a particular feasible region. The feasibil-
ity problem of our linear program is then equivalent to
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the following.
Find

subject to

Ao, ..., An,By, ..., By, |AUX)
(TrP)?|A) = M4|AUX)
TrP|B) = Mp|AUX)
(B: — A)) /¥ <, 0<i<d-1

Bi/y" < ( ) <n

B;i/v' < ( )2" YTrP, 0<i<n
BO+"'+BHS
A, >0, 0<i<n
I1|AUX) = |AUX). (55)

Note that the constraint B;/y* < (7)2"~%/TrP only
becomes non-trivial for large values of TrP.

Formally, we have the following result for (¢, ¢)-AD codes.

Theorem 10: Let t be a positive integer and ¢ > 0. Suppose
that an n-qubit quantum code is a (¢,c)-AD code. Then the
linear program (55) is feasible for all v € [0, 1].

Proof: We get this by applying Theorem 6 with the
definition of a (t,¢)-AD code, identifying €2; with the sets
K; as given in (44), and including the additional inequality
from (52). O

Since integer programs are hard to solve in general, our
feasibility conditions are attractive because they have no inte-
ger constraints, in contrast to many other linear programming
bounds for stabilizer codes [10], [12]-[14]. Hence, we have a
linear program as opposed to an integer program. However,
one may wonder whether such a linear program is suffi-
ciently constrained to be potentially infeasible. We demon-
strate numerically that our linear program can be infeasible,
by analyzing the potential of using three qubits to correct a
single AD error. To do this, we have an additional observation
that our linear program is parametrized by . Since a (¢, ¢)-AD
code is defined for any value of v in the unit interval, we can
concatenate the linear constraints using many different values
of . Crucially, constraints for different values of ~y are related
because |AUX) is independent of ~. We illustrate the linear
dependence of all of our linear constraints in Fig. 1. This
leads to our main corollary for (¢, ¢)-AD codes.

Corollary 11: Let t be a positive integer and ¢ > 0, and let
T be any subset of [0, 1]. If (55) is infeasible for every v € T,
then there does not exist any n-qubit (¢, ¢)-AD code.

To determine if our concatenated linear program is feasible,
we code up the linear constraints in the MATLAB solver cvx,
and use the algorithm SDPT3. In the linear constraints of (42),
we write the monomials of « as denominators. This normalizes
our constraints so that a numerical solver can be numerically
stable even for small values of . Also, when coding up the
linear constraints of (42) in a solver, we do not explicitly
construct the permutation matrix II because it is much too
big. Rather we specify its implied linear constraints directly
into the optimizer environment for our linear program.

In our numerical study, we analyze the possibility of cor-
recting a single AD error using three qubits. We obtain mainly
no-go results on the existence of a three-qubits code that
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(71) M}(;/z
(71 (72
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(va4) A (rs)
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Fig. 1. The relationship between various enumerators is depicted here. Every
A-type or B-type enumerator for any value of AD parameter ~y relates linearly
to the same auxiliary enumerator. In this figure we illustrate enumerators for

four values 1, ...,74. The matrices MX”) and M ](;”) are the connection
matrices corresponding to an AD noise channel of noise strength ~y;, and
|A()y and |B(¥)) are the corresponding A and B-type enumerators.

corrects a single AD error. For this, we consider four different
values of v in the construction of our linear program. More
precisely, we numerically find the maximum ¢ for which the
convex solver returns a result that says that the linear program
is infeasible.

Theorem 12: There is no three-qubit (1, 9.8 x 10%)-AD code
that has dimension two.

Proof: Forn =3, M =2,t=1, we rule out ¢ = 9.8 x

10* using v = 0.1,0.05,0.01, 0.0001, by Corollary 11. O]

Numerically, this value of ¢ = 9.8 x 10* is the largest we
could find for the parameters n = 3, M = 2, ¢ = 1. If we could
rule out three-qubit (1, ¢)-AD codes for all positive numbers
¢, then we would able to rule out all three-qubit codes that
correct a single AD error.

