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Abstract— While quantum weight enumerators establish some1

of the best upper bounds on the minimum distance of quan-2

tum error-correcting codes, these bounds are not optimized to3

quantify the performance of quantum codes under the effect of4

arbitrary quantum channels that describe bespoke noise models.5

Herein, for any Kraus decomposition of any given quantum chan-6

nel, we introduce corresponding quantum weight enumerators7

that naturally generalize the Shor-Laflamme quantum weight8

enumerators. We establish an indirect linear relationship between9

these generalized quantum weight enumerators by introducing an10

auxiliary exact weight enumerator that completely quantifies the11

quantum code’s projector, and is independent of the underlying12

noise process. By additionally working within the framework of13

approximate quantum error correction, we establish a general14

framework for constructing a linear program that is infeasible15

whenever approximate quantum error correcting codes with16

corresponding parameters do not exist. Our linear programming17

framework allows us to establish the non-existence of certain18

quantum codes that approximately correct amplitude damping19

errors, and obtain non-trivial upper bounds on the maximum20

dimension of a broad family of permutation-invariant quantum21

codes.22

Index Terms— Quantum information science, error correction23

codes, linear programming.24
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I. INTRODUCTION 25

THE distance of an error-correcting code is of central 26

importance in coding theory, because it quantifies the 27

number of adversarial errors that can be corrected. For codes 28

of fixed length and rate, upper and lower bounds on their 29

distance can be determined. The best lower bounds can be 30

obtained from various randomized code constructions that 31

yield the Gilbert-Varshamov bound [1] and this is also true in 32

the quantum case [2]–[4]). On the contrary, markedly different 33

techniques are used to derive upper bounds. In classical coding 34

theory, weight enumerators count the weight distribution of 35

codewords in a code [1]. The MacWilliams identity establishes 36

a linear relationship between the weight enumerators of a code 37

and that of its dual code. This allows one to obtain upper 38

bounds on the distance of codes by linear programming. (This 39

may be improved via the Terwilliger algebra and semidefinite 40

programming [5].) Further extensions of this technique leads 41

to the celebrated algebraic linear programming bounds [6], [7]. 42

The notion of weight enumerators in the quantum setting is 43

less obvious, because quantum codes on n qubits are subspaces 44

of C2n

, and these subspaces do not in general admit a combi- 45

natorial interpretation. Shor and Laflamme nonetheless intro- 46

duced a meaningful definition of weight enumerators for quan- 47

tum codes [8] in terms of the codes’ projectors P and a nice 48

error basis for matrices. In particular, the Shor-Laflamme (SL) 49

quantum weight enumerators are sums of terms of the form 50

|Tr(EP )|2 and Tr(EPE†P ), respectively, where the sums are 51

performed over all Paulis E of a given weight. We will call 52

the vectors of these enumerators labeled by Pauli weights the 53

A-type and B-type quantum weight enumerators, respectively. 54

Shor and Laflamme showed that the A-type and B-type quan- 55

tum weight enumerators are still linearly related in a way rem- 56

iniscent of the classical relationship [8]. The relation between 57

the two enumerators is the quantum analogue of the famous 58

MacWilliams identity. Variations on the SL enumerators were 59

then studied by Rains, which allowed better bounds on the 60

parameters of quantum codes [9]. Because of the existence of 61

a linear relationship between the two types of enumerators, 62

linear programming techniques can be applied to establish 63

upper bounds on the minimum distance for (small) quantum 64

stabilizer codes [10]. Algebraic linear programming bounds 65

based on the MacWilliams identity, such as the Singleton, 66

Hamming, and the first linear programming bounds, are also 67
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derived for general quantum codes [11]. These results have68

been extended to entanglement-assisted quantum stabilizer69

codes [12], [13] and quantum data-syndrome codes [14]. Also70

there is a MacWilliams identity for (entanglement-assisted)71

quantum convolutional codes [15]. A generalization of the72

MacWilliams identities is developed for the qubit erasure73

channel, which leads to lower bounds on the probability of74

decoding error [16]. Recently it was shown that the SL weight75

enumerators of a codeword stabilized quantum code has an76

interpretation as the enumerator of an associated classical77

code [17].78

Although the distance of a quantum code is a meaningful79

metric with respect to adversarial noise, estimates on the80

performance of a quantum code derived from the distance81

under specific noise models are often overly pessimistic. For82

instance, while a minimum of five qubits is needed to perfectly83

correct an arbitrary error [8], four qubits suffice to correct84

a single amplitude damping (AD) error [18]. However, most85

quantum weight enumerators give no direct result regarding86

the non-existence of approximate quantum error correcting87

codes for various noisy quantum channels, even in the simple88

case of AD errors. To better understand this, it would be89

advantageous to have MacWilliams-type identities for different90

quantum weight enumerators defined for various noisy quan-91

tum channels, from which corresponding linear programming92

bounds can be obtained. Currently, most linear programming93

bounds for quantum codes use quantum weight enumerators94

only to describe quantum error correction in the perfect95

setting [9]. Because of this, these methods do not readily96

extend to quantum codes under the action of arbitrary quantum97

channels and in the paradigm of approximate quantum error98

correction (AQEC).99

To address the aforementioned problems, we extend the100

theory of quantum weight enumerators to deal with AQEC101

codes for any given quantum channel. Namely, we generalize102

the two SL quantum weight enumerators to address quantum103

codes under the influence of any set of Kraus operators.104

This goes beyond the theory that the authors previously105

introduced in Ref [19], where only amplitude damping errors106

were discussed. While we do not have a MacWilliams identity107

that establishes a direct linear relationship between these two108

generalized quantum weight enumerators, we do establish109

an indirect linear relationship between them. To enable this,110

we rely on an auxiliary exact weight enumerator with respect111

to Pauli operators, which contains a complete description of112

the Pauli decomposition of the code projector. We thereby113

show linear connections between this enumerator and our two114

generalized quantum weight enumerators. This allows us to115

establish a linear program that if infeasible shows that AQEC116

codes do not exist.117

To illustrate the utility of our framework, we apply it in118

two different scenarios. In the first scenario, we establish the119

non-existence of quantum codes that approximately correct120

amplitude damping errors. In particular, we numerically rule121

out the existence of three-qubit AQEC AD codes that are122

capable of correcting an arbitrary AD error over a certain range123

of AD noise strength. Our linear program cannot eliminate the124

existence of a four-qubit code that can correct one AD error125

and this agrees to the four-qubit AD code proposed in [18].126

In the second scenario, we show how our framework can be 127

adapted to quantum codes that must be permutation-invariant, 128

and provide linear-programming bounds for the non-existence 129

of permutation-invariant quantum codes of prescribed 130

distance. 131

This paper is organized as follows. In Sec. II, we review 132

notation for Pauli operators (Sec. II-A), quantum chan- 133

nels (Sec. II-B), quantum codes and weight enumerators 134

(Sec. II-C), and the space of complex square matrices 135

(Sec. II-D). In Sec. III, we introduce our quantum weight enu- 136

merators for general Kraus operators in AQEC. In Sec. IV-A, 137

we introduce auxiliary weight enumerators, and in Sec. IV-B, 138

we propose connection matrices that establish linear rela- 139

tionships between our quantum weight enumerators and the 140

auxiliary weight enumerators. In Sec. IV-C, we formulate 141

a linear program for general quantum channels. We discuss 142

applications of the linear program bounds for AD errors in 143

Sec. V-A and for permutation-invariant quantum codes in 144

Sec. V-C. We conclude our results in Sec. VI, 145

II. PRELIMINARIES 146

A. Pauli Operators 147

A single-qubit state space is a two-dimensional complex
Hilbert space C2, and a multiple-qubit state space is simply
the tensor product space of single-qubit spaces (C2)⊗n = C2n

