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Quantum Algorithm for Fidelity Estimation
Qisheng Wang, Zhicheng Zhang, Kean Chen, Ji Guan, Wang Fang, Junyi Liu, and Mingsheng Ying

Abstract—For two unknown mixed quantum states ρ and σ in
an N -dimensional Hilbert space, computing their fidelity F (ρ, σ)
is a basic problem with many important applications in quantum
computing and quantum information, for example verification
and characterization of the outputs of a quantum computer,
and design and analysis of quantum algorithms. In this paper,
we propose a quantum algorithm that solves this problem in
poly(log(N), r, 1/ε) time, where r is the lower rank of ρ and
σ, and ε is the desired precision, provided that the purifications
of ρ and σ are prepared by quantum oracles. This algorithm
exhibits an exponential speedup over the best known algorithm
(based on quantum state tomography) which has time complexity
polynomial in N .

Index Terms—Quantum computing, quantum algorithms,
quantum fidelity, quantum states.

I. INTRODUCTION

QUANTUM computers are believed to have more com-
puting power than classical machines as quantum al-

gorithms have been proven to achieve significant speedups
over the best known classical algorithms for solving certain
problems. However, only a few of them reach exponential
speedups, such as the celebrated Shor’s algorithm for integer
factorization [1], the HHL algorithm for solving systems of
linear equations [2] and those for quantum simulation [3], [4],
[5], [6]. This paper proposes a quantum algorithm to efficiently
estimate the quantum state fidelity on a quantum computer.
Compared to classical and even known quantum algorithms
for the same task, the algorithm can be exponentially faster.

Estimating the quantum state fidelity is a basic problem in
quantum computing and quantum information, as this quantity
is one of the most popular and important measures of the
“closeness” of two unknown quantum states [7], [8], [9].
Formally, the fidelity of two mixed quantum states ρ and σ is
defined as

F (ρ, σ) = tr

(√√
σρ
√
σ

)
.
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Quantum state fidelity has been applied in many different
fields, such as quantum information processing [10], quantum
engineering [11] and quantum machine learning [12]. It also
plays a necessary and essential role in verifying and charac-
terizing the output state of a quantum computer.

We propose an efficient quantum algorithm for fidelity
estimation of quantum states, stated as follows.

Theorem 1 (Informal). There is a quantum algorithm that,
given “purified quantum query access” to two N -dimensional
quantum states ρ and σ, computes their fidelity within additive
error ε with time complexity poly(log(N), r, 1/ε), where r is
the lower rank of ρ and σ.

The “purified quantum query access” model is widely used
in quantum computational complexity theory and quantum
algorithms (e.g., [13], [14], [15], [16], [17], [18], [19], [20]),
where mixed quantum states (density operators) are given by
quantum circuits (oracles) that prepare their purifications (see
Section II-B for a formal definition). From the perspective
of computational complexity theory, the purified quantum
query access model is useful when comparing quantum and
classical algorithms, especially in defining complexity classes
(see [21] for example). This model was introduced in [16] to
the context of density operator testing. The basic idea behind
the model is that a density operator can be understood as the
output of certain quantum process. If we are able to simulate
this process on a quantum computer, then it indeed provides
purified quantum query access to the density operator.

In this Introduction, we will first review the existing ap-
proaches for fidelity estimation and discuss about its compu-
tational hardness. Then an outline of our quantum algorithm
for fidelity estimation will be given in Section I-C. The details
of the algorithm will be carefully described in the subsequent
sections.

A. Existing Approaches for Fidelity Estimation

There are no known efficient methods for estimating the
fidelity F (ρ, σ) in the general case. A straightforward way is to
first obtain a complete classical description of quantum states
as density matrices by quantum state tomography [22], [23],
and then calculate the fidelity by matrix arithmetic operations.
However, this kind of approach requires resources increasing
exponentially with the scale of the quantum system, even if
quantum states are restricted to be low-rank. A slightly more
efficient tomography can be applied for low-rank quantum
states [24], [25], [26]. Several approaches for estimating
F (ρ, σ) have been proposed for the special case where ρ or
σ is pure. The first one is the SWAP test [27], [28] using
the Hadamard and Toffoli gates, which computes the value of
tr(ρσ). Then a more practical technique called entanglement

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3203985

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:48:28 UTC from IEEE Xplore.  Restrictions apply. 