B. Probabilistic Pauli Errors

Let us consider an n-qubit Pauli channel that introduces
an n-qubit Pauli error F' € G,, with probability pr that we
have looked into Example 2. Recall that for ¢ = 0,...,n
this corresponds to having Q; = {\/prF € G, : wt(F) =
i}. In this scenario, the components of the A and B-type
enumerators can be written as

1
A= > Tr(FP)Tr(F'P 56
(TrP)? prTe(FP)Te(F'P), (56)
Feg,
wt(F)=1
- T
B; = TrP E prTt(FPF'P) (57)
Feg,
wt(F)=t
for every ¢ = 0,...,n. Suppose that for every ¢+ = 0,...,n,

there is a non-negative constant p; such that pp = p; for every
F € G, and wt(F) = i. Then we can obtain the following
result.

Theorem 13: Suppose that a quantum code is
(€0y-..,€,)-AQEC with respect to the sets o,...,,,
where Q; = {\/piF € G, : wt(F) = i}. Then a feasible
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solution exists for the set of linear constraints in (42) together
with the following linear constraints

|B) = D|BSL>7 (59)
MlASL> — |BSL>, (60)
where
D=7 pili)il, (61)
i=0
Tr(P) < &
M= rz(n)ZZKi(j;n)IMjl, (62)
=0 j=0
and

Ki(z;n) =Y (~1)7377 <x> <T_L 3”) (63)
= J)\i—j
is the i-th quaternary Krawtchouk polynomial.

Proof: The linear constraints in (42) are feasible because
of Theorem 6. Since pr = p; for every Pauli F' of constant
weight, the constraints (58) and (59) hold because of the def-
inition of the A and B-type Shor-Laflamme quantum weight
enumerators. The last equality constraints in (60) arises from
the MacWilliams identity [8]. O

Corollary 14: Suppose that the linear constraints in (42)
combined with the linear constraints in (58), (59) and (60)
are infeasible. Then there does not exist a (g, . .., €,)-AQEC
code that corrects a Pauli channel that introduces Pauli errors
of weight ¢ with probability p;.

Now consider a qubit depolarizing channel that introduces
no error with probability 1 — p and introduces an X, Y or Z
error with probability p/3 each. Then we can specialize our
result to the n-qubit depolarizing channel, by setting

pi=p'(1—p). (64)

C. Linear Programming Bounds for Permutation-Invariant
Quantum Codes

Permutation-invariant quantum codes are quantum codes
that are invariant under any permutation of their underly-
ing particles. Such codes have been studied in the qubit [21],
[23]-[25], the qudit [26], and the bosonic [27] settings.
These quantum codes are interesting because of not only
their capability to correct non-trivial errors such as quan-
tum deletions [28], [29] and insertions [30], but also their
potential applications as quantum memories [31] and for
robust quantum metrology [32]. One key attractive feature of
permutation-invariant quantum codes is the ease in which they
can be prepared in physical systems [33], [34] as compared
to the usual stabilizer codes.

Here, we restrict our attention to permutation-invariant
quantum codes on qubits, and use linear programming meth-
ods to establish upper bounds on the minimum distance
of permutation-invariant quantum codes of designed dis-
tances d. We numerically determine the non-existence of
certain permutation-invariant quantum codes of length up to
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n = 12 qubits. To achieve this, we note that the auxiliary
weight enumerator, which resides in a 42"-dimensional vector
space, can be compressed into a vector that contains all the
required information that resides in a O(n?) space. We call this
compressed vector a permutation-invariant auxiliary enumera-
tor, and establish corresponding compressed connection matri-
ces that relate this auxiliary enumerator to the A- and B-type
Shor-Laflamme quantum weight enumerators. Our main result
in this section is a set of linear equations that if infeasible, rules
out the existence of certain ((n, M, d)) permutation-invariant
quantum codes. The variables in the set of linear equations
are the A- and B-type Shor-Laflamme quantum weight enu-
merators, and also an auxiliary permutation-invariant auxiliary
weight enumerator. We also compile tables on upper and lower
bounds on M for certain permutation-invariant quantum codes
of fixed length n and distance d.