.
The Pauli matrices{

I2 =
[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y = iXZ

}

form a basis of the linear operators on C2. Let 148

Gn = {M1 ⊗ M2 ⊗ · · · ⊗ Mn : Mj ∈ {I2, X, Y, Z}}, 149

which is a basis of the linear operators on the n-qubit state 150

space C2n

. The weight of an element E = M1 ⊗ · · · ⊗ Mn 151

in Gn, denoted wt (E), is the number of Mj’s that are non- 152

identity matrices. 153

B. Quantum Channels 154

A quantum channel that takes an n-qubit state to an n-qubit 155

state is a completely positive and trace-preserving linear 156

map from L(C2n

) to L(C2n

), where L(C2n

) is the set of 157

all linear maps from C2n

to C2n

. In particular, every quantum 158

channel N admits a (non-unique) decomposition into Kraus 159

operators Ω = {W} ⊂ L(C2n

) such that for any 2n × 2n
160

matrix M , we have 161

N (M) =
∑

W∈Ω

WMW †, (1) 162

where 163∑
W∈Ω

W †W = I2n , (2) 164

where I2n denotes the 2n × 2n identity matrix. 165

C. Quantum Codes and Weight Enumerators 166

An n-qubit quantum code Q is a subspace of C2n

. Let 167

P denote the codespace projector onto Q. The quantum 168

code Q satisfies the Knill-Laflamme quantum error correction 169

criterion [20] with minimum distance d if and only if 170

PEP = gEP (3) 171
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for some complex coefficients gE for every E ∈ Gn of weight172

at most d − 1. This means that any Paulis of weight at most173

d − 1 can be detected since it brings logical codewords to174

orthogonal subspaces. An n-qubit quantum code of dimension175

M and minimum distance d is denoted ((n, M, d)).176

Shor and Laflamme defined two weight enumerators {ASL
i }177

and {BSL
i } of Q by178

ASL
i =

1
Tr(P )2

∑
E∈Gn,wt(E)=i

Tr (EP ) Tr
(
E†P

)
, (4)179

and180

BSL
i =

1
Tr(P )

∑
E∈Gn,wt(E)=i

Tr
(
EPE†P

)
, (5)181

for i = 0, . . . , n [8]. These two weight enumerators will be182

called SL enumerators in this article.183

Since Gn is a basis for the linear operators on C2n

, we have184

P =
∑

E∈Gn
aEE, where aE ∈ R because P is Hermitian.185

It follows that Tr(EP ) = aE . Since P is a projector,186

we have P = P 2, and it follows that Tr(P ) = Tr(P 2) =187

2n
∑

E∈Gn
a2

E . Hence188

∑
i

ASL
i =

1
Tr(P )2

∑
E

a2
E22n =

22nTr(P )
2nTr(P )2

=
2n

Tr(P )
. (6)189

Also ASL
0 = 1.190

The power of the SL enumerators is that the (perfect)191

quantum error correction criterion of Knill and Laflamme are192

equivalent to certain linear constraints on these SL enumera-193

tors. This is because ASL
i = BSL

i if and only if (3) holds for194

every E ∈ Gn of weight i ≤ d − 1 [11].195

D. The Space of Complex Square Matrices196

The Hilbert-Schmidt inner product of two square complex197

matrices U, V is defined by198

�U, V � = Tr(U †V ), (7)199

and induces a norm, called the Frobenius norm. Namely, the200

Frobenius norm of U is defined as �U�F =
√�U, U�.201

Given any complex square matrices U and V of the same202

size, we can use the Gram-Schmidt process to get203

W = U − R, (8)204

where205

R =
�V, U�
�V �2

F

V (9)206

denotes the component of U that is parallel to V , and W207

denotes the component of U that is orthogonal to V/�V �F .208

Geometrically, R and W are orthogonal, and they satisfy the209

Pythagoras theorem in the sense that210

�R�2
F + �W�2

F = �U�2
F . (10)211

Now using the fact that �R�2
F = |�V,U�|2

�V �2
F

, we have212

|�V, U�|2
�V �2

F

= �U�2
F − �W�2

F . (11)213

III. QUANTUM WEIGHT ENUMERATORS FOR SETS 214

OF KRAUS OPERATORS 215

In what follows, we generalize the SL enumerators to allow 216

direct consideration of an arbitrary set of Kraus operators. 217

For the SL enumerators, the error operators considered are 218

the Pauli operators, which form a nice error basis. In gen- 219

eralizing these Pauli operators to general Kraus operators, 220

we will no longer be able to leverage many properties that 221

the nice error basis affords. (In particular, it is unknown 222

how to generalize the MacWilliams identity between the SL 223

enumerators.) We nonetheless can generalize the definition of 224

SL enumerators to general Kraus operators. 225

Let P be the projector onto a quantum code, and let Ω be 226

a set of Kraus operators for a quantum channel. In general, 227

the set of Kraus operators Ω does not necessarily span the 228

space of linear operators on C2n

, and need not even be a 229

basis for C2n

. Suppose that Ω is partitioned into the disjoint 230

sets Ω0, . . . , Ωw−1 in accordance to the severity of the Kraus 231

operators therein. Here, w counts the number of such sets. 232

We can choose how we want to quantify the severity of a 233

Kraus operator. For instance, when we quantify the severity 234

of a Kraus operator by the number of qubits on which it acts 235

non-trivially, Ωi can be the set of Kraus operators that act 236

non-trivially on i qubits. If Ω = Gn, we could choose Ωi 237

to be the set of Pauli operators of weight i. We define two 238

enumerators (vectors) with coefficients 239

Ai =
1

(TrP )2
∑

E∈Ωi

Tr(EP )Tr(E†P ), i = 0, . . . , w − 1,

(12)

240

Bi =
1

TrP

∑
E∈Ωi

Tr(EPE†P ), i = 0, . . . , w − 1, (13) 241

respectively. In what follows, we use the Dirac ket notation 242

to represent weight enumerators as in [15]. We denote the A 243

and B-type enumerators as 244

|A� =
w−1∑
i=0

Ai|i�, (14) 245

|B� =
w−1∑
i=0

Bi|i�, (15) 246

where |i� are computational basis vectors. Note that 247∑
i

Bi =
1

TrP

∑
E∈Ω

Tr(EPE†P ) 248

≤ 1
TrP

∑
E∈Ω

Tr(EPE†)=
1

TrP
Tr

((∑
E∈Ω

E†E

)
P

)
=1, 249

where the inequality is because both EPE† and P are positive 250

semidefinite and P ≤ I2n . 251

Hence we have 252

B0 + · · · + Bw−1 ≤ 1. (16) 253

Another interpretation of this inequality is that the sum of 254

the coefficients of the B-type enumerator retains interpretation 255

as the fidelity of a quantum code after the action of the 256
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quantum channel with Kraus operators in Ω without quan-257

tum error correction [8]. We can see this by evaluating the258

fidelity of a maximally entangled state over the codespace259

1√
Tr(P )

∑
j |jL�⊗|jL� with respect to the noisy version of the260

state where the noisy channel acts on only the first register,261

where |jL� denote the logical codewords of the code.262

It can be shown, as in [11], that263

Bi ≥ Ai, i = 0, . . . , w − 1, (17)264

by the Cauchy-Schwarz inequality. Furthermore, since the265

code projector P is Hermitian and we have the cyclic266

property of the trace, it is clear that Tr(EP )Tr(E†P ) =267

Tr(EP )Tr(P †E†) = |Tr(EP )|2. This implies that Ai is268

always a sum of non-negative terms, and hence we must have269

Ai ≥ 0, i = 0, . . . , w − 1. (18)270

In this paper, we will define approximate quantum error271

correction using the language of quantum weight enumerators.272

In fact, we will see that Bi − Ai = 0 is equivalent to saying273

that the Knill-Laflamme quantum error criterion is satisfied274

for every Kraus operator in the set Ωi. When Bi −Ai is non-275

zero, we quantify this non-zero quantity precisely in terms276

of the deviations from the Knill-Laflamme conditions in the277

Frobenius norm.278

For every E ∈ Ω, let279

EE = PEP − �PEP, P � P√
Tr(P )

. (19)280

Then we have the following lemma.281

Lemma 1: [Quantum weight enumerators and approximate282

quantum error correction] Let Ai and Bi be quantum weight283

enumerators defined by (12) and (13), respectively, using the284

code projector P and the subsets Ω0, . . . , Ωw−1. Then for285

every i = 0, . . . , w − 1, we have286

Bi − Ai =
1

Tr(P )

∑
E∈Ωi

�EE�2
F . (20)287

Proof: By identifying U = PEP and V = P and288

substituting into (11), we get289

|�PEP, P �|2
Tr(P )

= �PEP�2
F − �EE�2

F . (21)290

Rewriting (21), we get291

|Tr(EP )|2
Tr(P )

= Tr(EPE†P ) − �EE�2
F . (22)292

This implies that293

Ai = Bi − 1
Tr(P )