QishengWang1994@gmail.com
iszczhang@gmail.com
chenka@ios.ac.cn
guanj@ios.ac.cn
fangw@ios.ac.cn
liujy@ios.ac.cn
yingms@ios.ac.cn


2

witnesses [29], [30], [31] was introduced to compute the
fidelity with few measurements, but only works for some
specific pure quantum states. This limitation was overcome
in [32], [33] where a direct fidelity estimation method was
developed for arbitrary pure quantum states.

Recently, suspecting that computing fidelity of quantum
states in the general case could be hard, several variational
quantum algorithms for fidelity estimation have been succes-
sively proposed [34], [35], [36]. Naturally, the efficiency of
these algorithms is unknown as training variational quantum
algorithms is known to be NP-hard [37].

B. Hardness of Fidelity Estimation

Computing F (ρ, σ) in general is known to be QSZK-hard
[13], where QSZK (Quantum Statistical Zero-Knowledge) is
a complexity class which contains BQP. A restricted version
called LOW-RANK FIDELITY ESTIMATION, namely estimat-
ing the fidelity of low-rank quantum states, was shown in [34]
to be DQC1-hard. Here, DQC1 (Deterministic Quantum Com-
puting with 1 Clean Bit) is the complexity class of problems
that can be efficiently solved in the one-clean-qubit model
of quantum computing [38], which is commonly believed to
be strictly contained in BQP. However, it was observed in
[39], [40] that efficient classical simulation of DQC1-complete
problems implies that the polynomial hierarchy collapses to
the second level, which is not believed to be true. Our
algorithm presented in this paper shows that LOW-RANK
FIDELITY ESTIMATION can be efficiently solved by quantum
computers with complexity logarithmic in the dimension of
quantum states, and therefore establishes a BQP upper bound
for it. We summarize the results about for the hardness of
fidelity estimation in Table I.

TABLE I
HARDNESS OF QUANTUM FIDELITY ESTIMATION.

Restriction Lower Bound Upper Bound
General Case QSZK-hard [13] EXPTIME 1

Low-Rank Case DQC1-hard [34] BQP (this paper)

C. Overview of Our Algorithm

The input model used in our quantum algorithm is usually
called the “purified quantum query access” model, which pro-
vides (mixed) quantum states by quantum oracles that prepare
their purifications. This conventional model is commonly used
in quantum algorithms, e.g., [14], [15], [16], [17], [18], [19],
[20], and will be introduced in Section II-B.

We sketch the basic idea of our algorithm here, and then de-
scribe it in detail later. The goal is to obtain the subnormalized
quantum state

√√
σρ
√
σ with a certain probability, and then

we can estimate the fidelity F (ρ, σ) by evaluating its trace.
To achieve this, our algorithm consists of two parts. The first
part is a technique that prepares a quantum state that block-
encodes the square root of a positive semidefinite operator

1By direct classical simulation of quantum computation and matrix arith-
metic operations.

block-encoded in another quantum state. Here, the notion of
block-encoding (see Definition 1) is allowed for encoding a
general matrix into a scaled block in a larger matrix, and
thus extends the block-encoding defined for unitary operators
in [41], [42]. Specifically, suppose that we are given a quantum
state which is a block-encoding of a positive semidefinite
operator A. Then we are able to prepare another quantum state
which is a block-encoding of

√
A. This is achieved through

the technique of quantum singular value transformation [42]
combined with our new idea of constructing density operators
(instead of unitary operators) as block-encodings. The second
part uses the technique developed in the first part for multiple
times. Suppose we are given two N -dimensional quantum
states ρ and σ. Since σ is a block-encoding of itself, we
can prepare a quantum state which is a block-encoding of√
σ. This also gives a unitary operator Vσ that is a block-

encoding of
√
σ by Lemma 25 of [42]. After applying Vσ on

ρ, we obtain a quantum state which is a block-encoding of√
σρ
√
σ. Applying the technique again, we obtain a quantum

state which is a block-encoding of
√√

σρ
√
σ. Finally, we can

compute the fidelity F (ρ, σ) = tr
(√√

σρ
√
σ
)

by quantum
amplitude estimation [43].