A permutation-invariant quantum code has distance d if it
satisfies the Knill-Laflamme quantum error correction criterion
that for every pair of orthogonal logical codewords |i;,) and
|72) and for every E € G,, of weight at most d — 1,

(iL|Eljr) = 9Bdi; (65)
for some complex coefficient gz .
In this section, for ¢ = 0,1,...,n, we set
Q, ={FE €g,:wt(E)=1i}. (66)

Now let P be a projector onto a permutation-invariant
quantum code. We are interested in the distance of a
permutation-invariant quantum code, and hence we use the
usual SL-enumerators { A"} and {B{"}. While the A-type
and B-type SL enumerators are related by the quantum
MacWilliams identity, they are also related to our auxil-
iary weight enumerators using the corresponding connection
matrices

w—1
ME =Y S 2B HE i) o] (7, (67)

i=0 FeQ; 0,7€G,

M3 = z_: Z Z 27" Tr(Ea ET7)|i) (o |(7].

i=0 FEQ,; 0,7€G,,

(68)

Now we will proceed to explain how we can impose
permutation-invariant constraints on the auxiliary weight enu-
merator. Note that for any qubit permutation 7, we must have

Pr=P=nP, (69)

for the projector P of any permutation-invariant quantum code.
Then for any Pauli o and qubit permutation 7, we see that

Tr(ron' P) = Tr(on! Pr) = Tr(o P). (70)

For non-negative integers x,y, z such that x +y + z < n, let

Opyom = XET QYO @ 797 @ [®n—2—v=2)  (7])
Now define the sets
Coyzn = {Wax%z,nﬂ s € Spt, (72)

where the symmetric group S,, denotes the set of n! permu-
tations on n qubits. We can see that the set of Pauli operators
Gy, can be partitioned into the sets C y - ».
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We define an auxiliary enumerator for the permutation-
invariant quantum code

|¢picode> = Z Tr(Ux,y,z,nP)|Ux,y,z,n>; (73)
0<z+y+z<n
and let
|AUXpicode> = |¢picode> & |¢picode> (74)

denote the compressed auxiliary weight enumerator. Note that
since P is a Hermitian operator, it can always be expressed as
a linear combination of Pauli matrices with real coefficients.
Hence both |¢picoae) and [AUX ;i coqe) are real vectors.

A simple consequence of Lemma 5 is the following result.

Lemma 15: Let P be a code projector onto a
permutation-invariant quantum code, and let
Wy = Z Z ITH0zy,2ml- (75)
0<z+y+2<n7€Cs y,2.n
n+3

denote a matrix with 4" rows and (
following matrix identities hold.

+”) columns. Then the

MEE(W,, @ W,,)|[AUX i coge) = (TrP)?|ASE), (76)
MZ"(W,, @ W) |AUX picoge) = TrP|B"), (77)

where [AS%) = Y7, AS*j) and |BS*) = 7 B5“[j).
Proof: Given any code projector P, we can write |¢) =
> veg, Tr(aP)|o). Now note that

Wn|¢picode> = Z Z

0<z+y+2<n7€Cys y,2.n

Tr(02,y,-n P)|T). (78)

Since the code is permutation-invariant, we have that
Tr(7P) = Tr(04,y, 2.0 P) (79)

for every 7 € Cy y .. Using this identity, we find that for
permutation-invariant quantum codes, we have

Wn|¢picode> - Z Z

0<z+y+2<n7€C% y,2.n

Te(rP)|7) = [¢). (80)

