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Quantum-Inspired Power System Reliability Assessment
Nima Nikmehr, Senior Member, IEEE and Peng Zhang, Senior Member, IEEE

Abstract—To enable an in-depth study of power system opera-
tion and planning, the assessment of standard reliability indices
is inevitable. The Monte Carlo Simulation (MCS) approach is
a broadly used method in replacing the analytical methods in
reliability indices assessment. The accuracy of MCS, however,
highly depends on the sampling size, and hence, a complicated
system with large number of components requires a large sampling
size and daunting computational effort. To address this shortcom-
ing, this paper attempts to take advantage of potentials of the
quantum computing (QC) for power system reliability assessment
by realizing the following contributions: 1) an innovative quantum
model designed for reliability assessment; 2) a quantum circuit
that achieves the quadratic speed up compared to the classical
MCS method; 3) an efficient quantum amplitude estimation
(QAE) algorithm to accurately evaluate the reliability indices.
The accuracy and efficacy of the quantum reliability method are
extensively verified and demonstrated on both radial and mesh
distribution systems.

Index Terms—Quantum computing, Quantum amplitude esti-
mation, Reliability assessment, Distribution systems

I. INTRODUCTION

Assurance of continuity and quality of an electric power
system in supplying the electrical demand can be precisely
assessed by power system reliability analysis. The reliance of
today’s modern societies on reliable power sources has made
the reliability analysis an indispensable and important study of
power system planning and operation [1]. Nevertheless, power
system reliability analysis remains to be a major challenge due
to several aspects such as deep integration of distributed energy
resources (DERs) and the resulting ubiquitous uncertainties,
large number of power system components with heterogeneous
failure and success models, ever growing smart and connected
communities, and correlations and interdependence between
grid components and DERs.

Classical Reliability Assessment. To assess the power sys-
tem reliability, two main groups of methods, namely simulation-
based methods and analytical methods are utilized. The an-
alytical methods based on graph theory and the probability
theory are generally applicable to small-scale systems [2]. With
deep penetration of DERs and microgrids, the system states
scale exponentially, which will result in complex computations
and NP-hard solution difficulties [3], [4]. In [5], an analytical
approach based on topology-depend method is utilized to derive
the linear algebraic equations and then, assess the reliability in-
dices of a distribution system. An interval reliability assessment
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method is introduced in [6] to formally enclose all reliability
results under uncertainties, i.e., providing the estimates on upper
and lower bounds of reliability and economic indices. In [7],
the authors have developed a Bayesian method to analyze the
reliability of DC microgrids considering the linearized power
flow formulation. Moreover, the developed method assesses
the impact of renewable energies in improving the reliability
of microgrids through quantifying new reliability indices. An
analytical method based on continuous time Markov chain
merges all high order contingencies into a single state, and
evaluates the reliability indices in composite generation and
transmission systems [8]. Additionally, the simulation-based
methods such as Monte Carlo Simulation (MCS) technique
requires many samples and computational effort to obtain the
probability distribution function of a reliability index [9, p.400].
One category of the MCS methods is the sequential MCS
(SMCS) where the chronology of failures of power system
components, and variations associated with DERs and loads
are modeled [10]. Although SMCS is useful to assess the
frequency-based reliability indices, to obtain accurate results,
the computational expense is higher [11]. Additionally, the
usage of time-series methods such as the auto regressive moving
average model in SMCS requires hourly data from the system
parameters, which are generally unavailable [12]. To mitigate
the dependence of the random parameters to the detailed
chronological nature, non-sequential MCS (NMCS) method is
taken into account, where probability distribution functions
can be utilized for the system variables [13], [14]. However,
this method is not a suitable alternative for sequential MCS
method to assess the frequency-based reliability indices [15].
The pseudo-MCS [16] and quasi-MCS [17] are other variants
of MCS method that can achieve speed-up advantage over
SMCS. However, these methods suffers the incomplete system
chronology, and thereby non-cumulative frequency of a system.
An alternative approach to calculate a system reliability is to
use a reliability-constrained optimization model [18], which is
generally formulated as a mixed-integer linear programming
(MILP) problem. However, the optimization-based approaches
suffer the intractability of finding the global optimality. In
[19], a linear-programming-based model is presented to assess
the reliability indices in distribution systems, and the network
topology is determined after solving the optimal power flow
problem. A reliability-constrained optimization model based on
load restoration through tie-lines is studied in [20]. In [21],
to assess and improve the reliability of a distribution system,
the developed optimization-based model considers the optimal
placement of circuit breakers and switches. The machine learn-
ing techniques have introduced a new application in power sys-
tem reliability assessment. In [22], a classification algorithm is
used to classify the system sates by requiring the optimal power
flow in training stage. However, most classification algorithms
are unable to assess the energy and frequency indices of com-
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posite systems [23]. In [24], the reliability indices of integrated
energy systems are calculated using a machine learning method
combining Random Forest method and XGBoost regression
algorithm, and SMCS is employed to generate the required
data. In [25], a SMCS incorporating dynamic Bayesian belief
networks for generating the probability distributions of solar
and wind energies and a rolling-horizon unit commitment as
an optimization model is developed for evaluating distribution
reliability indices. Although some existing machine learning
methods can improve the computational time in evaluating the
reliability indices, they need to be carefully trained to achieve
accurate results. In this paper, to resolve the aforementioned
problems, a promising technology based on quantum computing
(QC) is devised for power system reliability assessment. The po-
tential of QC has been already proved in solving combinatorially
complex unit commitment problem where a fast convergence is
reached compared to the classical optimization methods [26].

General Discussion on Quantum Computing. To perform
QC for information processing purposes, the laws of quantum
physics are used in superconducting devices. A future noise-
free quantum computer has the potential to achieve quantum
supremacy in solving large-scale problems by running quantum
speed-up solutions that cannot be simulated in classical coun-
terparts [27]. The core idea of utilizing the QC algorithm in
estimating the expected value of an uncertain variable is to re-
duce the number of uses of a randomized algorithm in classical
MCS technique [28]. A correct design of a quantum algorithm
containing various gates and unitary operators can end up in an
acceptable approximation with quadratic speed-up. Compared
to the classical MCS technique where the convergence rate is
O( 1√

S
) with total samples S [29], the authors in [30]–[32] have

shown that the quadratic speed up with convergence O( 1
S ) can

be achieved by quantum algorithms.

Quantum Computing Applications. An early report [33]
suggested potential applications of quantum computing in power
systems without providing executable quantum models. The
application of quantum computing on a decoupled AC power
flow is shown in [34] where the quantum-inspired fast decou-
pled power flow is first developed and then, Harrow-Hassidim-
Lloyd (HHL) quantum algorithm is introduced as an applicable
quantum algorithm. Later, a quantum electromagnetic transients
program (QEMTP) based on a modified Harrow-Hassidim-
Lloyd (HHL) algorithm is devised [35]. Based on this success, a
shallow-depth, logarithmical-width variational quantum circuit
(VQC) is developed, which allows for QEMTP simulations
on today’s noisy-intermediate-scale quantum (NISQ) comput-
ers [36]. A quantum shifted frequency analysis (QSFA) for
accelerating QEMTP has also been developeds [36]. In [37],
the quantum-inspired version of particle swarm optimization
(QPSO) is developed where instead of classical mechanics, the
quantum mechanics is employed to show the quantum state of
particles using wave function. Although the quantum version
of PSO has a better convergence performance compared to the
original version of the PSO, in lights of less control parameters,
the obtained solution might be local optima. The accelerated
version of QPSO is used in [38] to maximize the reliability
of the system where an optimization-based model is employed.
However, since the current optimization problems should be in