An important factor in the performance of our fidelity
estimation algorithm is the rank of quantum states. Let r
be the lower rank of ρ and σ. Our algorithm has a time
complexity poly(log(N), r, 1/ε), where ε is the additive error.
As the rank r grows, errors become harder to deal with and the
algorithm becomes less efficient. Our algorithm exponentially
outperforms the known classical and even quantum algorithms
in the case that one of the two quantum states is low-rank, say
r = polylog(N). A quantum state is said to be low-rank if it
is supported on a low-dimensional space. Low-rank quantum
states are nearly pure and with low entropy, which appear in
various important physical settings [24], [44].

Compared to those approaches based on quantum state
tomography [22], [23], [24], the strength of our algorithm
is that it only uses polylog(N) qubits, and does not involve
classical matrix representations of quantum states. On the other
hand, our algorithm works in a more general case than the
SWAP test [27], [28], entanglement witnesses [29], [30], [31]
and the direct fidelity estimation [32], [33] where one of the
states is required to be pure in the latter case. A comparison of
various fidelity estimation algorithms is presented in Table II,
where N is the dimension of quantum states and r is the lower
rank of them. Note that r = 1 means one of the quantum states
is pure. It should be pointed out that our quantum algorithm
requires purified quantum query access to quantum states,
while most of other quantum algorithms in Table II require
identical copies of quantum states. We argue that our quantum
algorithm is particularly useful when the quantum processes
that produce these quantum states can be implemented on
a quantum computer. Furthermore, given purified quantum
query access to density operators, the algorithms that require
identical copies can be easily converted to ones with purified
quantum query access, while preserving their computational
complexity. In this sense, our algorithm can be exponentially
faster than the others listed in Table II. Also, if we adopt
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the conventional input model commonly used in quantum
computational complexity theory where mixed quantum states
are given by classical descriptions of quantum circuits that
produce their purifications (see [21] for example), then our
quantum algorithm can be regarded as a candidate of quantum
advantages over classical computing.

D. Related Work

Estimating the “closeness” of quantum states is an im-
portant problem in quantum information; in particular, it is
closely related to quantum property testing [45]. Except those
mentioned above, here we briefly discuss some other related
work. A method to test the closeness of N -dimensional mixed
quantum states with respect to the trace distance and fidelity
was proposed in [46], using O(N/ε2) and O(N/ε) copies
of quantum states, respectively. (It is worth mentioning that
testing the closeness is weaker than estimating the closeness:
taking the fidelity for example, the former task is to distinguish
whether the fidelity is close to 1, while the latter one is to find
the approximate value of the fidelity.) On the other hand, a
quantum algorithm for estimating the trace distance between
two quantum states was developed in [16] using O(N/ε)
queries to quantum oracles in the “purified quantum query
access” model.

Testing other quantum properties is also a widely studied
topic. Most of them focus on the sample complexity (i.e.,
the number of copies of quantum states that are used in
the testing). For example, quantum state tomography and its
extensions have been studied in [47], [25], [26], [48], [46];
the sample complexity of testing the orthogonality of two
pure quantum states was investigated in [49]; and the sample
complexity of estimating the von Neumann entropy and the
quantum Rényi entropy was examined in [50]. Although
these results were obtained employing the multiple-copy in-
put model, several others were established in the “purified
quantum query access” model; for instance, the quantum
query complexity of estimating the von Neumann entropy was
considered in [16], [19], and a quantum query algorithm for
estimating the quantum Rényi entropy was proposed in [20].

In addition, quantum algorithms for testing classical statisti-
cal properties have been extensively studied. The first quantum
algorithms for testing closeness and identity of probability
distributions was given in [51], which were then improved
by [52] and [53]. Quantum approach for estimating classical
entropies was systematically studied in [54].

E. Recent Developments

After the work described in this paper, several improvements
have been made, compared to the complexity Õ(r12.5/ε13.5)2

stated in Theorem 5.
• Wang et al. [55] improved the quantum query complexity

of fidelity estimation in the purified quantum query access
model to Õ(r6.5/ε7.5). Moreover, they proposed quantum
algorithms for estimating a wide range of quantum en-
tropies and distances.

2Õ(·) suppresses polylogarithmic factors.

• In the concurrent work of Gilyén and Poremba [56],
they improved the quantum query complexity of fidelity
estimation to Õ(r2.5/ε5). Moreover, they converted their
quantum algorithm for fidelity estimation in the purified
quantum access model to the one using Õ(r5.5/ε12)
identical copies of quantum states based on the technique
of density matrix exponentiation [57], [49].