Hence it follows that

(Wn ® Wn)|AUXpicode>
:(Wn ® Wn)l¢picode> & |¢picode>
:(Wn|¢picode>) ® (Wn|¢picode>)

=l¢) @ |9)
=|AUx). (81)
Substituting this into Lemma 5 proves the result. O]

Here, the number of columns in W,, corresponds to the
number of combinations of non-negative integers x, y, z such
that the constraint x+y-+2 < n is satisfied. The key difference
between Lemma 5 and Lemma 15 is that the auxiliary weight
enumerator for a permutation-invariant quantum code has
dimension that is exponentially smaller than the dimension of
|aUX). Namely, the dimension of |¢p;icoge) 1S (”;3), which
implies that the dimension of |AUXpicoge) iS (”;“3)2 =
O(nb), which grows only polynomially in 7.

In what follows, we show that for permutation-invariant
quantum codes, we can further compress the sizes of both
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the auxiliary weight enumerators and the connection matrices.
Namely, in place of using |AUX ;i coge), We can use |Ppicode)s
and instead of using the connection matrices M 5" and MZ",
we can use the following compressed connection matrices

My = Z Z (%Z; Z) |1)(02,y,2,nl (82)

0<i<n x4y+z=t

and
MB = Z F(Z.ax7yvzvn)|i><0$,y,z,n|; (83)
0<i<n
0<z+y+z<n
where
F(i,z,y,zn)= > 2"8(E,0), (84
E€g;
0€C y,z,n

and given any two Paulis o and 7 in G, B(o,7) = 1, if o
and 7 commute, and 3(o,7) = —1, otherwise. Note that

F(0,2,,2,m) = (m ) 2)2‘", (85)

where (" ) =n!/(z!y!z!(n — z — y — z)!) is a multinomial
\z,y,z .

coefficient. We can furthermore exploit the symmetry of the

summation in the definition of F' to get

>

a+b+c=i
0€Cqs,y,2,n

. _ n
F(z,x,y,z,n) = 2 nﬁ(o—mb,c,n;g) (a b C). (86)

From (86), we can see that the complexity of evaluating F'
is O(n32").

We now present the following lemma, which shows how
the A-type and B-type SL weight enumerators relate to one
another via the compressed connection matrices M, and
Mp. For this, we define the permutation-invariant weight
enumerator

|7'r> = Z Tr(O'z’y’Z’nP)2|O—a:,y,z,n> (87)
0<z+y+z<n
Lemma 16:
M 4|y = Tr(P)?|AST) (88)
Mg|r) = Tr(P)|BS%). (89)

Proof: By the definition of M 4, it follows that

W=y Y

n )
( )|Z>Tr(0'x7y7z7np)2. (90)
- . (I,',y,Z
=0 x4y+z=1
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We begin by simplifying the matrices
MZH(W,, ® Wy,). Note that

AW, @W,)

2. 2

0<i<n 0<z+y+2z<n

Eeg; 0<a+b+c<n
0€C y,z,n
TE€ECa b,e,n

= >

Ogign 0<z+y+z<n

' +y' +2'=i 0<a+b+c<n
EcC,, wlzlm UECm,y,z,n
T€Ca b,c,n

ogign
z'+y' +2 =i
EcC,r 1 .1

x! yl 2zl n

2.

0<i<n
z'y' 2 =i

PEDY

0<i<n x4y+z=1

MSE(W,, @ W,,) and

27T (Eo)Te(E ) |i)(04.y 2| (Tab.em]

08,00E,7|1)(0z,y,2n]{0ab,cn

|4) <Ux’7y’7z’7n| <U:c’7y’7z’7n

|Cx’7y’7z’7n| |7) <Ux’7y’7z’7n| <Uzv’7y’7z’7n|

n .
(o ) onenl Ol

Since both MSY|AUX icoae) and Ma|r) are equal to
2 ( y >|Z’>Tr(%y,z,nP)2, ©1)
- x,y,z
0<i<n
rty+z=i

the first result of this lemma follows from Lemma 15.
Similarly,

Mg (W, @ W)