a quadratic unconstrained binary optimization (QUBO) frame-
work, the proposed optimization model is not applicable to
quantum machines. In [26], the applicable quantum optimization
models, which can be dealt with the quantum machines are
discussed for the distributed unit commitment problem. To de-
crease the delays of network function visualization technology,
an integer linear programming model is developed in the form
of QUBO to be solved using quantum annealing machine [39].
However, the utilized optimization solver is unable to assign
continuous variables to the system variables and parameters.
Among the quantum algorithms, Quantum Amplitude Estima-
tion (QAE) algorithm [31], which takes advantage of the idea of
Grover’s search algorithm [40], has already proved the quadratic
speedup and convergence over the classical MCS technique in
estimating an uncertain variable. Currently, a main application
of QAE is in the finance field in which the uncertain nature of
finance parameters necessitates the stochastic analysis. In [41],
the value at risk and conditional value at risk measures are
calculated using QAE with a quadratic convergence rate. In [42],
financial derivative pricing is solved using a hybrid quantum-
classical algorithm in which quantum Generative Adversarial
Networks is taken into account to model the probability distri-
butions, and then QAE solves derivative pricing problem. The
advantageous performance of QAE over MCS technique can
be found in the implementation of different models of option
pricing using the maximum likelihood estimation method [43]
instead of using quantum phase estimation [44, P.221].

Contributions. To address the gap in the literature review on
drawbacks of classical MCS and analytical methods, this paper
unlocks the potential of quantum computing in power system
reliability evaluation. To take advantage of the quantum compu-
tational framework, this paper firstly contributes to developing a
quantum-supported power system reliability model such that the
required reliability indices are assessed. Then, a QAE-enabled
reliability algorithm is established to calculate the power system
reliability indices where the convergence speed-up is achieved
compared to the classical MCS.

Organization. In Section II, a quantum computing back-
ground is firstly explained and then, the general steps to inte-
grate the classical MCS into the quantum circuit is presented. In
Section III, the quantum circuit of QAE algorithm is explained
and shown on preparing the practical circuit to execute the
QAE algorithm in a real quantum computer. In Section IV, the
quantum-amenable model of power system reliability indices
is formulated. In Section V, the results of reliability indices
obtained by QC are compared to those from classical methods.

II. QUANTUM COMPUTING BACKGROUND

In this section, firstly, a general preview of quantum com-
puting is given. Then, the required quantum-amenable steps to
execute the MCS in a quantum circuit are listed.

A. Basics of quantum computing

The laws of quantum mechanics enable the Quantum com-
puters to solve the problems using new quantum-oriented al-
gorithms. In one of the prevalent types of quantum computers,
the quantum circuit model is utilized, in which quantum bits
(qubits) are the basic units of quantum information [45]. Thanks
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to the superposition feature [46], quantum computers can be in
multiple states, which means that unlike the digital computers
including b bits, quantum computers can hold 2b bits of infor-
mation before measured in basis states |0⟩ and |1⟩. Therefore,
in a system with a single qubit, the superposition principle of
qubit ψ indicates a linear combination of possible configurations
as |ψ⟩ = α |0⟩ + β |1⟩, where |α|2 and |β|2 describe the
probabilities for the system to be in either states |0⟩ or |1⟩,
respectively. According to the Born rule, the measurement of a
qubit should yield |α|2 + |β|2 = 1 [44, P.15]. Therefore, in a
generic form, the superposition of a qubit including b bit-string
basis states can be defined as |ψ⟩b =

∑
x∈{0,1}b ψ(x) · |x⟩.

Additionally, a quantum register in quantum computers is used
to define a system with multiple qubits, which is realized via the
Hilbert space. In that system, the tensor products of available
qubits can mathematically represent the quantum register as
|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψN ⟩ = |ψ1ψ2 . . . ψN ⟩, where N
is the total number of qubits.

To develop a complex quantum circuit, quantum gates are
imperative components of quantum computers to manipulate the
input state-vectors and generate an output. The quantum gates
are reversible and mathematically defined by unitary matrices
such that the quantum gate U can be represented as U ·U† = I ,
where U† is conjugate transpose of a complex square matrix U .
To solve a problem using a quantum algorithm, firstly a quantum
gate which can be a single-qubit gate, a two-qubit gate or a
multi-qubit gate, is applied to either a qubit or multiple qubits.
Afterwards, the state of the qubit(s) is changed accordingly.
Finally, there exists a measuring unit at the end of the circuit to
measure one or more qubits [47]. In Fig. 1, a quantum schematic
of a sample system is depicted.
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Fig. 1. (a) A visualization to a single-qubit sate which is described as |ψ⟩ =
cos( θ

2
) |0⟩+ eiϕsin( θ

2
) |1⟩, where angles θ and ϕ are used to map the state

ψ to a point in Bloch sphere. (b) A schematic of a quantum circuit, where the
initial n-qubit register state is manipulated after being applied to d layers of
unitary operators, and finally, the quantum state |ψ⟩ is measured, which results
in dynamics of the original system.

B. Quantum-oriented steps for integrating the classical MCS

In solving a problem using the classical Monte Carlo method,
three main steps should be taken into account: first, the uncertain
parameters should be modeled as random variables to start
the stochastic procedure. Therefore, we can model all the
random variables as X = {X1, X2, · · · , XR}, where R is

the total number of random variables. In the second step, S
samples should be generated for each random variable using
the probability distribution function of each variable. Thus,
each random variable with S samples can be described as
{x1, x2, · · · , xS}, where x is a random sample of a variable.
Finally, the expected value of a real-valued function f(x) for
each random variable is calculated as follows:

E[f(Xj)] =

S∑
i=1

1

S
f(Xi,j), ∀j ∈ {1, 2, · · · ,R}. (1)

The estimated expected value using the iterative process
of Monte Carlo method can be improved by increasing the
number of sampling. According to the central limit theorem,
the convergence of estimated expected value depends on the
sampling size that is O( 1√

S
) [48, P.89].

Based on the aforementioned steps for the classical Monte
Carlo simulations, a quantum circuit to solve a problem under
uncertainties should include the following quantum blocks:

• The first block of the quantum circuit should generate a
probability distribution function with a number of quantum
samples.

• The second block of the quantum circuit should include
a unitary operator to calculate the function of random
variables.

• Finally, a quantum algorithm is utilized to measure the
amplitude of a state so that an estimation of expected
value of the function containing the uncertain variables is
obtained.

III. QUANTUM AMPLITUDE ESTIMATION ALGORITHM

In this section, firstly, the execution steps of the QAE
algorithm are explained by introducing the required quantum
blocks. In the second subsection, a practical quantum circuit to
implement the QAE algorithm is discussed.

A. QAE algorithm implementation

The QAE algorithm aims at estimating the function of
uncertain parameters quadratically faster than the MCS method
[49], [50]. The number of usage of the quantum algorithm
in estimating a function of uncertain variables is quadratically
decreased compared to the classical MCS [28], meaning as long
as the classical randomize procedure is not involved in the QAE
algorithm, the quantum speed-up is achievable.

A big picture of the QAE algorithm is shown in Fig. 2. There
exist three main quantum blocks including P , H and L. The
quantum block P is employed to load the distribution function
of a random variable. The quantum operator H is used to rotate
the Bloch vector around the y axis by angle θ. To have a better
estimation of a function, the quantum block L is used.

To implement the QAE algorithm, three main steps including
the estimation procedure using QAE, loading the probability
distribution functions of random variables, and calculating the
function f(x) of the random variable x should be considered.

