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Abstract— Lithology interpretation is important for under-
standing subsurface properties. Yet, the common manual well log
interpretation is usually with low efficiency and bad consistency.
Therefore, the automatic well log interpretation tools based
on machine learning and deep learning have been developed.
Although the state-of-the-art sophisticated models can show fine
interpretation performance with acceptable accuracies, “blind”
tests do not always exhibit satisfactory results because of the
complexity of lithology interpretation with respect to subsur-
face rock properties and the data-labeling quality. To solve
this generalization challenge, we propose to leverage the para-
meterized quantum circuits in the deep-learning model. The
quantum computing takes advantages of the superposition and
entanglement quantum systems, which could potentially endow
the generalization power or capability to the deep-learning
model. Using the proposed quantum-enhanced deep-learning
(QEDL) model, we have tested the model performance on
field well log data from different wells. Compared with the
classic fine convolutional neural network (CNN) model and the
long short-term memory (LSTM) model, the proposed QEDL
model achieves comparable model performance with a clearly
improved generalization power for interpreting both thin and
thick lithology layers. In addition, because of the quantum circuit
structure, the QEDL model needs much fewer model parameters
than LSTM and CNN models, i.e., the QEDL parameter number
in our study can be approximately 75% less than that of LSTM
and 89% less than that of CNN.
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I. INTRODUCTION

QUANTUM-ENHANCED machine learning solves the
machine-learning tasks by using the quantum algorithms,

thereby improving classical machine-learning model perfor-
mances. Typically, the quantum computing depends on the
use of the engineered quantum system, which is based on the
quantum behavior phenomena, such as the entanglement and
superposition, resulting in a system “difficult to simulate” by
a classical computer [1]. In terms of the quantum computing
embedded machine learning, although multiple research works
have proposed the quantum neural networks (QNNs) by using
a quantum perceptron [2]–[5], the real implementation was
not broadly available until recently. In early 2020, Google
introduced the TensorFlow Quantum (TFQ) library [6] for
rapid prototyping of the hybrid quantum-classical models
based on the quantum circuit simulation framework Cirq [7].
Thanks to the Cirq, it is possible to avoid encoding the
input classical data into a real quantum computer to operate
the quantum algorithms. Because of the TFQ, the quantum
machine-learning algorithms, such as the QNN, are not purely
theoretical anymore. We can implement the quantum comput-
ing enhanced algorithms on classical computers to experience
the advantages brought by the quantum computing.

The lithology interpretation by using well logs extracts
reservoir parameters and provides the foundation for geo-
logical research studies [8]. By utilizing well log data,
many mathematical algorithms have been adopted to interpret
lithology [9], [10]. The cross-plotting and statistical analysis-
based approaches are two main traditional approaches for the
lithology prediction by using well logs. We can adopt two
or more well logs for the lithology interpretation through the
cross-plot technique [11]. The multivariate statistical analysis-
based approaches have also been widely adopted for the
lithology interpretation, such as discriminant function analy-
sis (DFA) [12] and principal component analysis (PCA) [13].
Nevertheless, these methods depend on plenty of samples,
which is not only a time-consuming work but also difficult
to be obtained in exploration geophysics. Moreover, well logs
are affected by the rock properties, such as the effective pres-
sure, saturation levels, and pore fluids [14]. In consequence,
the lithology interpretation is a typical nonlinear issue and
difficult to be effectively solved by using these traditional
methods. Hence, we can develop an appropriate and effec-
tive nonlinear method for solving the lithology interpretation
issue [15].
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Recently, there are machine-learning-based approaches
employed to solve the lithology interpretation issues, such
as the random forest (RF)-based classifiers [16], support
vector machine (SVM) [17], and neural networks (NNs) [18].
Among these machine-learning-based techniques, the fully
connected (FC) NNs are adopted to predict lithology by using
well logs [19], such as the artificial NN (ANN)- and back-
propagation NN (BPNN)-based models. For the prediction of
reservoir parameters, these NNs only adopt well log curves of
the corresponding depth. Hence, the influence of well logs
before and after the specific depth are neglected, and the
predicted lithology results cannot guarantee the dependability
and authenticity. Moreover, when processing huge well log
data, these NNs are easy to fall into local minima, resulting in
a low accuracy. In addition, a disadvantage of the FC NNs is
that the extracted information will not be transmitted between
the same layer because there is no connection between neurons
in the same layer. Hence, it is difficult to accurately and
effectively predict lithology by using the FC NNs based on
well logs. There are also many improved works about the
FC NNs for solving the lithology prediction issue, but the
implementation process is very complex [15], [20].

With the development of the convolutional NNs (CNN),
there are many CNN-based models for seismic interpreta-
tion [21]–[23]. However, it seems only a few researches for
the lithology interpretation are based on CNN [24]. A deep
residual CNN is introduced to automatically identify litho-
logical facies by using wellbore image logs [25]. A hybrid
model is designed for the prediction of lithology/fluid proper-
ties [26], which combines the time-frequency analysis and 1-D
CNN (1D-CNN). As state-of-the-art NN-based approaches,
the CNN models are data-driven and nonlinear, therefore
suitable for solving the geological issues [27], [28]. However,
the traditional CNN models lack the generalization property
when dealing with a limited dataset (i.e., manually interpreted
lithology labels) [29], [30], which is also because of the
complexity of the lithology interpretation with respect to the
subsurface rock properties and the data-labeling quality [15].