∑
E∈Ωi

�EE�2
F , (23)294

from which the lemma follows.295

From this lemma, we obtain a perturbed quantum error296

correction criterion using the language of quantum weight297

enumerators. In particular, we can say that Bi − Ai is pro-298

portional to the sum of the squares of the Frobenius norms299

of EE , where E ∈ Ωi. The matrices EE have been previously300

studied in Ref. [21], where their connection to the infidelity301

of a quantum code is elucidated.302

Given the form of Lemma 1, we define a notion of AQEC 303

with respect to the perturbation of the KL conditions as 304

follows. 305

Definition 2: A quantum code with code projector P is 306

(�0, . . . , �w−1)-AQEC with respect to the sets Ω0, . . . , Ωw−1 307

if 308

1
Tr(P )

∑
E∈Ωi

�EE�2
F ≤ �i (24) 309

for all i = 0, . . . , w − 1. 310

From this context, perturbations to the Knill-Laflamme 311

quantum error correction criterion (BSL
i − ASL

i > 0) can be 312

understood by directly perturbing the linear constraints on the 313

quantum weight enumerators. 314

IV. ESTABLISHING AN INDIRECT RELATIONSHIP 315

BETWEEN THE A- AND B-TYPE ENUMERATORS 316

In this section, we establish an indirect relationship 317

between A- and B-type enumerators given in (12) and (13), 318

respectively. 319

A. Auxiliary Weight Enumerators 320

Without the existence of a MacWilliams identity, we can 321

nonetheless establish a linear relationship between |A� and |B� 322

by introducing additional vectors that reside on an auxiliary 323

space. Recall that the projector P of a quantum code, when 324

decomposed in the Pauli basis, can be written as 325

P =
∑

σ∈Gn

Tr(σP )
2n

σ. (25) 326

We introduce a 4n-dimensional vector space V with an 327

orthonormal basis {|σ� : σ ∈ Gn} such that for σ, τ ∈ Gn, 328

�σ|τ� = 1 if σ = τ , and �σ|τ� = 0 otherwise. Then we define 329

an auxiliary weight enumerator in V⊗2 as follows. 330

Definition 3: The auxiliary (exact) weight enumerator cor- 331

responding to code projector P is given by 332

|AUX� = |φ� ⊗ |φ�, (26) 333

where 334

|φ� =
∑

σ∈Gn

Tr(σP )|σ�. (27) 335

The auxiliary weight enumerator is exact in the sense that it 336

encompasses complete information about the quantum code’s 337

projector. We emphasize that the state |φ� depends only on the 338

code’s projector P . Hence |φ� is independent of the channel 339

in consideration. 340

Define a swap operation 341

Π =
∑

σ,τ∈Gn

|σ��τ | ⊗ |τ��σ|. (28) 342

It follows that |AUX� is an eigenvector of Π with 343

eigenvalue +1 344

Π|AUX� = |AUX�, (29) 345

since Tr(σP )Tr(τP ) is invariant under the swap of σ and 346

τ . We later exploit this permutation symmetry to introduce 347
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additional constraints in our linear program for amplitude348

damping channels.349

In the lemma below, we discuss what |AUX� is for stabilizer350

codes.351

Lemma 4: Let P be the code projector of a stabilizer352

code, defined by a stabilizer group S ⊂ Gn, that encodes k353

logical qubits into n physical qubits. Then the auxiliary weight354

enumerator of the stabilizer code is |AUX� = |φ� ⊗ |φ�, where355

|φ� = 2k
∑
E∈S

sgn(E)|E/ sgn(E)�, (30)356

where sgn(E) = 1 if E ∈ Gn and sgn(E) = −1 if −E ∈ Gn.357

Proof: Let G1, . . . , Gn−k be independent generators of an358

n-qubit stabilizer code that encodes k logical qubits. Note that359

its code projector can be written as P =
∏n−k

i=1 ((1+Gi)/2) =360

2−n+k
∑

σ∈S σ, where 1 denotes the n-qubit identity matrix.361

Hence for every E ∈ Gn, we find that Tr(EP ) = 2kδ[E ∈ S],362

and for every −E ∈ Gn, we find that Tr(EP ) = −2kδ[E ∈ S],363

where δ[E ∈ S] is an indicator function and its value is 1 if364

E ∈ S and 0, otherwise.365

Example 1: Let us consider the four-qubit code in [18],366

which has two logical codewords367

|0�L =
1√
2

(|0000�+ |1111�) ,368

|1�L =
1√
2

(|0011�+ |1100�) .369

This code is a stabilizer code with three independent Pauli370

generators ZZII, IIZZ and XXXX . The stabilizers are371

IIII , ZZII , IIZZ, ZZZZ, XXXX , −Y Y XX , −XXY Y372

and Y Y Y Y . Hence the auxiliary enumerator is373

|AUX�=(2|IIII� + 2|ZZII�+ 2|IIZZ� + 2|ZZZZ�374

+2|XXXX�−2|YYXX�−2|XXY Y�+2|Y Y Y Y�)⊗2.375

(31)376

B. Connection Matrices377

To establish the connection between our auxiliary weight378

enumerator |AUX� with the two generalized weight enumera-379

tors |A� and |B�, we define two matrices as follows:380

MA =
w−1∑
i=0

∑
E∈Ωi

∑
σ,τ∈Gn

2−2nTr(Eσ)Tr(E†τ)|i��σ|�τ |, (32)381

MB =
w−1∑
i=0

∑
E∈Ωi

∑
σ,τ∈Gn

2−2nTr(EσE†τ)|i��σ|�τ |. (33)382

The matrices MA and MB establish an indirect linear relation-383

ship between the generalized enumerators |A� and |B� via an384

additional linear relationship with the auxiliary weight enu-385

merator. Namely, we have the following linear relationships.386

Lemma 5: The following matrix identities hold.387

MA|AUX� = (TrP )2|A�, (34)388

MB|AUX� = TrP |B�. (35)389

Proof: By (25), we get 390

|A� =
1

(TrP )2

w−1∑
i=0

∑
E∈Ωi

2−2n
∑

σ,τ∈Gn

Tr(Eσ)Tr(E†τ) 391

× Tr(σP )Tr(τP )|i�. (36) 392

Also we can see that 393

MA|AUX� =
w−1∑
i=0

∑
E∈Ωi

σ,τ∈Gn

Tr(Eσ)Tr(E†τ)
22n

|i�Tr(σP )Tr(τP ). 394

(37) 395

Hence (34) holds. 396

To obtain the second identity, we also expand the code 397

projector P in the Pauli basis to get 398

|B� =
1

Tr(P )

w−1∑
i=0

∑
E∈Ωi

2−2n
∑

σ,τ∈Gn

Tr(EσE†τ)Tr(σP )Tr(τP )|i�. 399

(38) 400

Next, note that 401

MB|AUX� =
w−1∑
i=0

∑
E∈Ωi

σ,τ∈Gn

2−2nTr(EσE†τ)|i�Tr(σP )Tr(τP ). 402

(39) 403

The result MB|AUX� = Tr(P )|B� then follows. 404

While we do not have a direct linear relationship between 405

the generalized quantum weight enumerators |A� and |B�, 406

Lemma 5 establishes a linear relationship between each gen- 407

eralized quantum weight enumerator and the auxiliary weight 408

enumerator. This thereby establishes an indirect linear rela- 409

tionship between |A� and |B�, which allows us to establish 410

linear programming bounds for AD codes later. 411

We explain how we define |AUX� such that the A- and 412

B-type enumerator can be both linearly related to |AUX�. First, 413

we note for both the A-type enumerator in (12) and B-type 414

enumerator in (13), the code projector P appears twice in 415

every term of the summands. Second, we note that the code 416

projector P can be written in the Pauli decomposition (or a 417

nice error basis) as in (25). Hence the vector |φ� contains 418

complete information about P . Third, because of the first 419

point and the second point, we expect that both the A- and 420

B-type enumerators can be linearly dependent on a vector of 421

the form |φ� ⊗ |φ�. 422

It is also important to note the following properties of 423

connection matrices. 424

1) The connection matrices MA and MB are devoid of 425

information about the code, because they are both inde- 426

pendent of the code projector P . 427

2) The connection matrices MA and MB depend on the 428

set of Kraus operators Ω that describe the underlying 429

quantum channel. 430

We give examples of connection matrices in the following. 431

Example 2: Let us consider an n-qubit Pauli channel that 432

introduces an n-qubit Pauli error F ∈ Gn with probability pF . 433
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For i = 0, . . . , n, let us have Ωi = {√pF F ∈ Gn : wt (F ) =434