1) Estimation procedure of QAE: In this subsection, the
required quantum computational blocks of QAE are represented
to estimate the expected value. Also, the performance of QAE
in decreasing the number of measurements is discussed.
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Fig. 2. Quantum circuit of MCS integration as an amplitude estimation

According to the quantum circuit in Fig. 2, several quantum
blocks should be implemented in sequence. In the first block,
an algorithm called P is considered on an n-qubit register |0⟩n.
The algorithm outputs:

P |0⟩n =

2n−1∑
i=0

√
p(xi) · |xi⟩n . (2)

where, the algorithm outputs the n-bit string result x with
probability p(x).

In the second block of the quantum circuit, the unitary
operator H is applied to (n+ 1) qubits. In this step, a rotation
is executed onto an ancilla qubit. Therefore, in addition to n-
qubit register |x⟩n obtained using operator P , there exists a
qubit register |0⟩. The operator H outputs:

H |x⟩n |0⟩ = |x⟩n
(√

f(x) · |1⟩+
√
1− f(x) · |0⟩

)
. (3)

where, f(x) is a function f(x) : {0, 1}n → R which is mapped
to real numbers from n-bit strings.

The output state ψ is resulted after applying quantum blocks
(P ⊗ I) and H to the states |0⟩n |0⟩:

|ψ⟩ = H(P ⊗ I) · |0⟩n |0⟩

=

2n−1∑
i=0

[√
p(xi) · |xi⟩n

(√
f(xi) · |1⟩+

√
1− f(xi) · |0⟩

)]
.

(4)

where, I is the identity operator.
To rewrite the obtained state (4) in a straightforward man-

ner, we firstly define two orthonormal bases, in which y =∑2n−1
i=0 p(xi) · f(xi):

|ψ0⟩ =
∑2n−1
i=0

√
p(xi) ·

√
1− f(xi) · |xi⟩n |0⟩√

1− y
, (5a)

|ψ1⟩ =
∑2n−1
i=0

√
p(xi) ·

√
f(xi) · |xi⟩n |1⟩√

y
. (5b)

where, |ψ0⟩ and |ψ1⟩ are normalized states with n qubits.
Using (5a) and (5b), the state ψ as the output state passing

through the unitary operator g, is described as follows:

|ψ⟩ =
√

1− y · |ψ0⟩+
√
y · |ψ1⟩ . (6)

where, the purpose of QAE is to estimate the probability of
measurement |1⟩, which is equal to (

√
y)2 = E[f(x)] [31].

Suzuki, et al [43] improved the estimation of expected value of

an unknown parameter by amplifying the probability of mea-
surement |1⟩. In general, the prepared state |ψ⟩n+1 is described
as follows in terms of θ ∈

[
0, π2

]
to realize sin2θ = f(x):

g |0⟩n+1 = cos(θ) · |ψ0⟩n |0⟩+ sin(θ) · |ψ1⟩n |1⟩ . (7)

According to Fig. 2, there exists a block L with s sampling
qubits and S = 2s application of operator L. The operator
L = g · K0 · g† · Kψ0

with K0 = 1 − 2 |0⟩ ⟨0| and Kψ0
=

1 − 2 |ψ0⟩ |0⟩ ⟨ψ0| ⟨0| is employed in the quantum circuit to
obtain the efficient estimation of y.

To amplify the probability of measured state |1⟩, the unitary
operator L is applied on the prepared state by (7) for s times,
which yields:

Ls |ψ⟩n+1 = cos(θ(2s+ 1)) · |ψ0⟩n |0⟩
+ sin(θ(2s+ 1)) · |ψ1⟩n |1⟩ .

(8)

where, similar to (8), the unknown parameter f(x) is estimated
as sin2(θ(2s+ 1)) after applying the operator L.

In Fig. 3, the full circuit of QAE is illustrated.
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Fig. 3. Quantum circuit of QAE. Blocks H and F †
s represent the Hadamard

gate and the inverse Quantum Fourier Transform, respectively.

According to Fig. 3, Hadamard gates (H) are utilized to
initialize the qubits to superposition states. Afterwards, the
qubits in superposition states control S applications of operator
L. The ancilla qubits are finally measured after performing
an inverse Quantum Fourier Transform, which gathers the
amplitudes of states [31]. The measurement results in integer
values z ∈ {0, 1, · · · , S− 1}, which is mapped to the estimator
for y as follows:

ŷ = sin2
(z · π
S

)
. (9)

where, ŷ is estimated in S calls to the oracle with the following
error with a probability of at least 8

π2 [31], [51]:

|y − ŷ| ≤
2π
√
y(y − 1)

S
+
π2

S2
= O

(
1

S

)
. (10)

which shows a quadratic speed-up compared to the classical
MCS method with the convergence rate of O

(
1√
S

)
[52]. This

result shows that integrating the classical MCS method in the
quantum circuit achieves the same estimation accuracy, but with
quadratically less samples [28].

The circuit depth is the longest path from the input to the
output of the circuit. The number of time steps determines the
depth of the circuit. Additionally, the number of gates in the
longest circuit path is proportional to the depth of the circuit,
which is an integer number. To reduce the circuit depth of
the QAE algorithm, Suzuki et al. [43] have eliminated the
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quantum phase estimation with the guaranteed quadratic speed-
up. Another advantage is that the dependency of the QAE
algorithm to qubits is reduced. In this model, to estimate θ in
(8), a maximum likelihood estimation methods with S number
of operator L and W shots for each experiment is used, which
yields the estimation error as O

(
1

S·
√
W

)
, still resulting in a

quadratic speed-up.
2) Quantum block for probability distribution function: To

load the probability distribution function corresponding to the
random variable, the quantum register takes the random variable
and assigns a possible value with the corresponding amplitude
as its probability using the basis state. As shown in Fig. 2,
the operator P takes an n-qubit state |ψ⟩ and yields (2) with
a random variable x with its probability p(x). Therefore, to
estimate the values of a random variable x using n qubits,
the QAE algorithm maps the variable to the integer interval
{0, 1, · · · , 2n− 1}. Then, the random variable is described in a
quantum state as (2) such that

∑2n−1
i=0 pi(x) = 1.

3) Quantum block for calculating the function f(x) of the
random variable x: According to operator g, the expected value
of f(x) is the amplitude of state |ψ1⟩ described in (4)-(6). In
this subsection, we explain how to create the quantum circuit
for operator g such that the expected value of function f of the
variable x is achieved. To do this, the generated operator should
execute the following mapping:

2n−1∑
i=0

√
pi · |i⟩n |0⟩ →

2n−1∑
i=0

√
pi · |i⟩n ·[

cos
(
c · f̂i +

π

4

)
|0⟩+ sin

(
c · f̂i +

π

4

)
|1⟩
]
.

(11)

where, the function f is mapped to the integer values i ∈
{0, 1, · · · , 2n − 1}. Also, f̂ is defined as a scaled version of
function f , which is defined as following:

f̂i = 2
fi − fmini

fmaxi − fmini

− 1. (12)

where, fmini and fmaxi are the minimum and maximum values
of function f(x).

The parameter c is chosen in the range [0, 1]. As mentioned in
the previous subsection, the probability of ancilla qubit in state
|1⟩ leads toward the estimation of expected value of function f
in the form of

∑
i p(i) · sin2

(
c · f̂ + π

4

)
. Using the fact that

sin2
(
x̂+ π

4

)
≈ x̂+ 1

2 for small x̂, the following approximation
for the probability of state |1⟩ is obtained [41]:

sin2
(
c · f̂i +

π

4

)
= c · f̂i +

1

2
+O

(
c3 · f̂3i

)
. (13)

The first order approximation in (13) yields the convergence
rate of O

(
1

S
2
3

)
which is still faster than the classical MCS

method [41]. To improve the convergence rate of QAE, higher
order approximation and implementation of the quantum circuit
is required to achieve the convergence rate of O

(
1
S

)
.