Besides the networks mentioned above, the recurrent
NN (RNN) is a specialized one, designed for processing
sequential signals [31]. The RNN has drawn wide attention
because of its good performances in the modeling of sequential
data, such as handwriting recognition [32], streaming sen-
sor data analysis [33], time series prediction [34], speech
recognition [35], and text classification [36], which has also
been applied in geoscience fields [37], [38]. Tian et al. [39]
combined the hidden Markov models and RNNs to clas-
sify lithologies by taking the spatial context into account.
Imamverdiyev and Sukhostat compared the effectiveness of
the CNNs and RNNs for lithology facies classification [24].
They concluded that the proposed CNN model provides more
accurate results than the RNN model. Moreover, the RNNs are
difficult to train mainly because of the exploding and vanishing
gradient issues, especially when handling long sequences [36],
[40]. There are also several variations of the RNNs developed
to solve these issues, such as gated recurrent unit (GRU) [41],
[42] and long short-term memory (LSTM) [15], [43].

Meanwhile, in real applications, we aim to apply a well-
trained model to other well logs, which are not used in
the training dataset. This is because the model generaliza-
tion is important for the lithology interpretation in practice.
To improve the generalization in the CNN-based models, often
large training datasets are used [44]. Nevertheless, obtaining
sufficient training data and corresponding labels is extremely
time-consuming and expensive, if not impossible.

Thanks to the quantum computing nature, the QNN has
an advanced generalization capacity [6], which means the
initialized and well-trained networks can find approximate
solutions, which generalize well to unseen/untrained samples.
The classical machine-learning and deep-learning methods
could be possibly enhanced by incorporating the parameterized
quantum circuits (PQCs), especially in terms of the generaliza-
tion power. The generalization power is extremely important
for complex problems, such as the lithology interpretation
where training data and labels are limited for a specific
survey.

Here, we propose a quantum-enhanced deep-learning
(QEDL) model for the lithology interpretation. The quan-
tum computing takes advantages of the superposition and
entanglement quantum systems. In this article, we cover the
quantum computing basics, quantum operations, and QNN
principles. By introducing the leverage of the PQC in the deep-
learning model, we could potentially endow the generalization
power or capability to the deep-learning model. The extensive
quantitative analysis of field well logs from different wells
demonstrates the promising performances of the trained QEDL
model. Compared with the conventional CNN model and the
LSTM model, our QEDL model shows superior behaviors in
terms of the efficiency, convergence rate, model complexity,
accuracy, and generalization power. The contributions of our
work are as follows:

1) To the best of our knowledge, this is the first time
to incorporate the powerful quantum computing in the
lithology interpretation.

2) The proposed QEDL model significantly improves the
deep-learning generalization capacity, which is highly
desired for complicated geoscience applications.

3) Our QEDL model will benefit the following quantum
computing related geophysical data-processing works in
terms of the motivation, solution, model architecture,
result evaluation, and applications.

The rest of this article is organized as follows: We first
introduce several related works about the machine-learning-
based lithology interpretation in Section II. Then, we present
the QEDL-based model with the design of the architecture,
loss function, and related theoretical principles in Section III.
(It should be noticed that related technical backgrounds are
summarized in Appendices VI to VI-C.) In Section IV, we use
a field application to analyze the performances of our pro-
posed model explicitly and quantitatively, and make detailed
comparisons with the CNN and LSTM models. In Section V,
the benefits and limitations of the proposed model are
discussed in detail. In Section VI, conclusion is finally
drawn.
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II. MACHINE-LEARNING-BASED

LITHOLOGY INTERPRETATION

A. SVM and ANN

SVM was proposed for solving the pattern recognition
issues [45], which distinguishes different classes by construct-
ing a hyperplane or setting of hyperplanes [46]. To solve a
specific pattern recognition issue, we first assume the training
pairs {(x1, y1), (x2, y2), . . . , (xl, yl)}, xl ∈ RN , and yl ∈ (0, 1),
where xl and yl denote the lth sample and its label, l is the
number of the input samples. We then write the SVM as
follows:

maxW (α) =
l�

i=1

αi − 1

2

l�
i=1

l�
j=1

αi yiα j y j K
�
xi , x j

�
(1)

s.t.
l�

i=1

αi yi = 0, αi ∈ [0,C], i = 1, . . . , l (2)

where K (xi , x j ) denotes a support vector (SV) kernel, C > 0
is a penalty parameter, αi and α j , i, j = 1, . . . , l, are the
Lagrange multipliers. Then, the decision function is defined as

f (x) = sgn

�
l�

i=1

αi yi K (xi , x)+ b

�
(3)

where sgn denotes the sign function and b is a unique constant.
Using (1)–(3), the training samples in the input space

is mapped into a feature map. It should be noted that the
mapped samples in the feature map are linearly separable [47].
Moreover, to determine the final results, the SVM achieves
good robustness by only using a small number of the SVs.
This not only saves lots of calculation time by reducing a large
number of the redundant samples but also helps capture the key
features [48]. Hence, the SVM is often adopted to solve the
binary classification issues. However, the SVM-based models
suffer from several limitations. The most obvious drawback
is that it apparently only handles the binary classification
issues [49]. Definitely, we have to train multiseparated SVMs
when recognizing a multiclass classification, which is time
consuming when handling a large dataset. Moreover, the SVM
does not always perform well when the target classes are
seriously overlapping.