i}. Then it follows that435

MA =
n∑

i=0

∑
wt(F )=i

pF |i��F |�F |, (40)436

and437

MB =
n∑

i=0

∑
wt(F )=i

∑
σ∈Gn

2−2npF Tr (FσFσ) |i��σ|�σ|. (41)438

For an n-qubit depolarizing channel that introduces on each439

qubit an X , Y or Z error with probability p/3 and no error440

with probability 1 − p, we have pF = pwt(F )(1 − p)n−wt(P ).441

C. Linear Programming Bounds for General442

Quantum Channels443

Here, given a quantum channel with a set of Kraus444

operators Ω, partitioned into disjoint subsets Ω0, . . . , Ωw−1,445

we introduce a linear program with optimization variables446

A0, . . . , Aw−1, B0, . . . , Bw−1, which are non-negative. The447

constraints in this linear program arise from relating the448

A- and B-type quantum weight enumerators introduced in449

(12) and (13). While the A- and B-type enumerators do not450

necessarily have a direct linear relation to one another, they451

are both directly linearly related to the auxiliary exact weight452

enumerator of a quantum code (26) via the connection matrices453

(32) and (33). Infeasibility of this linear program allows us to454

establish the non-existence of certain AQEC quantum codes.455

Since it is only the infeasibility of the linear program that456

is important, we can always set the objective function of the457

linear program to be a constant, that is for instance 0.458

Consider the feasibility problem.459

Find A0, . . . ,Aw−1, B0, . . . , Bw−1, |AUX�460

subject to (TrP )2|A� = MA|AUX�461

TrP |B� = MB|AUX�462

0 ≤ Bi − Ai ≤ �i, 0 ≤ i ≤ w − 1463

B0 + · · · + Bw−1 ≤ 1464

Ai ≥ 0, 0 ≤ i ≤ w − 1465

Π|AUX� = |AUX�. (42)466

Then we have the following result.467

Theorem 6: Suppose that a quantum code is (�0, . . . ,468

�w−1)-AQEC with respect to the sets Ω0, . . . , Ωw−1. Then (42)469

has a feasible solution.470

Proof: Given an arbitrary noisy quantum channel, the A471

enumerator defined in (12) must have non-negative compo-472

nents (see (18)). Moreover, by the Cauchy-Schwarz inequality,473

Bi ≥ Ai for all i (see (17)), and
∑

i Bi ≤ 1 (see (16)). The474

first two equalities of (42) hold because of Lemma 5. Using475

the fact that the code is an (�0, . . . , �w−1)-AQEC, we have,476

by Lemma 1 and Definition 2, that Bi − Ai ≤ �i. For any477

quantum code, we can write down its auxiliary exact weight478

enumerator |AUX�. Since |AUX� = |φ� ⊗ |φ� where |φ� is as479

defined in (26), the auxiliary exact weight enumerator must480

be invariant under swapping of the two registers, and we must481

have Π|AUX� = |AUX� as described in (29).482

Conversely, we have the following. 483

Corollary 7: Suppose that (42) is infeasible. Then there 484

does not exist any quantum code that is (�0, . . . , �w−1)-AQEC 485

with respect to the sets Ω0, . . . , Ωw−1. 486

Here at this abstract level, the distance d does not appear. 487

We have thereby derived a linear programming bound that 488

applies to any quantum error-correcting code given under the 489

influence of any noisy quantum channel. Note that TrP is 490

the dimension of the quantum code and hence a constant in 491

the linear program. We would like to emphasize that if (42) 492

holds, it does not necessarily mean that a quantum code that is 493

(�0, . . . , �w−1)-AQEC exists. We can only make a conclusive 494

statement about (�0, . . . , �w−1)-AQEC codes when (42) is 495

infeasible, and this statement is on the non-existence of such 496

AQEC codes. 497

Our method can specialize to exact quantum error correc- 498

tion. In this scenario, we have �0 = · · · = �w−1 = 0. We can 499

also adapt our linear program to establish the non-existence of 500

AQEC stabilizer codes. For this, note that Lemma 4 implies 501

that for a stabilizer code, the components of |AUX� must be 502

either 0, 22k or 2−2k. Thus we can impose these additional 503

integer constraints on |AUX� in (42) for stabilizer codes. 504

The independence of the auxiliary weight enumerator on 505

the underlying quantum channel allows us to establish a single 506

linear program for an entire family of quantum channels with 507

respect to a fixed quantum code, and we illustrate this using 508

the amplitude damping channel in the next section. 509

V. APPLICATIONS 510

A. Amplitude Damping Errors 511

AD errors model energy relaxation in quantum harmonic 512

oscillator systems and photon loss in photonic systems. 513

By ensuring that each quantum harmonic oscillator couples 514

identically to a unique bosonic bath, in the low temperature 515

limit, the effective noise model can be described by an AD 516

channel. When quantum information lies in a qubit, the cor- 517

responding AD channel Nγ models energy loss in a two-level 518

system, where γ is the probability that an excited state relaxes 519

to the ground state. Nγ has two Kraus operators K0 and K1, 520

where 521

K0 =
[
1 0
0

√
1 − γ

]
, K1 =

[
0

√
γ

0 0

]
. 522

When energy loss occurs independently and identically in 523

an n-qubit system, the corresponding noisy channel can be 524

modeled as Nn,γ = N⊗n
γ . The set of all Kraus operators of 525

Nn,γ can be written as 526

K = {Kx � Kx1 ⊗ · · · ⊗ Kxn : x ∈ {0, 1}n}. (43) 527

Since the Kraus operator K1 models energy loss on one qubit, 528

it is useful to know how many times the Kraus operator 529

K1 occurs in Kx. Hence we define the following property 530

of Kx. 531

Definition 8: The weight of Kx for x ∈ {0, 1}n is wt (x). 532

The weight of Kx counts the number of qubits where 533

Kx induces energy loss. For example, wt (K1 ⊗ K0 ⊗ K1) = 534

wt (K101) = wt (101) = 2, which corresponds to energy loss 535
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in two qubits. Using this notion of weight, we partition the536