B. Practical quantum circuit of QAE algorithm

In subsection III-A, the quantum circuit of QAE is explained
in theoretic manner. To realize the quantum circuit for current
quantum computers, this subsection provides practical quantum
gates and blocks for the QAE algorithm.

Constructing the operator P: The first unitary operator in
the quantum circuit of the QAE algorithm is P , which acts on n-
qubit states (see Fig. 2). Constructing the operator P yields the
quantum state described in (2), which represents the probability
distribution of a random variable. Generally, it is shown that the
complexity of O (2n) is needed to consider the required number
of quantum gates in constructing the operator P [53]. However,
many distribution functions such as log-concave distribution
have the polynomial complexity O (n) [54].

To model the probability distribution in the quantum circuit
of the QAE algorithm, we can use different quantum gates in
different designs.

In one of the quantum models, Hadamard gates are used to
construct the operator P [43]. The Hadamard gate puts a qubit in
a superposition state and is represented by the following matrix
[44, P.19]:

H =
1√
2

[
1 1
1 −1

]
. (14)

A generic form of applying Hadamard gate into an n-qubit
state (H⊗n) is defined as follows, which is the output of the
operator P:

H⊗n |ψ⟩n =
1√
2n

∑
i∈{0,1}n

(−1)i·ψ |i⟩n . (15)

According to (15), utilizing the Hadamard gate results in a
probability distribution with an equal probability 1

2n for all
existing states. In the next quantum model to establish the
probability distribution function, single-qubit Y-rotations are
used. To do this, Pauli matrix Y, which is a 2 by 2 complex

Hermitian and unitary matrix σy =

[
0 −i
i 0

]
, is utilized to

create the rotation operator Ry(θ) which rotates the Bloch
vector (see Fig. 1(a)) by angle θ around the axis y. The Y-
rotation operator is defined as follows:

Ry(θ) =e
−i θ2Y = cos

(
θ

2

)
I − isin

(
θ

2

)
Y

=

[
cos
(
θ
2

)
−sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ] . (16)

In Fig. 4, two different quantum circuits for operator P
are depicted. Using different quantum gates results in different
probability distribution functions. In Fig. 4, three qubits are
used to prepare the distribution function of random variable x.
In general, n number of qubits prepare 2n samples or values
for a random variable. Thus, in a 3-qubit quantum register, the
random variable x takes eight different values. For each value,
a quantum state from the set |ψ⟩ = {|000⟩ , |001⟩ , · · · , |111⟩}
is assigned. Moreover, in Fig. 4(b), there is a CNOT gate to
generate the required quantum states for each value. The CNOT
gate is applied to two qubits and flips the second qubit (target
qubit) if and only if the first qubit (control qubit) is in state |1⟩.

It is noted that different probability distribution functions
are derivable based on the utilized quantum gates and the
architecture of gates. In [55], the loaded log-normal distribution
uses different numbers of Y-rotation and CNOT gates compared
to the Fig. 4(b).

Constructing the operator g: As theoretically explained in
subsection III-A and depicted in Fig. 2, the operator g consists
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H|0>
(1)

H|0>
(2)

H|0>
(3)

|000> |001> |010> |011> |100> |101> |110> |111>

Ƥ Output probability distribution

|0>
(1)

|0>
(2)

Ry(θ3 )|0>
(3)

Ƥ

(a)

Ry(θ2 )

Ry(θ1 )

Output probability distribution

(b)

|000>
|001>

|010>

|011>
|100>

|101>
|110> |111>

: CNOT gate

Fig. 4. Loading distribution function in the quantum circuit of QAE consisting
of 3 qubits. (a) Applying Hadamard gate in operator P yields a distribution
function with equal probability for each quantum state. (b) Applying Y-rotation
with angle θ and controlled NOT gate (CNOT) result in a distribution function
with different probabilities for quantum states.

|x>
(1)

|x>
(2)

|x>
(n)

Ry(θ0 )|0>
(1)

Ry(θ1 ) Ry(θ2 ) Ry(θn )

ℌ 

Fig. 5. Quantum circuit of operator H including n-qubit state |x⟩ and Y-
rotation with angle θ

of two quantum blocks P and H. Here, we show how to map
the aforementioned estimation of a function f(x) in (3) to a
practical quantum circuit using quantum gates.

To estimate f(x), the operator g rotates an ancilla using
controlled Y-rotations (Ry(θ)). The operator g acts on an (n+1)-
qubit state yielding (7), i.e.:

|x⟩n |0⟩ → |x⟩nRy(θx) |0⟩
→ |x⟩n (cos(θ) · |0⟩+ sin(θ) · |1⟩) .

(17)

In (17), an n-qubit state |x⟩ is applied to RY (θn) with angle
θ to create the block H as shown in Fig. 5.

Now, the quantum circuit of operator g, which is a combi-
nation of operators P and H, is depicted for any probability
distribution functions as Fig. 6.

Therefore, we can model the operator g by a Y-rotation with
the following angle for y (probability of measurement |1⟩):

g = Ry(θy),

θy = 2arcsin (
√
y) .

(18)

Constructing the operator L:
In the QAE algorithm, we exploit the operator L with a total

of S samples to achieve an efficient estimation of probability
measurement |1⟩. Therefore, instead of measuring state |1⟩ after
the operator g, L operator is involved between operator g and
measuring units to amplify the probability of measurement |1⟩.

H|0>
(1)

H|0>
(2)

H|0>
(3)

Ƥ

ց 

|0>
(1)

|0>
(2)

Ry(θ3 )|0>
(3)

(a)

Ry(θ2 )

Ry(θ1 )

(b)

Ry(θ0 )|0>
(1)

Ry(θ1 ) Ry(θ2 ) Ry(θ3 )

ℌ 

ℌ 

Ry(θ4 )|0>
(1)

Ry(θ5 ) Ry(θ6 ) Ry(θ7 )

Ƥ

ց 

Fig. 6. Quantum circuit of operator g including 3-qubit input and an ancilla. (a)
Operator g when a distribution function with equal probability for all quantum
states is loaded. (b) Operator g when a distribution function with different
probabilities for each quantum state is loaded.

It is proved that S = 2s applications of operator L in the form of
(L)sg |0⟩n+1 leads toward at least 4s2 measurement probability
of |1⟩ higher than applying g |0⟩n+1 [43]. In Fig. 7, the quantum
circuit corresponding to operator L = g ·K0 · g† ·Kψ0 with a
single application of L is drawn.

As seen in Fig. 7, there are several quantum gates in the
quantum circuit. Hadamard gate is exploited to encode the
distribution function. Y-rotation gate with angle θ is the core
component of QAE algorithm in estimating the probability of
measurement |1⟩. Additionally, Pauli-X and Pauli-Z are used to
rotate a vector around the x and z axes of the Bloch sphere,
respectively, by π Radians. Pauli-X, which is defined as the

matrix X =

[
0 1
1 0

]
, is equivalent to NOT gate in classical

computers. This matrix maps state |0⟩ to state |1⟩ and vice

versa. Moreover, Pauli-Z is defined as the matrix Z =

[
1 0
0 −1

]
,

and keeps state |0⟩ unchanged while state |1⟩ is mapped to
− |1⟩. In a quantum computer, the operator L is modeled as
(L)s = Ry(2sθy).

IV. QUANTUM AMPLITUDE ESTIMATION ALGORITHM FOR
POWER SYSTEM RELIABILITY

In this section, we aim at applying the QAE algorithm to
power system reliability calculation. To this end, without loss
of generality, we provide a brief recapitulation of classical
distribution reliability assessment. Then, the quantum-amenable
reliability evaluation is discussed using the QAE algorithm.