2. 2

0<i<n 0<z+y+z<n

Eeg; 0<a+b+c<n
0€C y,z,n
7€Ca b,cin

2. 2

0<i<n 0<z+y+2z<n

EeK; 0<a+b+c<n
0€C y,z,n
7€Ca b,cin

2. 2

0<i<n 0<z+y+2z<n
EeG; 0€Csr y,2n

0<i<n
0<z+y+z<n

2” QnTI‘(EO'ET )| ><U;ryzn|<0-(lbcn

2725, Tr(EaET )Ni)(Owy,2.0]{Tab.cn]

27"p(E, 0)li) <U:c7y7z7n| <U:v7y7z7n|
Fi,2,y,2,1)[)(02,y,2,n/(2,y,2n]-

Since both M$*|AUX,icoae) and Mp|r) are equal to

g F(i,z,y, z, n)|i)Tr(agc7y7z7nP)27
0<i<n
r+y+z=1

92)

the second result of this Lemma follows from Lemma 15. [

We now continue to introduce more constraints. Note that
for an M -dimensional permutation-invariant quantum code, its
projector P admits the spectral decomposition

P=3IL)L

93)
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where |L;) correspond to the logical codewords of the
permutation-invariant quantum code. Now denote a Dicke
state |DY) as a uniform superposition over n-bit strings of
Hamming weight w [35]. Namely,

DS
N
(W) o oweton)

DY) = 7)) @ ®|zn).  (94)

We can expand every logical codeword |L;) in the Dicke basis
{ID) :w=0,...,n} to get

n
= a;w|Dp),
w=0

where a; ., are in general complex coefficients. We will restrict
ourselves to permutation-invariant quantum codes where a;
are non-negative. This is a mild constraints because for
every qubit ((n, M,d)) permutation-invariant quantum code
constructed so far [21], [26], there exists an equivalent
permutation-invariant quantum code that has these properties.

Now let us consider Paulis of the form 0,00, = X®* ®
I®"=* and analyze the properties of Tr(c, 0,0, P) When z is
even. Note that

95)

M
Tr(02000P) = Y _(L;l0w.00n/L;)
j=0
M n
>3 a2 (DilowoonlDy)
j=0 w=0
M n—z/2
22 2. GulDilesoonlDi)
=0 w=z/2
M n—z/2 x)(nfm)
z/2) \w—x/2
=2 2 Gy 09
J=0w=z/2 w
where the first and second inequalities arise because

(Dy)o2,0,0n|Dy) and aj, are all non-negative for all
w,w" =0,...,n, and in the last equality, we used a special
case of [32, Lemma 6].

Using [21, Lemma 2], we find that

(a72) ("2) () (55

- = - . 97)
() ()
Now denote
w n—w n
= i . 98
bns x/QS{UHSH;IL—x/Q (x/Q)( x/2 >/(x> ©8)
Then
Tr(ax70707nP)
M n—z/2
>Bna Y Y. ad,
=0 w=z/2
M z/2—1 n
e [ M= | D a2+ > ad, )| 99
7=0 w=0 w=n—x/2+1

The last equality arises from the normalization condition of the
logical operators |L;), which implies that > .’ =1.

'wO]w
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Using the fact that aiw < 1, we find that

Tr(04,00nP) > Pne (M—2x). (100)

Note that (100) is a strict inequality when M = 2,d > 1 and
(z,y,2z) = (2,0,0). To see this, note that when (100) holds
with equality, this means that Tr(o20,0P) = 0. But the
Dicke inner products (D}!|02.0,0|Dl) being positive for all
w = 1,...,n — 1, implies that P can only be supported on
|Dg)y = 10)®™ and |D)®™. Since M = 2, P must be equal
to (]0)(0))®™ + (J1)(1])®", and this is just the projector of
the repetition code. The repetition code has a distance equal
to 1, and this contradicts the premise that d > 1. Hence if
M =2 and (z,y,z) = (2,0,0), the inequality (100) must be
strictly positive.