set of Kraus operators K accordingly. Namely, by denoting537

Ki = {E ∈ K : wt (E) = i}, (44)538

we have K = K0∪· · ·∪Kn. In this terminology, a code corrects539

t errors perfectly if all the errors in Ki for i ≤ t satisfy the540

Knill-Laflamme quantum error correction criterion [20]. Note541

that we will need to correct errors not only in K1, . . . ,Kt, but542

also errors in K0.543

Specializing to the case of AD errors, our enumerators are544

vectors with coefficients545

Ai =
1

(TrP )2
∑

E∈Ki

Tr(EP )Tr(E†P ), i = 0, . . . , n, (45)546

Bi =
1

TrP

∑
E∈Ki

Tr(EPE†P ), i = 0, . . . , n. (46)547

The corresponding connection matrices are548

MA =
n∑

i=0

∑
E∈Ki

∑
σ,τ∈Gn

2−2nTr(Eσ)Tr(E†τ)|i��σ|�τ |, (47)549

MB =
n∑

i=0

∑
E∈Ki

∑
σ,τ∈Gn

2−2nTr(EσE†τ)|i��σ|�τ |. (48)550

From Section III, we know that Bi ≥ Ai ≥ 0 for all i =551

0, . . . , n.552

Since the only Kraus operator in K0 has a minimum singular553

value of (1 − γ)n/2 for A0, we have the lower bound554

A0 ≥ (1 − γ)n. (49)555

This is reminiscent of the scenario for SL weight enumerators,556

where we have ASL
0 = 1.557

Furthermore, it is easy to see that every Bi is at most558

O(γi), Since the operator norm of Kraus operators from Ki559

is γi/2, the operator norm of EPE† for any E ∈ Ki is at560

most γiTr(P ). It follows from the Hölder inequality on the561

Hilbert-Schmidt inner product that562

|Tr(EPE†P )| = |�EPE†, P �| ≤ �EPE†��P�1,563

where �·�1 denotes the trace norm and �·� denotes the operator564

norm, which is the maximum singular value of a matrix. Thus565

by counting the number of terms in Ki, we have566

Bi/γi ≤
(

n

i

)
. (50)567

We can obtain another upper bound on Bi. Note that568

Bi =
1

TrP

∑
E∈Ki

Tr(EPE†P )569

≤ 1
TrP

∑
E∈Ki

Tr(EPE†)570

≤ 1
TrP

∑
E∈Ki

Tr(EE†)571

=
1

TrP

(
n

i

)
Tr(
[
1 0
0 1 − γ

]⊗n−i

⊗
[
γ 0
0 0

]⊗i

) (51)572

≤ 1
TrP

(
n

i

)
2n−iγi. (52)573

The quantum weight enumerators of Q for AD channels are 574

|A� = A0|0� + · · · + An|n�, 575

|B� = B0|0� + · · · + Bn|n�. (53) 576

We have the following definition of AQEC criterion for AD 577

channels, using the language of quantum weight enumerators. 578

Definition 9: An ((n, M)) quantum code is called a 579

(t, c)-AD code if its quantum weight enumerators satisfy the 580

constraints 581

Bi − Ai ≤ cγt+1, i = 0, . . . , t, (54) 582

where 0 ≤ γ ≤ 1. 583

In the language of Definition 2, a (t, c) AD code is 584

(cγt+1, . . . , cγt+1)-AQEC with respect to the sets K0, . . . ,Kt. 585

Example 3: We consider again the four-qubit code in 586

Example 1 [18] The code has weight enumerators 587

A0 = γ4/64 − γ3/4 + 5γ2/4 − 2γ + 1; 588

A1 = A2 = A3 = 0; 589

A4 = γ4/64. 590

B0 = γ4/16 − γ3/4 + 5γ2/4 − 2γ + 1; 591

B2 = 3γ4/8 − 3γ3/4 + 3γ2/4; 592

B4 = γ4/16; 593

B1 = B3 = 0. 594

Therefore, this code cannot be a (2, c)-AD code for any c > 0. 595

Conversely, this code is known to correct an arbitrary single 596

AD error [18]. 597

Example 4: The weight enumerators of the nine-qubit Shor 598

code are as follows. Note that (17) holds here. In addition, 599

by Definition 9, this code cannot correct each AD error of 600

weight three. 601

A0 = B0 = 1 − 9γ/2 + 153γ2/16 602

− 399γ3/32 + 351γ4/32 + O(γ5); 603

Ai = Bi = 0, i = 1, 2, 4, 5, 7, 8; 604

A3 = A9 = 0; 605

B3 = 3γ3/4 + O(γ4); 606

B9 = γ9/32; 607

A6 = 3γ6/16 + −9γ7/32 + 45γ8/256 + O(γ9); 608

B6 = 3γ6/16 − 9γ7/32 + 9γ8/32 + O(γ9). 609

Since the leading order of B3 − A3 in γ is cubic, the Shor 610

code cannot be a (3, c)-AD code for any c > 0. Hence, this 611

is consistent with the fact that the Shor code corrects two AD 612

errors [22]. 613

From the above discussion, the weight enumerators |A� and 614

|B� of a (t, c)-AD code must satisfy (54), (34), and (35). 615

We formulate a linear program with a constant objective func- 616

tion, and find non-negative variables A0, . . . , An, B0, . . . , Bn 617

that belong to a particular feasible region. The feasibil- 618

ity problem of our linear program is then equivalent to 619
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the following.620

Find A0, . . . , An,B0, . . . , Bn, |AUX�621

subject to (TrP )2|A� = MA|AUX�622

TrP |B� = MB|AUX�623

(Bi − Ai)/γt+1 ≤ c, 0 ≤ i ≤ d − 1624

Bi/γi ≤
(

n

i

)
, 0 ≤ i ≤ n625

Bi/γi ≤
(

n

i

)
2n−i/TrP, 0 ≤ i ≤ n626

B0 + · · · + Bn ≤ 1627

Ai ≥ 0, 0 ≤ i ≤ n628

Π|AUX� = |AUX�. (55)629

Note that the constraint Bi/γi ≤ (
n
i

)
2n−i/TrP only630

becomes non-trivial for large values of TrP .631

Formally, we have the following result for (t, c)-AD codes.632

Theorem 10: Let t be a positive integer and c > 0. Suppose633

that an n-qubit quantum code is a (t, c)-AD code. Then the634

linear program (55) is feasible for all γ ∈ [0, 1].635

Proof: We get this by applying Theorem 6 with the636

definition of a (t, c)-AD code, identifying Ωi with the sets637

Ki as given in (44), and including the additional inequality638

from (52).639

Since integer programs are hard to solve in general, our640

feasibility conditions are attractive because they have no inte-641

ger constraints, in contrast to many other linear programming642

bounds for stabilizer codes [10], [12]–[14]. Hence, we have a643

linear program as opposed to an integer program. However,644

one may wonder whether such a linear program is suffi-645

ciently constrained to be potentially infeasible. We demon-646

strate numerically that our linear program can be infeasible,647

by analyzing the potential of using three qubits to correct a648

single AD error. To do this, we have an additional observation649

that our linear program is parametrized by γ. Since a (t, c)-AD650

code is defined for any value of γ in the unit interval, we can651

concatenate the linear constraints using many different values652

of γ. Crucially, constraints for different values of γ are related653

because |AUX� is independent of γ. We illustrate the linear654

dependence of all of our linear constraints in Fig. 1. This655

leads to our main corollary for (t, c)-AD codes.656

Corollary 11: Let t be a positive integer and c > 0, and let657

Γ be any subset of [0, 1]. If (55) is infeasible for every γ ∈ Γ,658

then there does not exist any n-qubit (t, c)-AD code.659

To determine if our concatenated linear program is feasible,660

we code up the linear constraints in the MATLAB solver cvx,661

and use the algorithm SDPT3. In the linear constraints of (42),662

we write the monomials of γ as denominators. This normalizes663

our constraints so that a numerical solver can be numerically664

stable even for small values of γ. Also, when coding up the665

linear constraints of (42) in a solver, we do not explicitly666

construct the permutation matrix Π because it is much too667

big. Rather we specify its implied linear constraints directly668

into the optimizer environment for our linear program.669

In our numerical study, we analyze the possibility of cor-670

recting a single AD error using three qubits. We obtain mainly671

no-go results on the existence of a three-qubits code that672

Fig. 1. The relationship between various enumerators is depicted here. Every
A-type or B-type enumerator for any value of AD parameter γ relates linearly
to the same auxiliary enumerator. In this figure we illustrate enumerators for
four values γ1, . . . , γ4. The matrices M

(γi)
A and M

(γi)
B are the connection

matrices corresponding to an AD noise channel of noise strength γi, and
|A(γi)〉 and |B(γi)〉 are the corresponding A and B-type enumerators.

corrects a single AD error. For this, we consider four different 673

values of γ in the construction of our linear program. More 674

precisely, we numerically find the maximum c for which the 675

convex solver returns a result that says that the linear program 676

is infeasible. 677

Theorem 12: There is no three-qubit (1, 9.8×104)-AD code 678

that has dimension two. 679

Proof: For n = 3, M = 2, t = 1, we rule out c = 9.8 × 680

104 using γ = 0.1, 0.05, 0.01, 0.0001, by Corollary 11. 681

Numerically, this value of c = 9.8 × 104 is the largest we 682

could find for the parameters n = 3, M = 2, t = 1. If we could 683

rule out three-qubit (1, c)-AD codes for all positive numbers 684

c, then we would able to rule out all three-qubit codes that 685

correct a single AD error. 686

B. Probabilistic Pauli Errors 687

Let us consider an n-qubit Pauli channel that introduces 688

an n-qubit Pauli error F ∈ Gn with probability pF that we 689

have looked into Example 2. Recall that for i = 0, . . . , n, 690

this corresponds to having Ωi = {√pF F ∈ Gn : wt (F ) = 691

i}. In this scenario, the components of the A and B-type 692

enumerators can be written as 693

Ai =
1

(TrP )2
∑

F∈Gn

wt(F )=i

pF Tr(FP )Tr(F †P ), (56) 694

Bi =
1

TrP

∑
F∈Gn

wt(F )=i

pF Tr(FPF †P ) (57) 695

for every i = 0, . . . , n. Suppose that for every i = 0, . . . , n, 696

there is a non-negative constant pi such that pF = pi for every 697

F ∈ Gn and wt (F ) = i. Then we can obtain the following 698

result. 699

Theorem 13: Suppose that a quantum code is 700

(�0, . . . , �n)-AQEC with respect to the sets Ω0, . . . , Ωn, 701

where Ωi = {√piF ∈ Gn : wt (F ) = i}. Then a feasible 702
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solution exists for the set of linear constraints in (42) together703

with the following linear constraints704

|A� = D|ASL�, (58)705

|B� = D|BSL�, (59)706

M|ASL� = |BSL�, (60)707

where708

D =
n∑

i=0

pi|i��i|, (61)709

710

M =
Tr(P )