A. Distribution system reliability assessment from a classical
viewpoint

A distribution system consists of various components such as
distributions lines, cables, disconnects, busbars and switches. In
the MCS method, first, the system states should be generated.
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H|0>
(1)

H|0>
(2)

Ƥ

ց 

(a)

Ry(θ0 )|0>
(1)

Ry(θ1 ) Ry(θ2 )

ℌ 

Z

Kψ0

Ry(-θ2 ) Ry(-θ1 ) Ry(-θ0 )

ց†  

H

H

X

X

HX

X H

X H

H X

K0 = I-2|0>n+1 <0|n+1

Ry(θ0 ) Ry(θ1 ) Ry(θ2 )

ց  

L(1)

|0>
(1)

|0>
(2)

Ƥ

ց 

(b)

Ry(θ3 )|0>
(1)

Ry(θ4 ) Ry(θ5 )

ℌ 

Z

Kψ0

Ry(-θ5 ) Ry(-θ4 ) Ry(-θ3 )

ց†  

X

X

HX

X

X

H X

K0 = I-2|0>n+1 <0|n+1

Ry(θ3 ) Ry(θ4 ) Ry(θ5 )

ց  

L(1)

Ry(θ1 )

Ry(θ2 )

Ry(-θ1 )

Ry(-θ2 )

Ry(θ1 )

Ry(θ2 )

H : Hadamard gate : Pauli-X gateX : Pauli-Z gateZ Ry(θ ) : Y-rotation gate

Fig. 7. A part of quantum circuit of QAE algorithm including single application of operator L in a 2-qubit case with an ancilla. (a) Operator L when Hadamard
gates are involved in loading a distribution function. (b) Operator L when Ry rotations are used in loading a distribution function.

In this paper, up-state and down-state are considered as the
system states for each component. Then, time duration of each
state should be calculated. Analytically, if an exponential failure
model is assumed, the time duration of a component which stays
in up-state is time to failure (TTF) as given in (19a). Similarly,
the time to repair (TTR) is used to describe the time duration
of a component in down-state as (19b) [9, P.406], [24]:

TTFm = − 1

λm
· ln(U1), m ∈M (19a)

TTRm = − 1

µm
· ln(U2), m ∈M. (19b)

where, λm and µm are failure rate and repair rate of the
component m in the component set M , respectively. Also, the
random numbers U1 and U2 are between 0 and 1. Numerically,
those indices can be evaluated through Monte Carlo simulations,
including probabilistic distributions and expected values.

In a distribution system, the faults occurring at lateral
branches and main feeders are isolated by fuses and disconnects,
respectively. To asses the distribution system reliability facing
the faults, load-point and system-level indices are exploited. The
load-point indices are calculated for each load using the random
variables TTF and TTR of each component such as lines and
cables. The load-point indices are defined as follows [56]:

λk =
Fk∑
t tup,k

, ∀k ∈ K, (20a)

rk =

∑
t tdn,k
Fk

, ∀k ∈ K, (20b)

Uk =

∑
t tdn,k∑

t tup,k +
∑
t tdn,k

, ∀k ∈ K. (20c)

where, λk, rk and Uk are the average failure rate, the average
outage time and average annual outage time of load point k,
respectively. Also,

∑
t tup,k and

∑
t tdn,k are the total up and

down times of load point k, respectively. Fk denotes the number
of failures of load point k during the total sampled years.

The load-point metrics introduced in (20a)-(20c) are insuffi-
cient to elaborate the system behavior. To quantify the overall
distribution system reliability, the system-level metrics such
as customer-orientated and energy-orientated indices are intro-
duced on top of the calculated load-point metrics. A detailed
procedure of the classical MCS method to obtain the load point
and system point indices are explained in [9]. In addition to
indices for characterising momentary outages, the more widely
used system reliability indices include system average inter-
ruption frequency index (SAIFI), system average interruption
duration index (SAIDI), customer average interruption dura-
tion index (CAIDI), average service availability (unavailability)
index (ASAI), energy not supplied index (ENS) and average
energy not supplied index(AENS), which are formulated as
follows [9, P.223], [57]:

SAIFI =

∑
k λk ·Nk∑
kNk

, (21a)

SAIDI =

∑
k Uk ·Nk∑
kNk

, (21b)

CAIDI =

∑
k Uk ·Nk∑
kNk · λk

, (21c)

ASAI =

∑
kNk × 8760−

∑
kNkUk∑

kNk × 8760
, (21d)

ASUI = 1−ASAI, (21e)

ENS =
∑
k

Dk · Uk, (21f)

AENS =

∑
kDk · Uk∑
kNk

. (21g)

where, Nk and Dk are the number of customers and the average
load demand at load point k, respectively.

B. Quantum-amenable reliability evaluation

This subsection aims at transforming a classical system
reliability calculation into a quantumized reliability analytic.
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To assess the load-point and system-level reliability indices
using QAE, the following steps should be implemented:

Step1: Loading the probability distribution function of
random variables U1 and U2. To obtain the TTF (19a) and
TTR (19b), the random numbers U1 and U2 should be loaded
using the quantum block P . According to subsection. III-B, the
random variable x in (2) is replaced by U1 and U2, and the
probability of each variable is described by p(U1) and p(U2),
respectively. To use the QAE algorithm to estimate quantities
related to a random number U1 or U2, we should first represent
U1 or U2 as a quantum state. A total of n qubits are utilized to
map U1 or U2 to the interval {0, 1, · · · , 2n−1}. After applying
the quantum block P into an n-qubit register |0⟩n, the following
quantum state output (|ψU1⟩n or |ψU2⟩n) is resulted for each
random variable with the corresponding probability:

|0⟩n
P−→ |ψU1⟩n =

2n−1∑
i1=0

√
pi1 · |i1⟩n , (22a)

|0⟩n
P−→ |ψU2

⟩n =
2n−1∑
i2=0

√
pi2 · |i2⟩n , (22b)

where, i1, i2 ∈ {0, 1, · · · , 2n − 1} are one of the 2n possible
realizations of U1 and U2, respectively. Moreover, pi1 ∈ [0, 1]
and pi2 ∈ [0, 1] are the probability of measuring states |i1⟩n
and |i2⟩n, respectively. The measuring states associated with
random variables U1 and U2 are represented by |i1⟩n and |i2⟩n,
respectively.

Step2: Calculating the TTF and TTR. In the QAE
algorithm, to calculate the TTF, a quantum operator H1 is
integrated into the quantum circuit such that |w1 · ln(i1)⟩ is
calculated and the result is stored into the ancilla qubit with the
state |0⟩. In other words, the following state yields TTF state
after applying H1 quantum block:

|ψTTF ⟩n = |i1⟩n |w1 · ln(i1)⟩ , (23)

where, w1 = − 1
λm

.
Similarly, the quantum block H2 is employed to estimate TTR
state using obtained state of U2 and calculated |w2 · ln(i2)⟩.
The resulted state of TTR is as follows:

|ψTTR⟩n = |i2⟩n |w2 · ln(i2)⟩ , (24)

where, w2 = − 1
µm

.
Step3: Calculating the load-point reliability indices. In the

third step, the average failure rate (λk), average outage time (rk)
and average annual outage time (Uk) of kth load are calculated.
To construct the quantum circuits associated with (20a)-(20c),
we need the states of TTF(|ψTTF ⟩n) and TTR(|ψTTR⟩n). From
(20a)-(20c), quantum sum operators should be constructed after
loading the quantum states of TTF and TTR. To estimate the λk,
a quantum operator H3 should be used to yield the following
state:

|ψλk
⟩n = |ψTTF ⟩n

∣∣∣∣ w3∑n
i=1 TTFi

〉
, (25)

where, w3 is number of times the component fails (Fk in (20a)).
Also, |TTF ⟩n = |TTF1TTF2 · · ·TTFn⟩. The result is stored

in the ancilla qubit. Similarly, to estimate the rk, a quantum
operator H4 should be used to yield the following state:

|ψrk⟩n = |ψTTR⟩n

∣∣∣∣∑n
i=1 TTRi
w3

〉
, (26)

where, |TTR⟩n = |TTR1TTR2 · · ·TTRn⟩. Additionally, the
quantum operator H5 is used to derive the quantum state of
average annual outage time of load point k (Uk):

|ψUk
⟩n = |ψTTF ⟩n |ψTTR⟩n

∣∣∣∣ ∑n
i=1 TTRi∑n

i=1 TTFi +
∑n
i=1 TTRi

〉
,

(27)