The ANN is introduced to solve the complex classification
problems by mimicking the behavior of the human brain
and nervous system to learn from the given training samples
[50], [51]. We briefly introduce the ANN as follows [52]:

y j = φ

�
c j +

K�
k=1

vk j

�
ϕ

�
L�

l=1

wlk xl + bk

���
. (4)

In (4), y j denotes the jth component of the output y. xl , l = 1,
2, . . . , L is the lth input component where M denotes the input
number. K is the number of hidden layer neurons. c j and bk

denote the biases of the jth output node and kth hidden node.
φ(·) denote the activation function between the hidden and
output layers, whereas ϕ(·) is the activation function between
the input and hidden layers. vk j is the weight between the kth
hidden node and jth output node, whereas ωlk is the weight
between the lth input and kth hidden node.

Using (4), the ANN learns from the given training sam-
ples and use these training samples to adjust its weights
ωlk and vk j . Then, it captures the relationship between the
input samples and corresponding outputs [53]. Therefore, the
ANN-based models do not need any prior knowledge about
the nature of the relationship between the input and output
samples. Nevertheless, the ANN-based models also suffer
from several unsolved issues, such as the vanishing gradient
and overfitting [54], [55], which often result in a low accuracy.
Moreover, it should be noted that the ANN is one of the typical
feedforward networks. Hence, the captured features by using
the ANN cannot be transferred between the same layer because
there is no connection between neurons in the same layer,
which makes it inefficiently predict lithology by using well
log data.

B. CNN

The CNN is a widely used machine-learning-based tool
for the classification tasks, such as seismic fault detection
[28], [56] and image recognition [57], [58]. Generally,
the CNN is composed of a sequence of interleaved layers.
An intermediate 2-D array of pixels in each layer, termed as
a feature map, is produced from the previous one, presented
in Fig. 1. Although typically there are multiple feature maps
in the CNN layers, we only consider one feature map for one
layer for simplicity.

The convolution layer calculates the pixel values x (�)i j from
a linear combination of the nearby pixel values, defined as

x (�)i, j =
w�

a,b=1

wa,bx (�−1)
i+a, j+b (5)

where wa,b denote the weights.
The Max-pooling layer takes the maximum value from

a few contiguous pixels, which helps to reduce the feature
map size. A nonlinear (activation) function often follows a
pooling layer. Here, we use the softmax function in our model.
Variables are fixed for a specific CNN [58], such as the
number of convolution and pooling layers, and the size of
the weight matrices wa,b (i.e., hyperparameters). The CNN’s
key properties are thus translationally invariant convolution
and pooling layers, each of them characterized by a constant
number of parameters.

In this study, we adopt a simplified CNN-based architecture
to interpret lithology by using well logs. Fig. 1 shows the
simplified architecture of the CNN-based lithology interpreta-
tion adopted in this study. It can be seen that each convolu-
tional layer is followed by a Softmax operator. Additionally,
we introduce a dropout (0.5) to avoid the overfitting. By using
the features extracted by the previous convolutional layers,
a followed FC layer outputs the classification labels which
the model is trying to predict. It should be noted that the
hyperparameters of the used CNN model in our study are
elaborated in Section IV-B.

III. QUANTUM-ENHANCED NNs

Using the quantum search and piecewise weight learn-
ing, a QNN model based on quantum circuit gates is pro-
posed in [59]. A quantum auto-encoder for the quantum
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Fig. 1. Simplified illustration of CNN-based lithology analysis. A sequence of processing layers (convolution and softmax) transforms input well logs into
a probability distribution of the rock types, which is used to predict the lithology.

Fig. 2. Simplified illustration of the proposed QEDL model. Compared with Fig. 1, a quantum filter (circuit structure) is inserted to replace the conventional
convolution filters.

state compression is introduced in [60]. The hybrid mod-
els with the quantum and classical approaches usually have
the computations carried on the quantum-engineered devices
and classical computers [61]–[64]. Reversible PQCs have
been widely adopted to construct the QNN with a back-
propagation-kind training strategy. Considering the presenta-
tion brevity, we put the basics of the quantum computing in
Appendices VI to VI-C.

A. General QNNs

Classical NNs build a relationship between the input
(x1, x2, . . . , xd) and output y as (x1, x2, . . . , xd) → y.
Whereas QNNs can be generally expressed as a quan-
tum computation with an additional operation based on
a permutation matrix1 to convert the mapping relation to
(x1, x2, . . . , xd , 0) → (x �

1, x �
2, . . . , x �

d , y) [65]. We can repre-
sent the input component of the vector (x1, . . . , xd) through
a quantum state |ψ�1,...,d to ensure the input representation
unitary. Thus, in terms of the quantum computations, the trans-
formation is expressed as

|ψ�1,...,d |0� → |ψ ��1,...,d |y� (6)

where |ψ�1,...,d denote input in qubits (more details can be
found in Appendix VI), for which a d + 1 bit unitary matrix
is applied to transform it to the output |ψ ��1,...,d |y�.