2n

n∑
i=0

n∑
j=0

Ki(j; n)|i��j|, (62)711

and712

Ki(x; n) =
i∑

j=0

(−1)j3i−j

(
x

j

)(
n − x

i − j

)
(63)713

is the i-th quaternary Krawtchouk polynomial.714

Proof: The linear constraints in (42) are feasible because715

of Theorem 6. Since pF = pi for every Pauli F of constant716

weight, the constraints (58) and (59) hold because of the def-717

inition of the A and B-type Shor-Laflamme quantum weight718

enumerators. The last equality constraints in (60) arises from719

the MacWilliams identity [8].720

Corollary 14: Suppose that the linear constraints in (42)721

combined with the linear constraints in (58), (59) and (60)722

are infeasible. Then there does not exist a (�0, . . . , �n)-AQEC723

code that corrects a Pauli channel that introduces Pauli errors724

of weight i with probability pi.725

Now consider a qubit depolarizing channel that introduces726

no error with probability 1 − p and introduces an X , Y or Z727

error with probability p/3 each. Then we can specialize our728

result to the n-qubit depolarizing channel, by setting729

pi = pi(1 − p)i. (64)730

C. Linear Programming Bounds for Permutation-Invariant731

Quantum Codes732

Permutation-invariant quantum codes are quantum codes733

that are invariant under any permutation of their underly-734

ing particles. Such codes have been studied in the qubit [21],735

[23]–[25], the qudit [26], and the bosonic [27] settings.736

These quantum codes are interesting because of not only737

their capability to correct non-trivial errors such as quan-738

tum deletions [28], [29] and insertions [30], but also their739

potential applications as quantum memories [31] and for740

robust quantum metrology [32]. One key attractive feature of741

permutation-invariant quantum codes is the ease in which they742

can be prepared in physical systems [33], [34] as compared743

to the usual stabilizer codes.744

Here, we restrict our attention to permutation-invariant745

quantum codes on qubits, and use linear programming meth-746

ods to establish upper bounds on the minimum distance747

of permutation-invariant quantum codes of designed dis-748

tances d. We numerically determine the non-existence of749

certain permutation-invariant quantum codes of length up to750

n = 12 qubits. To achieve this, we note that the auxiliary 751

weight enumerator, which resides in a 42n-dimensional vector 752

space, can be compressed into a vector that contains all the 753

required information that resides in a O(n3) space. We call this 754

compressed vector a permutation-invariant auxiliary enumera- 755

tor, and establish corresponding compressed connection matri- 756

ces that relate this auxiliary enumerator to the A- and B-type 757

Shor-Laflamme quantum weight enumerators. Our main result 758

in this section is a set of linear equations that if infeasible, rules 759

out the existence of certain ((n, M, d)) permutation-invariant 760

quantum codes. The variables in the set of linear equations 761

are the A- and B-type Shor-Laflamme quantum weight enu- 762

merators, and also an auxiliary permutation-invariant auxiliary 763

weight enumerator. We also compile tables on upper and lower 764

bounds on M for certain permutation-invariant quantum codes 765

of fixed length n and distance d. 766

A permutation-invariant quantum code has distance d if it 767

satisfies the Knill-Laflamme quantum error correction criterion 768

that for every pair of orthogonal logical codewords |iL� and 769

|jL� and for every E ∈ Gn of weight at most d − 1, 770

�iL|E|jL� = gEδi,j (65) 771

for some complex coefficient gE . 772

In this section, for i = 0, 1, . . . , n, we set 773

Ωi = {E ∈ Gn : wt (E) = i}. (66) 774

Now let P be a projector onto a permutation-invariant 775

quantum code. We are interested in the distance of a 776

permutation-invariant quantum code, and hence we use the 777

usual SL-enumerators {ASL
i } and {BSL

i }. While the A-type 778

and B-type SL enumerators are related by the quantum 779

MacWilliams identity, they are also related to our auxil- 780

iary weight enumerators using the corresponding connection 781

matrices 782

MSL
A =

w−1∑
i=0

∑
E∈Ωi

∑
σ,τ∈Gn

2−2nTr(Eσ)Tr(E†τ)|i��σ|�τ |, (67) 783

MSL
B =

w−1∑
i=0

∑
E∈Ωi

∑
σ,τ∈Gn

2−2nTr(EσE†τ)|i��σ|�τ |. (68) 784

Now we will proceed to explain how we can impose 785

permutation-invariant constraints on the auxiliary weight enu- 786

merator. Note that for any qubit permutation π, we must have 787

Pπ = P = πP, (69) 788

for the projector P of any permutation-invariant quantum code. 789

Then for any Pauli σ and qubit permutation π, we see that 790

Tr(πσπ†P ) = Tr(σπ†Pπ) = Tr(σP ). (70) 791

For non-negative integers x, y, z such that x + y + z ≤ n, let 792

σx,y,z,n = X⊗x ⊗ Y ⊗y ⊗ Z⊗z ⊗ I⊗(n−x−y−z). (71) 793

Now define the sets 794

Cx,y,z,n = {πσx,y,z,nπ† : π ∈ Sn}, (72) 795

where the symmetric group Sn denotes the set of n! permu- 796

tations on n qubits. We can see that the set of Pauli operators 797

Gn can be partitioned into the sets Cx,y,z,n. 798
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We define an auxiliary enumerator for the permutation-799