Step4: Calculating the system-point reliability indices.
From step 1 to step 3, the required quantum blocks to estimate
each system-level reliability index are constructed. The quantum
block P is employed to construct the quantum state for random
variables. Additionally, the quantum block H discussed in
Section III is constructed as H = H1⊗H2⊗H3⊗H4⊗H5. The
quantum circuit to estimate each system-level reliability index
is the combination of operators P and H (H(P ⊗ I) · |0⟩n |0⟩),
which ends up in the quantum block g. In the following, we
extend the operator g to calculate the reliability index SAIFI:

|ψSAIFI⟩n =

2n−1∑
i=0

[√
p(λi) · |λi⟩n

(√∑
k λk,i ·Nk∑

kNk
· |1⟩

+

√
1−

∑
k λk,i ·Nk∑

kNk
· |0⟩

)]
,

(28)
where, as it is theoretically discussed in Section III, the
probability of measuring state |1⟩ results in the SAIFI index
estimation. Similarly, the quantum state associated with SAIDI
is as follows:

|ψSAIDI⟩n =

2n−1∑
i=0

[√
p(Ui) · |Ui⟩n

(√∑
k Uk,i ·Nk∑

kNk
· |1⟩

+

√
1−

∑
k Uk,i ·Nk∑

kNk
· |0⟩

)]
.

(29)
Step5: Efficient estimation of reliability metrics. To have

an efficient estimation of each reliability index, S number
application of quantum block L is used which is controlled
by qubits in superposition state. The number of applications of
block L in the QAE algorithm is equivalent to the sampling size
in classical MCS method. Therefore, the quantum computing
requires exponentially less samples compared to the classical
MCS method. After performing an inverse Quantum Fourier
Transform, the ancilla qubits are measured.

In classical MCS method and our quantum-based method
(QAE), to estimate the accurate results, we increase the sam-
pling size to assess the reliability indices. Furthermore, in
the MCS method and QAE, random numbers (U1 ∈ [0, 1]
and U2 ∈ [0, 1]) are generated to calculate TTF and TTR of
components; and to decrease the convergence errors, the number
of samples are increased – this feature is not available in ana-
lytical methods. The quantum block L uses qubits to generate a
large sampling size that current classical MCS methods might
encounter scalability and computational issues. To decrease the
convergence errors and mitigate the impact of outliers or some
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unrealistic data, the QAE method uses many application of
operator L to generate different scenarios, whereas in MCS
methods, this strategy can be computationally expensive; even
in analytical or machine learning-based techniques, wrong input
distribution functions results in wrong outputs.

A flowchart is depicted as Fig. 8 to describe the Quantum-
amenable reliability assessment process.

Initialized Quantum states |0>

Applying quantum block Ƥ including Ry(θ ) or Hadamard 

gates

 Output the quantum states of random variables U1 and U2 

(|ψU1>n,|ψU2>n)

Applying quantum block ℌ1 including Ry(θ ) 

Output: the quantum states of TTF 

(|ψTTF>n =|ψU1>n |ω1.ln(U1)>)

Applying quantum block ℌ2 including Ry(θ) 

Output: the quantum states of TTR 

(|ψTTR>n =|ψU2>n |ω2.ln(U2)>)

Applying quantum block ℌ3 including Ry(θ) 

Output: the quantum states of average failure rate

(|ψλk>n =|ψTTF>n |ω3 / ∑TTFi>)

Applying quantum block ℌ4 including Ry(θ) 

Output: the quantum states of average outage time

(|ψrk>n =|ψTTR>n | ∑TTRi /ω3>)

Applying quantum block ℌ5 including Ry(θ) 

Output: the quantum states of average annual outage time

(|ψUk>n =|ψTTR>n |ψTTR>n | ∑TTRi /∑TTFi+∑TTRi>)

Load point reliability indices are obtained.

ℌ = ℌ1    ℌ2    ℌ3    ℌ4    ℌ5   

Applying quantum block ꬶ = Ƥ   ℌ 

Output: System-level reliability indices





Quantum state of SAIFI:

Applying quantum block L with S number of applications to 

have a better estimation of each reliability index

Performing an inverse Quantum Fourier Transform

The probability of measuring state |1> results in an 

estimation of a reliability index
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Fig. 8. A flowchart of quantum computing for reliability indices evaluation

In the mathematical formulations to obtain the reliability
indices, we employ the summation operator. For example,
three component gates are required to construct the summation
operator for reliability indices. The required steps to build the
summation operator required to calculate load-point and system-
point indices are shown in Fig. 9.

To calculate the reliability indices, the summation operator
is needed. Therefore, to convert the classical mathematical
equations into summation operators, we need the following
steps to run using quantum gates:

|TTFi> or  

|TTRi>

Ꞗ1|sj>

|sj+1>

=

|TTFi> or  

|TTRi>
Ꞗ2

|sj>

=

|TTFi> or  

|TTRi>

Ꞗ3|sj>

|sj+1>

= X X

(a)

(b)

(c)

Fig. 9. Steps to construct summation operator in the quantum circuit used for
reliability indices assessment.

• A quantum operator B1, which is equivalent to a Toffoli
gate, is used to compute the carry from adding state
|TTFi⟩ or |TTRi⟩ and state |sj⟩ into state |sj+1⟩. In
other words, operator B1 is a summation operator to
compute the arithmetic sum of the values of n qubits
|TTF ⟩n = |TTF1 TTF2 · · · TTFn⟩ or |TTR⟩n =
|TTR1 TTR2 · · · TTRn⟩, and the summation results are
stored in m-qubit register |s⟩m = |s1 s2 · · · sm⟩.

• The quantum operator B2, which consists of a CNOT gate,
adds the the state qubit |TTFi⟩ or |TTRi⟩ to the qubit |sj⟩.
This operator is shown in Fig. 9(b).

• The operator B3, which consists of a Toffoli gate and two
NOT (X) gates, resets the carry qubit (ancilla qubit) back
to |0⟩.

V. NUMERICAL RESULTS

In this section, to validate our quantum reliability model, a
4-bus case study is first considered. Then, the practicality and
efficacy of the quantum-amenable model are tested on the 33-
bus and 119-bus radial and mesh distribution systems, where the
number of components are increased. To design the quantum
circuit and run the quantum algorithm, the IBM statevector
simulator is employed.

A. Four-bus radial distribution system

In this case study, a 4-bus radial distribution system used
in [9, p.230] is considered to assess the reliability indices. As
depicted in Fig. 10, the system comprises 4 load nodes, 4 lateral
branches and 4 distribution lines. Three different scenarios
are analyzed. In the first scenario, which is a base case, the
reliability indices are assessed without considering protection
systems and isolators. In the second scenario, only fuses are
exploited in lateral branches. In the last scenario, in addition
to fuses, isolators or disconnects are considered as part of the
distribution lines.