1Mathematically, a permutation matrix P needs to be a square matrix with
either 0 or 1 as elements and P PT = I .

Fig. 3. Illustration of a L-layered QNN where the input is |ψ�|0� and the
output is measured through a Pauli-y operator, which is defined in (VI.5) on
the ancillary bit.

To capture detailed input information, a L layer QNN can
be implemented following the classical deep NNs with a set
of variational circuits:

U(�) = UL(θL)UL−1(θL−1) . . .U1(θ1) (7)

where the i th layer unitary matrix Ui (θi) has a set of the model
parameters θi , as shown in Fig. 3. � = {θ1, . . . , θL} represents
all parameters.

B. Loss Function

Because the lithology interpretation can be formulated as
a classification problem, here, we define the loss function
of the QNN. Given the training data {(|ψm�, ym,n) : m =
1, 2, . . . ,M, n = 1, 2, . . . , N}, where input states |ψm� are
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Fig. 4. Implementation of the QEDL using the TFQ typically follows this
architecture. First, we prepare a cluster state, which is shown in Fig. 5. The rest
of the model’s quantum components are constructed with adding the quantum
circuit layers, as shown in Fig. 6. Then parameterized quantum circuits (PQCs)
or multilayer QNNs (MQNNs) are used to implement the quantum convolution
and quantum pooling, as shown in Fig. 7.

Fig. 5. Cluster state is a type of highly entangled state of the multiple
qubits [66]. The cluster states are generated in lattices of the qubits with the
Ising-type interactions. 1-D cluster states (d = 1) example with n = 4, where
n is the number of qubits. |φ� = (1/2)(|+0+0�+|+0−1�+|−1−0�+|−1+1�).

associated with the binary classification labels ym,n = 0 or 1,
the categorical cross entropy (CCE) loss can be defined as

CCE = −
M�

m=1

N�
n=1

�
ŷm,n ∗ log ym,n

�
(8)

where m = 1, 2, . . . ,M and n = 1, 2, . . . , N denote the
number of samples and categories, respectively. ŷm,n represents
the expected output label corresponding to the input |ψm�.

C. TFQ-Based QEDL

Motivated by the CNN architecture shown in Fig. 1, we pro-
pose a quantum circuit-embedded hybrid deep-learning model,
shown in Fig. 2. The proposed QEDL model implementa-
tion using the TFQ typically follows the architecture shown
in Fig. 4. In terms of the model hyper parameters, the numbers
of the quantum convolution and pooling layers are determined
by trials, whereas the unitary operator properties are learned
during the training process.

The TFQ library is based on the Cirq, which is an
open-source framework [7]. There are basic quantum circuit
structures, including the quantum gates, qubits, measurement
operators, and so on. The TFQ-designed quantum computa-
tions, which are operated in simulations, can also be executed
on real quantum systems. The TFQ provides the cluster
states (e.g., Fig. 5), layer classes (e.g., Fig. 6), and quantum
convolution/pooling layers (e.g., Fig. 7) designed for in-graph
circuit construction. The hyperparameters of the proposed
QEDL model are elaborated in Section IV-B.

Fig. 6. tfq.layers.AddCircuit function in the TFQ can either prepend or
append to the input batch of the quantum circuits.

Fig. 7. Combination of the quantum convolution Qconv (blue) on 4 qubits and
quantum pooling Qpool (orange) that reduces the system size from 4 qubits
to 2 qubits.

D. Comparisons Between CNN and QEDL

The proposed QEDL model in Fig. 2 is also based on the
CNN model in Fig. 1, but with a quantum filter. Hence,
the QEDL model can naturally solve the multiclass classi-
fication issues. In addition, different approaches for training
deep networks have been studied and applied to try to address
the vanishing gradient and overfitting issues, such as the
pretraining, better random initialization, better optimization
methods, specific architectures, alternative activation func-
tions, more sophisticated training, and testing strategy, and
so on. These are the advantages brought from the deep-
learning models and CNN models. And in Section IV-D,
we carry out a comprehensive model evaluation. Moreover,
by adopting the superposition and entanglement quantum
systems, the quantum computing could potentially endow the
generalization power to the deep-learning model. Therefore,
the proposed algorithm could provide a robust model with
a powerful generalization property, which benefits for the
lithology interpretation based on well logs. It should be
noted that there have been attempts to improve the model
generalization, such as the transfer learning [67]. We will have
a detailed discussion addressing the difference between the
transfer learning and QEDL in Section V.
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Fig. 8. Study area locates at the Ordos basin, Northwest of China, indicated
by the red dotted rectangle.

IV. FIELD DATA APPLICATIONS

A. Study Area and Well Logs
The study area locates at the Ordos basin, Northwest of

China, with an area of 4910 km2, indicated in Fig. 8. The
study area is near the western margin of the North China
Craton, which is a low-porosity and low-permeability gas
reservoir [68]. It should be noted that the sedimentary strata
of the study area consist of the marine sediment in the
bottom strata and continental deposit in the upper, in which
the Mesoproterozoic mainly consists of continental clastic
deposits [15]. Moreover, there mainly exists three types of
lithologies in the studied reservoir area, i.e., mudstone, sand-
mudstone, and sandstone.