invariant quantum code800

|φpicode� =
∑

0≤x+y+z≤n

Tr(σx,y,z,nP )|σx,y,z,n�, (73)801

and let802

|AUXpicode� = |φpicode� ⊗ |φpicode� (74)803

denote the compressed auxiliary weight enumerator. Note that804

since P is a Hermitian operator, it can always be expressed as805

a linear combination of Pauli matrices with real coefficients.806

Hence both |φpicode� and |AUXpicode� are real vectors.807

A simple consequence of Lemma 5 is the following result.808

Lemma 15: Let P be a code projector onto a809

permutation-invariant quantum code, and let810

Wn =
∑

0≤x+y+z≤n

∑
τ∈Cx,y,z,n

|τ��σx,y,z,n|. (75)811

denote a matrix with 4n rows and
(
n+3

3

)
columns. Then the812

following matrix identities hold.813

MSL
A (Wn ⊗ Wn)|AUXpicode� = (TrP )2|ASL�, (76)814

MSL
B (Wn ⊗ Wn)|AUXpicode� = TrP |BSL�, (77)815

where |ASL� =
∑n

j=0 ASL
j |j� and |BSL� =

∑n
j=0 BSL

j |j�.816

Proof: Given any code projector P , we can write |φ� =817 ∑
σ∈Gn

Tr(σP )|σ�. Now note that818

Wn|φpicode� =
∑

0≤x+y+z≤n

∑
τ∈Cx,y,z,n

Tr(σx,y,z,nP )|τ�. (78)819

Since the code is permutation-invariant, we have that820

Tr(τP ) = Tr(σx,y,z,nP ) (79)821

for every τ ∈ Cx,y,z,n. Using this identity, we find that for822

permutation-invariant quantum codes, we have823

Wn|φpicode� =
∑

0≤x+y+z≤n

∑
τ∈Cx,y,z,n

Tr(τP )|τ� = |φ�. (80)824

Hence it follows that825

(Wn ⊗ Wn)|AUXpicode�826

=(Wn ⊗ Wn)|φpicode� ⊗ |φpicode�827

=(Wn|φpicode�) ⊗ (Wn|φpicode�)828

=|φ� ⊗ |φ�829

=|AUX�. (81)830

Substituting this into Lemma 5 proves the result.831

Here, the number of columns in Wn corresponds to the832

number of combinations of non-negative integers x, y, z such833

that the constraint x+y+z ≤ n is satisfied. The key difference834

between Lemma 5 and Lemma 15 is that the auxiliary weight835

enumerator for a permutation-invariant quantum code has836

dimension that is exponentially smaller than the dimension of837

|AUX�. Namely, the dimension of |φpicode� is
(
n+3

3

)
, which838

implies that the dimension of |AUXpicode� is
(
n+3

3

)2
=839

O(n6), which grows only polynomially in n.840

In what follows, we show that for permutation-invariant841

quantum codes, we can further compress the sizes of both842

the auxiliary weight enumerators and the connection matrices. 843

Namely, in place of using |AUXpicode�, we can use |φpicode�, 844

and instead of using the connection matrices MSL
A and MSL

B , 845

we can use the following compressed connection matrices 846

M̂A =
∑

0≤i≤n

∑
x+y+z=i

(
n

x, y, z

)
|i��σx,y,z,n|, (82) 847

and 848

M̂B =
∑

0≤i≤n
0≤x+y+z≤n

F (i, x, y, z, n)|i��σx,y,z,n|, (83) 849

where 850

F (i, x, y, z, n) =
∑

E∈Gi
σ∈Cx,y,z,n

2−nβ(E, σ), (84) 851

and given any two Paulis σ and τ in Gn, β(σ, τ) = 1, if σ 852

and τ commute, and β(σ, τ) = −1, otherwise. Note that 853

F (0, x, y, z, n) =
(

n

x, y, z

)
2−n, (85) 854

where
(

n
x,y,z

)
= n!/(x!y!z!(n− x− y − z)!) is a multinomial 855

coefficient. We can furthermore exploit the symmetry of the 856

summation in the definition of F to get 857

F (i, x, y, z, n) =
∑

a+b+c=i
σ∈Cx,y,z,n

2−nβ(σa,b,c,n, σ)
(

n

a, b, c

)
. (86) 858

From (86), we can see that the complexity of evaluating F 859

is O(n32n). 860

We now present the following lemma, which shows how 861

the A-type and B-type SL weight enumerators relate to one 862

another via the compressed connection matrices M̂A and 863

M̂B. For this, we define the permutation-invariant weight 864

enumerator 865

|π� =
∑

0≤x+y+z≤n

Tr(σx,y,z,nP )2|σx,y,z,n� (87) 866

Lemma 16:

M̂A|π� = Tr(P )2|ASL� (88) 867

M̂B|π� = Tr(P )|BSL�. (89) 868

Proof: By the definition of M̂A, it follows that 869

M̂A|π� =
n∑

i=0

∑
x+y+z=i

(
n

x, y, z

)
|i�Tr(σx,y,z,nP )2. (90) 870
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We begin by simplifying the matrices MSL
A (Wn ⊗ Wn) and871

MSL
B (Wn ⊗ Wn). Note that872

MSL
A (Wn ⊗ Wn)873

=
∑

0≤i≤n
E∈Gi

∑
0≤x+y+z≤n
0≤a+b+c≤n
σ∈Cx,y,z,n

τ∈Ca,b,c,n

2−2nTr(Eσ)Tr(E†τ)|i��σx,y,z,n|�σa,b,c,n|874

=
∑

0≤i≤n
x′+y′+z′=i

E∈Cx′,y′,z′,n

∑
0≤x+y+z≤n
0≤a+b+c≤n
σ∈Cx,y,z,n

τ∈Ca,b,c,n

δE,σδE,τ |i��σx,y,z,n|�σa,b,c,n|875

=
∑

0≤i≤n
x′+y′+z′=i

E∈Cx′,y′,z′,n

|i��σx′,y′,z′,n|�σx′,y′,z′,n|876

=
∑

0≤i≤n
x′+y′+z′=i

|Cx′,y′,z′,n||i��σx′,y′,z′,n|�σx′,y′,z′,n|877

=
∑

0≤i≤n

∑
x+y+z=i

(
n

x, y, z

)
|i��σx,y,z,n|�σx,y,z,n|.878

Since both MSL
A |AUXpicode� and M̂A|π� are equal to879

∑
0≤i≤n

x+y+z=i

(
n

x, y, z

)
|i�Tr(σx,y,z,nP )2, (91)880

the first result of this lemma follows from Lemma 15.881

Similarly,882

MSL
B (Wn ⊗ Wn)883

=
∑

0≤i≤n
E∈Gi

∑
0≤x+y+z≤n
0≤a+b+c≤n
σ∈Cx,y,z,n

τ∈Ca,b,c,n

2−2nTr(EσE†τ)|i��σx,y,z,n|�σa,b,c,n|884

=
∑

0≤i≤n
E∈Ki

∑
0≤x+y+z≤n
0≤a+b+c≤n
σ∈Cx,y,z,n

τ∈Ca,b,c,n

2−2nδσ,τ Tr(EσE†τ)|i��σx,y,z,n|�σa,b,c,n|885

=
∑

0≤i≤n
E∈Gi

∑
0≤x+y+z≤n
σ∈Cx,y,z,n

2−nϕ(E, σ)|i��σx,y,z,n|�σx,y,z,n|886

=
∑

0≤i≤n
0≤x+y+z≤n

F (i, x, y, z, n)|i��σx,y,z,n|�σx,y,z,n|.887

Since both MSL
B |AUXpicode� and M̂B|π� are equal to888 ∑

0≤i≤n
x+y+z=i

F (i, x, y, z, n)|i�Tr(σx,y,z,nP )2, (92)889

the second result of this Lemma follows from Lemma 15.890

We now continue to introduce more constraints. Note that891

for an M -dimensional permutation-invariant quantum code, its892

projector P admits the spectral decomposition893

P =
M∑

j=1

|Lj��Lj |, (93)894

where |Lj� correspond to the logical codewords of the 895

permutation-invariant quantum code. Now denote a Dicke 896

state |DN
w � as a uniform superposition over n-bit strings of 897

Hamming weight w [35]. Namely, 898

|DN
w � =

1√(
N
w

) ∑
x1,...,xN∈{0,1}
x1+···+xN=w

|x1� ⊗ · · · ⊗ |xN �. (94) 899

We can expand every logical codeword |Lj� in the Dicke basis 900

{|Dn
w� : w = 0, . . . , n} to get 901

|Lj� =
n∑

w=0

aj,w|Dn
w�, (95) 902

where aj,w are in general complex coefficients. We will restrict 903

ourselves to permutation-invariant quantum codes where aj,k 904

are non-negative. This is a mild constraints because for 905

every qubit ((n, M, d)) permutation-invariant quantum code 906

constructed so far [21], [26], there exists an equivalent 907

permutation-invariant quantum code that has these properties. 908

Now let us consider Paulis of the form σx,0,0,n = X⊗x ⊗ 909

I⊗n−x, and analyze the properties of Tr(σx,0,0,nP ) when x is 910

even. Note that 911

Tr(σx,0,0,nP ) =
M∑

j=0

�Lj |σx,0,0,n|Lj� 912

≥
M∑

j=0

n∑
w=0

a2
j,w�Dn

w|σx,0,0,n|Dn
w� 913

≥
M∑

j=0

n−x/2∑
w=x/2

a2
j,w�Dn

w|σx,0,0,n|Dn
w� 914

=
M∑

j=0

n−x/2∑
w=x/2

a2
j,w

(
x

x/2

)(
n−x

w−x/2

)
(

n
w

) , (96) 915

where the first and second inequalities arise because 916

�Dn
w|σx,0,0,n|Dn

w′� and aj,w are all non-negative for all 917

w, w� = 0, . . . , n, and in the last equality, we used a special 918

case of [32, Lemma 6]. 919

Using [21, Lemma 2], we find that 920(
x

x/2

)(
n−x

w−x/2

)
(

n
w

) =

(
w

x/2

)(
n−w
x/2

)
(
n
x

) . (97) 921

Now denote 922

βn,x = min
x/2≤w≤n−x/2

(
w

x/2

)(
n − w

x/2

)
/

(
n

x

)
. (98) 923

Then 924

Tr(σx,0,0,nP ) 925

≥βn,x

M∑
j=0

n−x/2∑
w=x/2

a2
j,w 926

=βn,x

⎛
⎝M −

M∑
j=0

⎛
⎝x/2−1∑

w=0

a2
j,w +

n∑
w=n−x/2+1

a2
j,w

⎞
⎠
⎞
⎠ . (99) 927

The last equality arises from the normalization condition of the 928

logical operators |Lj�, which implies that
∑n

w=0 a2
j,w = 1. 929
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Using the fact that a2
j,w ≤ 1, we find that930