1) Four-bus radial distribution grid without protection sys-
tems: In this scenario, none of the protection devices on the
distribution feeders (Ω1, Ω2, Ω3, and Ω4) and laterals (Γ1, Γ2,
Γ3, and Γ4) are included. Therefore, any failures along each line
or cable will cause the main breaker to be opened and none of
the load points (D1, D2, D3, and D4) will be supplied. The
reliability parameters of the radial distribution system are taken
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Fig. 10. Single line diagram of 4-bus radial distribution system including
protection systems.

from [9, Table 7.7, p.230]. Additionally, the data associated with
load points are available in [9, Table 7.9, p.232].

Table I summarizes the system reliability indices (expected
values) obtained from quantum and classical methods.

TABLE I
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT IN 4-BUS

RADIAL DISTRIBUTION SYSTEM WITHOUT PROTECTION SYSTEM
(FIRST SCENARIO)

System point indices
Method SAIFI

(interruptions/year)
SAIDI

(hours/year)
CAIDI

(hours/interruption)
QAE 2.191 6.04 2.71

SMCS [9] 2.195 5.92 2.69
Analytical [9] 2.2 6 2.73

Method ASAI ENS
(MWh/year)

AENS
(kWh/customer.year)

QAE 0.9993 84.13 27.89
SMCS [9] 0.9993 84.8 27.64

Analytical [9] 0.9993 84 28

From Table I, to check the accuracy of the QAE algorithm
compared to the analytical method, the error of SAIFI, SAIDI,
CAIDI, ENS, and AENS are 0.41%, 0.67%, 0.73%, 0.15%, and
0.39%, respectively.

2) Four-bus radial distribution grid entailing fuses in lateral
branches: In this scenario, the fuse gear is installed on each
lateral while the line isolators/disconnects in Fig. 10 are dis-
regarded. In case a failure occurs on a lateral feeder, the fuse
operates and the lateral disconnects from its load point until the
faulted feeder is repaired/restored while the other load points
will be in the connected mode. All input data are the same as
the first scenario.

TABLE II
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT IN 4-BUS

RADIAL DISTRIBUTION SYSTEM IN PRESENCE OF THE FUSE GEAR
IN EACH LATERAL BRANCH (SECOND SCENARIO)

System point indices
Method SAIFI

(interruptions/year)
SAIDI

(hours/year)
CAIDI

(hours/interruption)
QAE 1.146 3.93 3.37

SMCS 1.16 3.94 3.38
Analytical [9] 1.15 3.91 3.37

Method ASAI ENS
(MWh/year)

AENS
(kWh/customer.year)

QAE 0.9995 54.4 18.2
SMCS 0.9995 55.3 18.4

Analytical [9] 0.9995 54.8 18.3

In Table II, the expected system reliability indices are eval-
uated using QAE in the 4-bus radial distribution system and
compared with those obtained by classical sequential MCS and
analytical techniques in [9, p.232].

According to the results described in Table II, the percentage
errors of quantum computing compared to the analytical method
are 0.35%, 0.5%, 0.15%, 0.73%, and 0.5% for SAIFI, SAIDI,
CAIDI, ENS, and AENS, respectively.

3) Four-bus radial distribution system including lateral
feeder protection and isolators/disconnects: To evaluate the re-
liability indices, in addition to lateral fuses, isolators/disconnects
are installed on the feeder sections. Under this type of protection
scheme, any failure on a feeder causes the main breaker to
operate until the the fault is detected. Upon the fault detection,
the isolator operates and all load points between the supply
and the isolator are restored. In this scenario, the isolation
time should be considered [9, p.234]. To analyze the effect of
isolators/disconnects on the reliability indices of the distribution
system of Fig. 10, the results from the QAE algorithm is
represented in Table III.

TABLE III
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT IN 4-BUS

RADIAL DISTRIBUTION SYSTEM IN PRESENCE OF FUSE GEARS ON
LATERAL BRANCHES AND ISOLATORS ON DISTRIBUTION LINES

(THIRD SCENARIO)

System point indices
Method SAIFI

(interruptions/year)
SAIDI

(hours/year)
CAIDI

(hours/interruption)
QAE 1.157 2.57 2.24

SMCS [9] 1.158 2.55 2.20
Analytical 1.159 2.59 2.23

Method ASAI ENS
(MWh/year)

AENS
(kWh/customer.year)

QAE 0.9997 35.2 11.69
SMCS [9] 0.9997 35.2 11.7
Analytical 0.9997 35.3 11.79

After comparing the obtained results from Table III, the
error of reliability indices SAIFI, SAIDI, CAIDI, ENS, and
AENS using QAE are 0.17%, 0.7%, 0.45%, 0.28%, and 0.85%,
respectively.

B. 33-bus radial distribution system

Supply

Main feeder breaker

Fuse gear

Isolator/Disconnect

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

23 24 25 26 27 28 29 30 31 32 33

T1

T3

T2

Tie switch

Fig. 11. Single line diagram of 33-bus distribution system including protection
systems.

To validate the scalability of quantum computing in distri-
bution system reliability assessment, the size of the distribution
grid is increased such that more components such as load points,
distribution lines, isolators, and lateral branches are considered.
In Fig. 11, the single line diagram of the 33-bus distribution
system containing protection systems is depicted.
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In this case study, the tie-lines are ignored. In Table IV, Table
V and Table VI, the results of system-level reliability evaluation
are represented in three scenarios.

TABLE IV
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT FOR 33-BUS
RADIAL DISTRIBUTION SYSTEM WITHOUT PROTECTION SYSTEMS

(FIRST SCENARIO)

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 18.21 18.30 18.18 0.17

SAIDI
(hours/year) 49.63 50.03 49.69 0.12

CAIDI
(hours/interruption) 2.72 2.73 2.73 0.37

Indices QAE SMCS Analytical Error (%)
ASAI 0.9945 0.9942 0.9943 0.002
ENS

(MWh/year) 5816.3 5853.7 5814.3 0.003

AENS
(kWh/customer.year) 232.30 234.15 232.57 0.12

TABLE V
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT FOR 33-BUS
RADIAL DISTRIBUTION SYSTEM IN PRESENCE OF THE FUSE GEAR

IN EACH LATERAL BRANCH (SECOND SCENARIO)

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 6.98 7.06 7.02 0.57

SAIDI
(hours/year) 27.39 27.55 27.37 0.01

CAIDI
(hours/interruption) 3.86 3.9 3.9 1.0

Indices QAE SMCS Analytical Error (%)
ASAI 0.9968 0.9968 0.9969 0.001
ENS

(MWh/year) 3181.94 3224.5 3202.9 0.65

AENS
(kWh/customer.year) 127.68 128.98 128.11 0.34

TABLE VI
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT FOR 33-BUS
RADIAL DISTRIBUTION SYSTEM IN PRESENCE OF FUSE GEARS IN

LATERAL BRANCHES AND ISOLATORS IN DISTRIBUTION LINES
(THIRD SCENARIO)

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 7.01 7.06 6.98 0.4

SAIDI
(hours/year) 9.96 10.03 9.94 0.2

CAIDI
(hours/interruption) 1.43 1.42 1.423 0.5

Indices QAE SMCS Analytical Error (%)
ASAI 0.9989 0.9988 0.9989 0.001
ENS

(MWh/year) 1155.75 1178.38 1164.82 0.7

AENS
(kWh/customer.year) 46.90 47.13 46.59 0.6

From obtained results by QAE (Table IV, Table V and Table
VI), it is seen that, in all scenarios for each reliability index, the
percentage errors of the quantum reliability results are between
0 and 1% as compared to those from the analytical method.