Because of the lack of manual interpretation results and
the confidentiality agreement, we cannot obtain sufficient well
log data in this study area. Hence, in this study, we only
introduce four well borehole data to testify the performance
and generalization property of the QEDL model and make
detailed comparisons with the state-of-the-art CNN and LSTM
models. Fig. 9 shows a seismic time slice at 950 ms with
four well boreholes denoted by the red dots. W1, W2, W3,
and W4 denote four well boreholes located at this seismic
survey, whereas the red line presents a seismic section cross
four well boreholes. We then extract the 2-D seismic section
cross four wells, shown in Fig. 10. The red lines in Fig. 10
denote the well boreholes and the blue curves present the
synthetic seismograms [69].

There are often dozens of well log curves. In this study,
we select five of them as the training data to interpret
the lithology, i.e., acoustic (AC), borehole diameter (CAL),
density (DEN), natural gamma ray (GR), and spontaneous
potential (SP). The reason to select these logs is that they

Fig. 9. Seismic time slice at 950 ms with four well boreholes denoted by
the red dots. W1, W2, W3, and W4 denote four well boreholes. The red line
presents a seismic section cross four well boreholes.

Fig. 10. 2-D seismic section cross four well boreholes, presented by the red
line in Fig. 9. W1, W2, W3, and W4 denote four well boreholes. The blue
curves present the synthetic seismograms.

are highly related to the key parameters of the formation
[14], [15]. Fig. 11 shows part of well log curves extracted
from W1, i.e., the training datasets used in this study. It should
be noted that the sampling interval of each well log curve is
0.125 m. The right image in Fig. 11 denotes the corresponding
manual lithology interpretation result, i.e., the training labels
(mudstone, sand-mudstone, and sandstone) used in this study.
Afterward, we use well log curves and corresponding labels of
W1 and W4 to train the LSTM, CNN, and QEDL models, and
then apply three well-trained models to predict the lithologies
of W2 and W3.

B. Hyperparameters of Different Deep-Learning Models

For the CNN model, the sizes of the convolution layers
are 32, 64, 64 in Fig. 1. For the proposed QEDL model,
we introduce a quantum layer to replace the convolution layers
in the CNN model. It should be noticed that we adopt the FC
layers for the CNN and QEDL models, which combine all the
features extracted by the former layers and then classify. The
two models in this study are both built with the TensorFlow
on Python 3.6. The learning rate is initiated at 0.001. The
models are both trained with a batch size of 20. It should be
noted that the details of the hyperparameters of two models
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Fig. 11. Cropped five well logs (AC, CAL, DEN, GR, and SP) and its
corresponding manual lithology interpretation (right image).

TABLE I

PARAMETERS OF THE CNN AND QEDL ARCHITECTURES

are given in Table I. Moreover, it should be noticed that the
quantum filters are with five qubits in this study. In addition,
we introduce an LSTM network as a comparison. More details
about the architecture and training strategy of the used LSTM
model can be found in [15].

To build the training, validation, and prediction datasets,
we first select two wells (e.g., W1 and W4) from these
four wells as the training and validation dataset, whereas
the other two (e.g., W2 and W3) are selected as the testing
(prediction) dataset. Moreover, we repeat this process for six
times, i.e., selecting two wells as the training and validation
datasets and the other two wells as the testing (prediction)
dataset. It should be noticed that the LSTM, CNN, and QEDL
networks are initialized randomly for each process. Then,
we divide the selected two well logs (e.g., W1 and W4) as
the training and validation datasets. The ratio of the training
dataset to the total dataset is 0.7 and the rest (0.3) is selected as
the validation dataset. The training and validation datasets are
used to train and validate the LSTM, CNN, and QEDL models.
The other two well logs (e.g., W2 and W3) are selected as
the blind testing dataset to evaluate the performance of three
well-trained models, especially the generalization capacity.
It should be noticed that we have also implemented the k-fold
(k = 10 in our study) cross validation [10], [23] to test the
robustness and avoid the data bias. k-fold cross validation

Fig. 12. Validation accuracy curves provided by (a) LSTM-, (b) CNN-, and
(c) QEDL-based models, respectively.

TABLE II

DEFINITION OF THE CONFUSION MATRIX

is a standard procedure for evaluating the performance of
the classification methods [70]–[72]. In this study, for each
fold, we randomly divide the dataset (e.g., W1 and W4) into
the training and validation datasets by a fixed ratio as 7:3.
For example, for each fold, we compute a validation accu-
racy curve by randomly selecting the training and validation
datasets by a fixed ratio as 7:3. After obtaining 6*10 validation
accuracy curves, we can easily calculate an average validation
accuracy curve, shown in Fig. 12. Moreover, we compute
the quantitative evaluation parameters in Tables III–V by
following this way:

C. Well Log Data Preprocessing

The input data of the LSTM, CNN, and QEDL models
need to be standardized. In this study, we introduce the
Max-Min standardization method to standardize the well log
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TABLE III

Precisions OF THE TRAINING/VALIDATION/PREDICTION DATASETS

TABLE IV

Precision, Recall, AND F1 Score OF THE VALIDATION DATASET

TABLE V

Precision, Recall, AND F1 Score OF THE PREDICTION DATASET

data, defined as

x̂i = xi − min1≤ j≤n
�

x j
�

max1≤ j≤n
�

x j
�− min1≤ j≤n

�
x j
� (9)

where x j and x̂i are well log data before, and after the
standardization, min1≤ j≤n{x j} and max1≤ j≤n{x j} denote the
minimum and maximum values of the processed well log data
x j , and n is the length of the processed well log data x j .