Tr(σx,0,0,nP ) ≥ βn,x (M−x) . (100)931

Note that (100) is a strict inequality when M = 2, d > 1 and932

(x, y, z) = (2, 0, 0). To see this, note that when (100) holds933

with equality, this means that Tr(σ2,0,0P ) = 0. But the934

Dicke inner products �Dn
w|σ2,0,0|Dn

w� being positive for all935

w = 1, . . . , n − 1, implies that P can only be supported on936

|Dn
0 � = |0�⊗n and |Dn

n�⊗n. Since M = 2, P must be equal937

to (|0��0|)⊗n + (|1��1|)⊗n, and this is just the projector of938

the repetition code. The repetition code has a distance equal939

to 1, and this contradicts the premise that d > 1. Hence if940

M = 2 and (x, y, z) = (2, 0, 0), the inequality (100) must be941

strictly positive.942

Theorem 17: There is no ((5,2,3)) permutation-invariant943

quantum code that has logical codewords with nonnegative944

coefficients aj,w in the Dicke basis.945

Proof: This is because we know that there is a unique946

solution to the SL enumerators for the ((5,2,3)) code [8],947

which corresponds to ASL
0 = 1, ASL

1 = 0, ASL
2 = 0, ASL

3 =948

0, ASL
4 = 15, ASL

5 = 0. But (100) holding strictly implies949

that ASL
2 > 0, and hence the linear program for ((5,2,3))950

permutation-invariant quantum codes must be infeasible, and951

hence a ((5,2,3)) permutation-invariant quantum code does not952

exist.953

For a permutation-invariant quantum code with nonnegative954

aj,w to have minimum distance of d, the SL enumerators955

need to satisfy not only the usual MacWilliams identity, but956

also the additional constraints related to the auxiliary weight957

enumerator for permutation-invariant quantum codes. Let958

T2 = |σ2,0,0,n��σ2,0,0,n|, (101)959

and960

τ2 = β2
n,2(M − 2)2|σ2,0,0,n�. (102)961

We formulate the linear program that maximizes ASL
2 subject962

to the following constraints:963

Find ASL
0 , . . . ,ASL

n , BSL
0 , . . . , BSL

n ≥ 0964

|π� ∈ R
(n+1)(n+2)(n+3)/6

965

subject to (TrP )2|ASL� = M̂A|π�966

TrP |BSL� = M̂B|π�967

BSL
i − ASL

i = 0, 0 ≤ i ≤ d − 1968

BSL
i ≥ ASL

i , d ≤ i ≤ n969

|π� ≥ 0970

T2|π� ≥ τ2971

|π� ≤ Tr(P )2972

BSL
i =

Tr(P )
2n

n∑
j=0

ASL
j Ki(j; n), i=0, . . . , n.

(103)

973

The last equality constraints in program (103) are from the974

MacWilliams identity [8] and Ki(x; n) is the i-th quaternary975

Krawtchouk polynomial as defined in (63).976

If the linear program is infeasible, then we know for977

sure that there do not exist ((n, M, d)) permutation-invariant978

quantum codes that have logical codewords with nonnegative 979

aj,w. Furthermore, for an ((n, 2, d ≥ 2)) permutation-invariant 980

quantum code to exist, we know that ASL
2 must be strictly 981

positive, because if ASL
2 = 0, we must have σ2,0,0,n = 0 which 982

implies that the permutation-invariant quantum code must be a 983

repetition code with d = 1, which contradicts the assumption 984

that d ≥ 2. This leads to the following theorem. 985

Theorem 18: Suppose that there exists an ((n, M, d)) 986

permutation-invariant code, where all the logical codewords 987

are of the form (95) with nonnegative coefficients aj,w in the 988

Dicke basis. Then the set of linear inequalities in (103) is 989

feasible. 990

Proof: The first two equalities in (103) hold because 991

of Lemma 16. The remaining constraints that pertain to the 992

Shor-Laflamme quantum weight enumerators arise from the 993

paper of Shor and Laflamme in [8], where the last equality 994

is the celebrated quantum MacWilliams identity. From the 995

definition of the permutation-invariant weight enumerator |π� 996

in (87), it follows that |π� ≥ 0 and |π� ≤ Tr (P )2. The 997

inequality T2|π� ≥ τ2 arises from (100) and the definitions 998

of T2 and τ2 in (102) and (101), respectively. 999

Corollary 19: Suppose that (103) is infeasible. Then there 1000

does not exist an ((n, M, d)) permutation-invariant code, 1001

where all the logical codewords are of the form (95) with 1002

nonnegative coefficients aj,w in the Dicke basis. 1003

To facilitate our linear program numerically using the 1004

linprog function of MATLAB so that the linear program 1005

can be evaluated using the simplex algorithm, we write 1006

the constraints of our linear program in standard form. Let 1007

Id =
∑d−1

j=0 |j��j| and Īd =
∑n

j=d |j��j|. Then our equality 1008

constraints are 1009⎛
⎜⎜⎜⎜⎜⎜⎝

�0| 0 0
0 0 �σ0,0,0|
M −I 0
Id −Id 0

−Tr(P )2I 0 M̂A

0 −Tr(P )I M̂B

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎝ASL

BSL

|π�

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
Tr(P )2

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(104)

1010

where 1011

M =
Tr(P )

2n

n∑
i=0

n∑
j=0

Ki(j; n)|i��j|, (105) 1012

and the inequality constraints are 1013⎛
⎝Īd −Īd 0

0 0 I
0 0 −T2

⎞
⎠
⎛
⎝ASL

BSL

|π�

⎞
⎠ ≤

⎛
⎝ 0

Tr(P )2

−τ2

⎞
⎠ . (106) 1014

Finally there is a trivial upper bound that 1015

M ≤ n + 1, (107) 1016

since the dimension of a permutation-invariant quantum code 1017

cannot exceed the dimension of the symmetric subspace. 1018

Using our linear programming bounds, together with the trivial 1019

bound, we tabulate upper bounds on permutation-invariant 1020

quantum codes that have logical codewords with nonnegative 1021

aj,w in Table I. From this table, we can see that to have 1022

d = 2 we need at least n ≥ 4; for d = 3, we need n ≥ 3; 1023
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TABLE I

TABLE OF UPPER BOUNDS OF M FOR ((n, M, d))
PERMUTATION-INVARIANT QUANTUM CODES THAT HAVE LOGICAL

CODEWORDS WITH NON-NEGATIVE aj,w . WE USE OUR LINEAR

PROGRAMMING BOUNDS TOGETHER WITH THE TRIVIAL

CONSTRAINT M ≤ n + 1

TABLE II

TABLE OF UPPER BOUNDS FOR M FOR ((n, M, d)) ARBITRARY

PERMUTATION-INVARIANT QUANTUM CODES USING THE QUANTUM

MACWILLIAM IDENTITIES TOGETHER WITH M ≤ n + 1

TABLE III

TABLE OF LOWER BOUNDS FOR M FOR ((n, M, d))
PERMUTATION-INVARIANT QUANTUM CODES WITH NON-NEGATIVE

aj,w . THE SUPERSCRIPT g REFERES TO THE GNU CODES

INTRODUCED IN [21], r REFERS TO THE RUSKAI

CODE [23], p REFERS TO THE POLLATSEK-RUSKAI 7-QUBIT
CODE, AND ∗ REFERS TO THE CODES IN [26]

for d = 4, we need n ≥ 8; and for d = 5, we need1024

n ≥ 11. In comparison, we give upper bounds on M for1025

general permutation-invariant quantum codes using only the1026

MacWilliams identities as the constraints, and the trivial M ≤1027

n+1 bound in Table II. We also give known lower bounds for1028

M using code constructions for permutation-invariant quantum1029

codes that have logical codewords with nonnegative aj,w1030

in Table III.1031

VI. DISCUSSIONS1032

In this paper, we showed that quantum weight enumerators1033

can be generalized to the setting of AQEC. Key to our analysis1034

is our introduction of auxiliary weight enumerators, which1035

allows us to establish an indirect linear relationship between1036

the generalized quantum weight enumerators.1037

As it stands, the auxiliary weight enumerator is a vector1038

of size 42n in the number of qubits n. We have shown how1039

exploiting the symmetry of permutation-invariant quantum1040

codes can greatly reduce the dimensionality of the auxil-1041

iary weight enumerator to have a size that is polynomial1042

in n. Specializing our framework to a broad family of1043

permutation-invariant quantum codes, we use linear program-1044

ming to obtain non-trivial upper bounds on the maximum1045

number of logical codewords M of such permutation-invariant 1046

quantum codes for given length n and distance d. 1047

The non-existence of quantum codes for approximate quan- 1048

tum error correction over a multitude of noisy channels 1049

remains to be explored. For instance, it will be interesting to 1050

explore what no-go bounds for quantum codes can be obtained 1051

for various types of noisy channels, such as adversarial burst 1052

errors [36], probabilistic burst errors, and also probabilistic 1053

Pauli errors. 1054
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