C. 33-bus mesh distribution system

In this case study, we consider all the tie-lines in Fig. 11.
Tie-lines T1, T2 and T3 are employed to connect buses 12 and
22, buses 18 and 33, and buses 25 and 29, respectively. The
system reliability indices in presence of fuses and isolators in
line sections are assessed using three methods, as summarized
in Table VII.

TABLE VII
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT IN 33-BUS
MESH DISTRIBUTION SYSTEM IN PRESENCE OF FUSE GEARS IN
LATERAL BRANCHES AND ISOLATORS IN DISTRIBUTION LINES

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 6.96 7.10 7.02 0.8

SAIDI
(hours/year) 6.38 6.44 6.34 0.6

CAIDI
(hours/interruption) 0.901 0.903 0.904 0.3

Indices QAE MCS Analytical Error (%)
ASAI 0.9993 0.9993 0.9993 0.01
ENS

(MWh/year) 738.40 752.96 741.62 0.4

AENS
(kWh/customer.year) 29.44 30.11 29.66 0.7

D. 119-bus distribution system

In this case study, a large 119-bus distribution system with
two scenarios, radial structure and mesh structure is considered.
In addition, fuse gears in branches and isolators in distribution
lines are included in both scenarios. In Fig. 12, the schematic
diagram of the 119-bus distribution system is depicted [58].

Fig. 12. Single line diagram of 119-bus distribution system.

1) 119-bus radial distribution system: In the first scenario, a
radial distribution system with no connection between the sub-
feeders is considered, and therefore, the tie-line switches are
open. In Table VIII, the reliability indices of the 119-bus radial
distribution system obtained by QAE, classical SMCS and the
analytical approach are compared.

Compared to the analytical method, the percentage errors of
the QAE algorithm is low, which shows the accuracy of the
quantum-inspired method.

In Fig. 13, the probability distribution function of two relia-
bility indices are depicted in 119-bus radial distribution system.
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TABLE VIII
SYSTEM-LEVEL RELIABILITY INDICES ASSESSMENT FOR 119-BUS
RADIAL DISTRIBUTION SYSTEM IN PRESENCE OF FUSE GEARS IN

LATERAL BRANCHES AND ISOLATORS IN DISTRIBUTION LINES

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 24.68 25.42 24.56 0.49

SAIDI
(hours/year) 19.56 20.01 19.33 1.1

CAIDI
(hours/interruption) 0.78 0.78 0.78 0.1

Indices QAE SMCS Analytical Error (%)
ASAI 0.9978 0.9977 0.9978 0.01
ENS

(MWh/year) 8169.27 8202.15 8082.66 1.0

AENS
(kWh/customer.year) 90.98 91.57 90.31 0.74

Fig. 13. Probability distributions of reliability indices: (a) annual outage
duration of bus 45. (b) CAIDI.

In Fig. 13(a) and Fig. 13(b), the probability distribution
functions of the average annual outage time index (load-
point index) and customer average interruption duration index
(system-level index) are shown, respectively. The distribution
functions obtained by QAE is compared to those by the classical
SMCS method. It is seen that the QAE algorithm guarantees the
convergence with small sampling size compared to the classical
SMCS method.

2) 119-bus mesh distribution system: In this scenario, nine
tie-lines are considered, where the associated switches operate
in the closed mode. Table IX compares the performance of
different methods in calculating the reliability indices.

The results of Table IX indicate lower percentage errors of
the QAE over the classical SMCS method.

Discussion: Current quantum machines have experienced
a rapid progress from scalability and performance points of
view, and are now approaching to a promising computing point
to solve those engineering problems that cannot be tackled
by the classical counterparts. This could make a revolution
for solving industrial problems. Current limitations of clas-
sical methods motivated us to develop a new method based
on quantum computing. According to the results obtained in
different case studies, the quantum computing demonstrated a
guaranteed methodology to assess the reliability indices. As

TABLE IX
SYSTEM RELIABILITY INDICES ASSESSMENT FOR 119-BUS

MESHED DISTRIBUTION SYSTEM IN PRESENCE OF FUSE GEARS IN
LATERAL BRANCHES AND ISOLATORS IN DISTRIBUTION LINES

MethodIndices QAE SMCS Analytical Error (%)

SAIFI
(interruptions/year) 24.47 24.99 24.39 0.32

SAIDI
(hours/year) 15.36 15.55 15.18 1.2

CAIDI
(hours/interruption) 0.62 0.62 0.62 0.01

Indices QAE SMCS Analytical Error (%)
ASAI 0.9982 0.9982 0.9983 0.01
ENS

(MWh/year) 6399.34 6498.63 6345.27 0.8

AENS
(kWh/customer.year) 71.52 71.96 70.90 0.87

theoretically discussed, the quadratic speed-up of convergence
is achievable using quantum-amenable MCS method compared
to the classical counterpart. Moreover, to load the distribution
function of random variables, the QAE algorithm employs
qubits for sampling, that is an efficient alternative for the
required sampling size in the classical MCS method to achieve
the reliable answers. Therefore, the classical sequential MCS is
a computationally expensive method due to its dependency on
large number of samples, whereas the quantum-inspired method
uses a small number of qubits to produce the quantum samples
sufficient for the accurate estimation of reliability indices. As a
comparison, Fig. 14 depicts the convergence of classical MCS
with increased sampling sizes in obtaining SAIFI of the 33-bus
mesh distribution system including all protection systems.

20 qubits19 qubits18 qubits
17 qubits

16 qubits

15 qubits

14 qubits
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Fig. 14. Convergence of SAIFI index in 33-bus mesh distribution system in
different sampling size. The required number of qubits to produce the same
sampling size is also shown.

In Fig. 14, the required number of qubits for the classi-
cal sampling using the MCS method is represented. To load
a distribution function containing 106 samples in the clas-
sical framework, 20 qubits is sufficient. Even with today’s
Noisy Intermediate-Scale Quantum (NISQ) devices with lim-
ited qubits, the power system reliability assessment is readily
executable using our quantum algorithm. For instance, the QAE
algorithm required 14 qubits to load the required samples to
assess the reliability indices of 33-bus mesh distribution system.

To compare the computational time of the quantum-inspired
algorithm over the classical SMCS method, Table X is provided.

From Table X, the QAE algorithm obtains the reliability
indices more efficiently as compared to the classical SMCS
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TABLE X
COMPUTATIONAL SPEEDS FOR DIFFERENT METHODS TESTED ON

RADIAL AND MESH DISTRIBUTION SYSTEMS

System sizeStructure (Method) 4-bus 33-bus 119-bus
Radial (QAE) 8 (s) 55 (s) 241 (s)

Radial (SMCS) 39 (s) 382 (s) 1471 (s)
Mesh (QAE) 9 (s) 62 (s) 265 (s)

Mesh (SMCS) 44 (s) 401 (s) 1512 (s)

method.

VI. CONCLUSION

In this paper, for the first time, the quantum computing
was introduced and used to evaluate the reliability indices
in distribution systems. The quantum-amenable model of the
distribution system reliability was developed and the quantum
amplitude estimation algorithm was employed to execute the
quantum circuit containing the probability distribution loading
block for random variables, estimation of required functions of
random variables, and measuring units. According to the results,
the quantum MCS could achieve the same reliability indices as
the classical MCS method and analytical technique. Compared
to the classical MCS method in which the sampling size deter-
mines the convergence rate of the method, the quantum MCS
needed a small number of qubits to produce the same results
with quadratic speed-up of convergence. This achievement by
quantum computing is a promising step towards evaluating the
reliability indices for large-scale systems where the classical
MCS would be unable to tackle it. As a future plan, a quantum-
amenable reliability-constrained optimization model is to be
investigated for microgrids.
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