D. Model Evaluation

After training a model, it is important to evaluate its per-
formance [51], which helps in predicting its future accuracy.
In this study, we adopt the precision, recall, and F1 score
to evaluate the performance of a trained model. To define
these three parameters, we first introduce the confusion matrix
in Table II. The true negative (TN), false negative (FN), true
positive (TP), and false positive (FP) are defined in Table II
based on the predicted results.

Then, the precision, recall, and F1 score are defined in
(10)–(12), respectively. It should be noted that the higher the
precision is, the stronger the ability of the model to recognize
the negative samples. This means that the precision reflects the
ability of the trained model to recognize the negative samples.
Moreover, the higher the recall is, the stronger the ability of
the model to recognize the positive samples. That is, the recall
reflects the ability of the model to distinguish the positive
samples [55]. The F1 score combines the precision and recall,
which would be used for evaluating the trained models in
this study. The higher the F1 score is, the more robust the

trained model.

precision = TP

TP + FP
(10)

recall = TP

TP + FN
(11)

F1 = 2· 1
1

recall + 1
precision

= 2· precision·recall

precision + recall
. (12)

E. Results and Discussions

We first show the validation accuracy curves provided
by the LSTM-, CNN-, and QEDL-based models, as shown
in Fig. 12. Although the LSTM and CNN models achieve
higher validation accuracy values than the QEDL model, all
three models achieve high validation accuracy values. This
seems that we obtain three well-trained models provided by
the LSTM-, CNN-, and QEDL-based networks. Nonetheless,
it should be noted that the QEDL model turns to be stable
at about 40 epochs, whereas the LSTM and CNN models do
not tend to be stable, even at 140 epochs. This means that it
takes fewer epochs to obtain a well-trained QEDL model than
well-trained LSTM and CNN models.

Then, we make detailed quantitative comparisons between
the LSTM, CNN, and QEDL models. We first compare the
precisions of the training and validation datasets calculated
by using the LSTM, CNN, and QEDL models, presented
in Table III. Moreover, we calculate the prediction preci-
sions of the prediction dataset (i.e., the well logs of W2
and W3) by using three well-trained models. By comparing
the precisions in Table III, we have two main observations.
First, the LSTM and CNN models achieve higher training and
validation precisions than the QEDL model. This seems that
the LSTM and CNN models are two better-trained models
than the QEDL model. Second, we find that the training
precisions of the LSTM and CNN models are distinctly higher
than their validation and prediction precisions. This means
that the LSTM and CNN models may be severely overfitting.
Although the training and validation precisions of the proposed
model is lower than those of the LSTM and CNN models,
the prediction precision of the QEDL model is closer to its
training and validation precisions. It can be concluded that our
QEDL model achieves better performance than the LSTM and
CNN models for the lithology interpretation in terms of the
generalization, especially for avoiding the overfitting, which
benefits when a well-trained model needs to be applied to
new data.

In this study, the lithology interpretation task is regarded as a
three-classification issue. Hence, when retrieving the multiple
class labels, we should average the evaluation measures to
give a view on the general results. There are two approaches
for averaging the results, i.e., macro- and microaveraging. The
former adopts equal weights to the general scores generated
from each individual category, whereas the latter is mainly
dominated by the categories with more positive training sam-
ples [73]. We adopt microaveraging to calculate the scores for
quantitative comparisons in this study. Afterward, we compare
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Fig. 13. (a) True lithology; interpreted lithology predicted by (b) LSTM-,
(c) CNN-, and (d) QEDL-based models; and (e) and (f) denote the GR curve
and normalized borehole-side seismic trace, respectively.

the precision, recall, and F1 score of the validation dataset
calculated by using microaveraging, summarized in Table IV.
It can be noticed that the precision provided by the QEDL
model is higher than the one of the CNN but lower than
the LSTM model, which demonstrates that the trained QEDL
model achieves a comparable accuracy. In Table IV, the recall
and F1 score of the QEDL model are also a little higher
than those of the LSTM and CNN models. According to the
definitions in Section IV-D, the proposed QEDL model can
better distinguish the positive samples and has a more robust
performance. To sum up, based on Tables III and IV, the pro-
posed QEDL model shows comparable accuracy and precision
performances with better generalization ability, as well as
better recall and F1 score performances, compared with CNN
and LSTM models.