Theorem 17: There is no ((5,2,3)) permutation-invariant
quantum code that has logical codewords with nonnegative
coefficients a; ., in the Dicke basis.

Proof: This is because we know that there is a unique
solution to the SL enumerators for the ((5,2,3)) code [8],
which corresponds to A" = 1, A" = 0, A" = 0, AS" =
0,A5" = 15, AS* = 0. But (100) holding strictly implies
that AS® > 0, and hence the linear program for ((5,2,3))
permutation-invariant quantum codes must be infeasible, and
hence a ((5,2,3)) permutation-invariant quantum code does not
exist. O

For a permutation-invariant quantum code with nonnegative
aj. to have minimum distance of d, the SL enumerators
need to satisfy not only the usual MacWilliams identity, but
also the additional constraints related to the auxiliary weight
enumerator for permutation-invariant quantum codes. Let

Ty = |02,0,0,n)(02,0,0,n ], (101)

and
T2 = B2 o (M — 2)*|02,0,0,n)-

We formulate the linear program that maximizes AS" subject

to the following constraints:
Find Agh, AR BSE . BIE >0

|7r> c R(n—i—l)(n+2)(n+3)/6

(102)

subject to (TrP)?|AS") = My|m)
TrP|BS") = Mp|n)
B*— A" =0, 0<i<d-1
B" > A", d<i<n
|m) >0
Tolm) >
7)< TH(P)?
n
BiSL:%ZA?LKi(j;n), i=0,...,n.
3=0
(103)

The last equality constraints in program (103) are from the
MacWilliams identity [8] and K;(z;n) is the i-th quaternary
Krawtchouk polynomial as defined in (63).

If the linear program is infeasible, then we know for
sure that there do not exist ((n, M,d)) permutation-invariant
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quantum codes that have logical codewords with nonnegative
a; . Furthermore, for an ((n, 2, d > 2)) permutation-invariant
quantum code to exist, we know that AS" must be strictly
positive, because if A5™ = 0, we must have 0 9,0, = 0 which
implies that the permutation-invariant quantum code must be a
repetition code with d = 1, which contradicts the assumption
that d > 2. This leads to the following theorem.

Theorem 18: Suppose that there exists an ((n,M,d))
permutation-invariant code, where all the logical codewords
are of the form (95) with nonnegative coefficients a; ., in the
Dicke basis. Then the set of linear inequalities in (103) is
feasible.

Proof: The first two equalities in (103) hold because
of Lemma 16. The remaining constraints that pertain to the
Shor-Laflamme quantum weight enumerators arise from the
paper of Shor and Laflamme in [8], where the last equality
is the celebrated quantum MacWilliams identity. From the
definition of the permutation-invariant weight enumerator |)
in (87), it follows that |7) > 0 and |7) < Tr(P)°. The
inequality Th|m) > 7o arises from (100) and the definitions
of T5 and 75 in (102) and (101), respectively. O

Corollary 19: Suppose that (103) is infeasible. Then there
does mnot exist an ((n,M,d)) permutation-invariant code,
where all the logical codewords are of the form (95) with
nonnegative coefficients a;,, in the Dicke basis.

To facilitate our linear program numerically using the
linprog function of MATLAB so that the linear program
can be evaluated using the simplex algorithm, we write
the constraints of our linear program in standard form. Let
Iy = Y025 i)l and Iy = Y7, |j)(j|. Then our equality
constraints are