After training and validating the LSTM, CNN, and QEDL
models by using the well logs of W1 and W4, we then use
the well logs of W2 and W3 to evaluate the validity and
generalization performances of the trained models. Fig. 13(a)
denotes the true lithology, which is a target part at this study
area and extracted from W2, whereas Fig. 13(b)–(d) is the
interpreted lithology predicted by the LSTM, CNN, and QEDL
models. Based on the images in Fig. 13, we have three main
observations. First, although all three trained models can pre-
dict the lithology by using the well logs, the proposed model
interprets the thick layers more accurately, denoted by the pink
and white rectangles. Second, the proposed model can also
predict the thin layers more precisely than the LSTM and CNN
models, presented by the pink arrows. Third, Fig. 13(e) and (f)
denotes the GR curve and normalized borehole-side seismic
trace. Apparently, the lithology result interpreted by using the
proposed model matches with the GR curve and borehole-side
seismic trace better than that computed by using the LSTM
and CNN models.

Moreover, we show another deep predicted lithology
in Fig. 14, which is another target part and extracted from W3.
There are two main observations by comparing the images
in Fig. 14. First, the QEDL model is obviously with a strong

Fig. 14. (a) True lithology; interpreted lithology predicted by (b) LSTM-,
(c) CNN-, and (d) QEDL-based models; and (e) and (f) denote the GR curve
and normalized borehole-side seismic trace, respectively.

TABLE VI

PARAMETER NUMBER OF LSTM, CNN, AND QEDL

generalization ability, which can achieve an accurate lithol-
ogy interpretation at the boundary of the predicted lithology,
presented by the pink arrows. However, the LSTM and CNN
models obtain an inaccurate interpretation at the boundary of
the predicted lithologies. Second, the QEDL model obtains
a more precise interpretation for the thin layers than the
LSTM and CNN models, indicated by the pink rectangle.
The images in Figs. 13 and 14 lead us to the conclusion
that the QEDL model is a more effective tool with a stronger
generalization ability than the LSTM and CNN models for
interpreting both thin and thick lithology layers. In addition,
we calculate the precision, recall, and F1 score of the predic-
tion dataset, indicated in Table V. Similar to the evaluation
values in Table IV, three evaluation values provided by the
QEDL model are higher than those of the LSTM and CNN
models. We can easily draw a conclusion that the QEDL
model achieves an accurate lithology interpretation result and
improves the generalization power by introducing the quantum
computing.

Finally, Table VI summarizes the parameter numbers of
the LSTM, CNN, and QEDL models. It should be noted that
the QEDL model needs much less model parameters than the
LSTM and CNN models, e.g., the parameter number of the
QEDL model in our study can be approximately 75% less
than that of the LSTM model and 89% less than that of the
CNN model, maybe because of the qubit inherent properties
discussed in Appendix VI. Using less parameters indicates
that the proposed QEDL model also has an advanced rep-
resentation capacity, which means that the QEDL architecture
accurately extracts the useful information from the underlying
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features in the training dataset by using certain amount of
the model’s parameters. Need to mention, the model capacity
(model parameter number) has a certain level of impact on
the model generalization ability. So, it seems normal that the
CNN and LSTM models have worse generalization as they
have more parameters. However, we cannot only consider the
model capacity and generalization. The model performances
in terms of the precision, recall, and F1 score should be
considered together. It is a comprehensive determination about
the model performance. For example, if we reduce the model
capacity of the CNN and LSTM models, the generalizations
of those models can be improved, but the precision, recall,
and F1 score will be worse because of the simpler models.
In other words, the generalization itself is not important, but
it is important when other model metrics are good enough.
Therefore, our QEDL model has better generalization with less
model parameter number and comparable precision as well as
better recall and F1 score, which makes it promising.

V. DISCUSSION

In this study, we propose a QEDL model to automatically
interpret lithology. It should be noted that we only intro-
duce five well log curves to automatically interpret lithology,
i.e., AC, CAL, DEN, GR, and SP. In the future work, we would
select appropriate well log curves for automatic lithology inter-
pretation based on the lithology features of the study survey.
In addition, because of the limit of the number of well log
data, we do not transfer the proposed QEDL model to the well
log data at other seismic surveys. In future studies, we would
further test the generalization property of the proposed model
on well log data at other seismic survey, even on more and
different formations.

It should be noted that the generalization power is important
for a deep-learning-based seismic data processing. There are
two main deep-learning-based ways to enhance the gener-
alization power of a trained model. One is introducing the
transfer-learning-based methods. More specifically, even for
the transfer learning, the training data with corresponding
labels of the new dataset are required for fine-tuning the
trained model, which are often difficult and time consuming to
realize in field data applications. Another way is adopting the
deep-learning-based algorithms with a powerful generalization
property, such as the quantum computing. By using the super-
position and entanglement quantum systems, the quantum
computing could potentially endow the generalization power to
a deep-learning model. Therefore, we can adopt the proposed
QEDL model to solve other seismic inversion issues in the
future, such as the impedance and parameter inversion, and
high-resolution processing.

VI. CONCLUSION

We propose a QEDL model for automatic lithology inter-
pretation using well logs. It should be noticed that we adopt
the proposed QEDL model for automatically interpreting sand-
stone, sand-mudstone, and mudstone in this study. By includ-
ing other types of lithologies into the training dataset, such
as shale, gypsum, and dolomite, we trust the proposed model

could also automatically recognize them with a generalization
power. By utilizing the superposition and entanglement quan-
tum systems, the quantum computing could potentially endow
the generalization power to the deep-learning model. After
training the proposed model, we test the model performances
on field well log data from different wells and make qualitative
and quantitative comparisons with the state-of-the-art LSTM
and CNN models. Compared with the benchmark LSTM and
CNN models, the QEDL model achieves a comparable accu-
racy with an improved generalization power for interpreting
both the thin and thick lithology layers. Moreover, benefiting
from the quantum circuit structure, the QEDL model needs
much less model parameters than the LSTM and CNN models.

APPENDIX A
QUBIT

The basic unit of the quantum computing is qubit, defined
as |ψ�, which is the probability combination (superposition)
of classical states: the zero state |0� and the one state |1�

|ψ� := α |0� + β |1� =
	
α
β



; |α|2 + |β|2 = 1 (VI.1)

where α and β are the quantum amplitudes indicates the
quantum collapse probability of zero state is |α|2, whereas
|β|2 for one state. Because 1 qubit can have two states,
n entangled qubits carry 2n thanks to the superposition, which
is why the quantum computing can deal with the complicated
computation tasks with small amount of qubits. It should be
noted that the observation causes a collapse of states resulting
the final measurement. In addition, using the Dirac notation
“bra-ket,” we can define the basis states as

|0� :=
	

1
0



; |1� :=

	
0
1



. (VI.2)

APPENDIX B
QUANTUM OPERATIONS

A. Representation

The networks of the quantum logic gates denoted by the
unitary matrices are typically used to represent the quantum
computation models [74]. With the same number of the input
and output qubits, a quantum logic gate on n qubits uses a
2n × 2n unitary matrix as the representation. Here, we use
the tensor or kronecker product to represent the most common
quantum gates operated on two qubits:

|ab� = |a� ⊗ |b�
= v00|00� + v01|01�

+v10|10� + v11|11� →

⎡
⎢⎢⎣
v00

v01

v10

v11

⎤
⎥⎥⎦ (VI.1)

where ⊗ denotes the tensor product.
The result state |ψ2� of a gate action can be expressed as

|ψ2� = U |ψ1� (VI.2)

where |ψ1� indicates the original state, whereas U is the
gate.
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B. Quantum Gates

Here, we introduce some common quantum gates. Typically,
the unitary matrices, a type of square matrices that have the
same inverse and complex conjugate, are used to represent the
quantum gates.

1) NOT Gate: As a logical negation operation, the NOT gate
X is used via the matrix multiplication as X |0� = |1� and
X |1� = |0�. Using a matrix, the NOT gate is defined as

X :=
	

0 1
1 0



. (VI.3)

2) Hadamard (H) Gate: According to the Hadamard matrix

H = 1√
2

�
1 1
1 −1

�
(VI.4)

the Hadamard (H ) gate is a unitary matrix, mapping the basis
states |0� and |1� on a single qubit to ((|0� + |1�)/√2) and
((|0� − |1�)/√2).

3) Pauli Gates: Pauli-X, Pauli-Y, and Pauli-Z gates
({σx, σy, σz}) are represented by using three 2 × 2 Hermitian
and unitary matrices

σx =
�

0 1
1 0

�
, σy =

�
0 −i
i 0

�
, σz =

�
1 0
0 −1

�
. (VI.5)

4) Controlled Gates: The controlled gates are applied on
two or more qubits, where one or more qubits control the
consequential operations. For example, suppose U is a gate
on single qubits

U =
�

u00 u01

u10 u11

�
. (VI.6)

Then, the controlled-U gate on two qubits uses the first
qubit as the control of the other qubit, following:

|00� 
→ |00�
|01� 
→ |01�
|10� 
→ |1� ⊗ U |0� = |1� ⊗ (u00|0� + u10|1�)
|11� 
→ |1� ⊗ U |1� = |1� ⊗ (u01|0� + u11|1�). (VI.7)

And the matrix expression is

C(U) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

⎤
⎥⎥⎦. (VI.8)

C. Summary

The combination of the quantum logic gates and measure-
ments describes a typical quantum computation. However,
a quantum computation can also be expressed as a quan-
tum logic gate-embedded network, because the measurement
operations can be postponed to the end. Following this way,
a measurement X is a summation of nonnegative probability
coefficients pi :

�X� =
�

i

pi�ψi |X |ψi �

=
�

i

pi tr(|ψi ��ψi |X)
= tr(ρX) (VI.9)

where tr(·) indicates the matrix trace. ρ is a density operator
representing a mixed state as ρ = �2d

i=0 pi |ψi ��ψi |, where
{ψi} represent the computational bases of the H2n

Hilbert
space, the coefficients pi add up to 1, and |ψ��ψ| is an outer
product written in bra-ket notation.

APPENDIX C
QUANTUM NEURAL NETWORKS

In general, the QNN can be described as the product of the
layers, which are represented as the unitaries

Û(θ) =
L�
�=1

⎡
⎣V̂�

M��
j=1

Û� j (θ
�
j )

⎤
⎦

=
L�
�=1

⎡
⎣V̂�

M��
j=1

�
k

e−iθ� j β
� j
k P̂k

⎤
⎦ (VI.1)

where V̂ � is a nonparametric unitary on the �th layer, where
the multiple variational unitaries {Û� j (θ� j )}M�

j=1 exist. β j�
k ∈ R

is an operator for all k, j, �, and P denotes the Pauli’s on
n-qubits.
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