(0] 0 0 1
0 0 (00,00 e Tr(P)?
M -1 0 B 0
Iy —1y 0 0 )
—Te(P)2] 0 My ) 0
0 —~Tr(P)I Mg 0
(104)
where
Tr(P) = B
M=—2 ZZKi(j;n)leJl, (105)
1=0 j=0
and the inequality constraints are
Is =I; 0 ASE 0
0 O 1 Bt | < | Tr(P)? (106)
0 0 -1 |7r) —T2
Finally there is a trivial upper bound that
M <n+1, (107)

since the dimension of a permutation-invariant quantum code
cannot exceed the dimension of the symmetric subspace.
Using our linear programming bounds, together with the trivial
bound, we tabulate upper bounds on permutation-invariant
quantum codes that have logical codewords with nonnegative
aj. in Table 1. From this table, we can see that to have
d = 2 we need at least n > 4; for d = 3, we need n > 3;
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TABLE I

TABLE OF UPPER BOUNDS OF M FOR ((n, M, d))
PERMUTATION-INVARIANT QUANTUM CODES THAT HAVE LOGICAL
CODEWORDS WITH NON-NEGATIVE a; ,,. WE USE OUR LINEAR
PROGRAMMING BOUNDS TOGETHER WITH THE TRIVIAL
CONSTRAINTM <n +1

n

3 4 5 6 7 8 100 11 12

d=2 |1 3 5 7 8 9 10 11 12 13
d=3 1 2 4 6 10 11 12 13
d= 1 2 [§ 9 13
d=5 1 1 1 2 4
d=06 1 1

TABLE I

TABLE OF UPPER BOUNDS FOR M FOR ((n,M,d)) ARBITRARY
PERMUTATION-INVARIANT QUANTUM CODES USING THE QUANTUM
MACWILLIAM IDENTITIES TOGETHER WITH M < n + 1

n

3 4 5 6 7 8 9 10 11 12
d=212 4 6 7 8 9 10 11 12 13
d=3 2 2 4 9 10 11 12 13
d= 1 2 4 9 12 13
d=5 1 2 3 5
d=6 1 1

TABLE III

TABLE OF LOWER BOUNDS FOR M FOR ((n, M, d))
PERMUTATION-INVARIANT QUANTUM CODES WITH NON-NEGATIVE
@j,w. THE SUPERSCRIPT ¢ REFERES TO THE GNU CODES
INTRODUCED IN [21], " REFERS TO THE RUSKAI
CODE [23], P REFERS TO THE POLLATSEK-RUSKAI7-QUBIT
CODE, AND * REFERS TO THE CODES IN [26]

n
3 4 5 6 7 8 9 10 11 12
d=2 29 29 29 3 3 3 3% 3 &°
d= 2P 209 29 29 29
d=4

for d = 4, we need n > 8; and for d = 5, we need
n > 11. In comparison, we give upper bounds on M for
general permutation-invariant quantum codes using only the
MacWilliams identities as the constraints, and the trivial M <
n+1 bound in Table II. We also give known lower bounds for
M using code constructions for permutation-invariant quantum
codes that have logical codewords with nonnegative a;
in Table III.

VI. DISCUSSIONS

In this paper, we showed that quantum weight enumerators
can be generalized to the setting of AQEC. Key to our analysis
is our introduction of auxiliary weight enumerators, which
allows us to establish an indirect linear relationship between
the generalized quantum weight enumerators.

As it stands, the auxiliary weight enumerator is a vector
of size 42" in the number of qubits n. We have shown how
exploiting the symmetry of permutation-invariant quantum
codes can greatly reduce the dimensionality of the auxil-
iary weight enumerator to have a size that is polynomial
in n. Specializing our framework to a broad family of
permutation-invariant quantum codes, we use linear program-
ming to obtain non-trivial upper bounds on the maximum

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

number of logical codewords M of such permutation-invariant
quantum codes for given length n and distance d.

The non-existence of quantum codes for approximate quan-
tum error correction over a multitude of noisy channels
remains to be explored. For instance, it will be interesting to
explore what no-go bounds for quantum codes can be obtained
for various types of noisy channels, such as adversarial burst
errors [36], probabilistic burst errors, and also probabilistic
Pauli errors.
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