F. Organization of This Paper

The rest of this paper is organised as follows. Section II will
provide necessary preliminaries. We will formally state our
main result in Section III. Then, we will show our technique
for solving square roots of positive semidefinite operators in
Section IV. Our quantum algorithm for fidelity estimation and
an analysis of its complexity will be elaborated in Section
V. In Section VI, we will further discuss the hardness of
quantum fidelity estimation. We will conclude in Section VII
with a brief discussion about applications and extensions of
our algorithm.

II. PRELIMINARIES

A. Block-encoding and its extension

The notion of block-encoding was defined in [41], [42] to
describe quantum unitary operators, in which certain operators
of interest are encoded as scaled matrix blocks. It is proved to
be a useful tool in developing quantum algorithms. Different
from the original form of block-encoding, our quantum algo-
rithm needs to block-encode a positive semidefinite operator
in a density operator rather than in a unitary operator. For
this purpose, we extend the definition of block-encodings to
general operators as follows.

Definition 1 (Block-encoding). Suppose A is an n-qubit
operator, α, ε ≥ 0 and a ∈ N. An (n + a)-qubit operator
B is said to be an (α, a, ε)-block-encoding of A, if

∥α a⟨0|B |0⟩a −A∥ ≤ ε,

where the operator norm is defined by

∥A∥ = sup√
⟨ψ|ψ⟩=1

√
⟨ψ|A†A |ψ⟩

and A† is the Hermitian conjugate of A.

Remark 1. Note that the above definition of block-encodings
coincides with that in [41], [42], whenever the block-encoding
B is restricted to be unitary. In our extended definition,
however, we allow the block-encoding B to be a density
operator. When an operator A is block-encoded in a density
operator ρ, it means that A can be obtained by measuring ρ
on a subsystem (subscripted by a in Definition 1) and post-
selecting the outcome 0.

We will use this extended definition of block-encodings
throughout the paper when describing both unitary and density
operators.
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TABLE II
COMPARISON OF ALGORITHMS FOR QUANTUM FIDELITY ESTIMATION.

Algorithm Complexity Prerequisites Required Operations
Quantum State Tomography [22], [23], [24] poly(N) None Pauli Measurements
Low-rank Quantum State Tomography [24] poly(N, r) r is small Pauli Measurements

SWAP Test [27], [28] polylog(N) r = 1 Arbitrary Quantum Operations
Entanglement Witnesses [29], [30], [31] polylog(N) Specific Pure States Pauli Measurements

Direct Fidelity Estimation [32], [33] poly(N) r = 1 Pauli Measurements
Variational Quantum Algorithm [34], [35], [36] N/A r is small Arbitrary Quantum Operations

Our Algorithm poly(log(N), r) r is small Arbitrary Quantum Operations

B. Purified quantum query access

The “purified quantum query access” model is widely used
in quantum computational complexity and quantum algorithms
(e.g., [13], [14], [15], [16], [17], [18], [19], [20]). In this
model, mixed quantum states are given by quantum circuits
(oracles) that prepare their purifications. Formally, suppose ρ
is a mixed quantum state in an N -dimensional Hilbert space.
A quantum unitary oracle Oρ that prepares |ρ⟩ is given as

|ρ⟩ = Oρ |0⟩n |0⟩nρ
,

where N = 2n, and |0⟩nρ
are ancilla qubits. Here, we write

|0⟩a to denote |0⟩⊗a, with the subscript a indicating which
(and how many) qubits are involved in the Dirac symbol.
This notation is convenient in analysis when more than two
disjoint sets of qubits are considered simultaneously. Then ρ
is obtained from its purification by tracing out those ancilla
qubits:

ρ = trnρ(|ρ⟩ ⟨ρ|).

We assume that nρ is a polynomial in n 3. In the following, a
unitary operator U is said to prepare a mixed quantum state,
if U prepares its purification.

Next, we will introduce a useful tool, which can convert
a unitary operator that prepares a density operator to another
unitary operator that is a block-encoding of the density oper-
ator [41], [15], [42].

Theorem 2 (Block-encoding of density operators, Lemma 25
of [42]). Suppose U is an (n+ a)-qubit unitary operator that
prepares an n-qubit density operator ρ. Then there is a (2n+
a)-qubit unitary operator Ũ , which is a (1, n + a, 0)-block-
encoding of ρ, using 1 query to each of U and U† and O(a)
elementary quantum gates.

Remark 2. It is worth mentioning that there is no known
method that conversely converts a unitary operator, which is
a block-encoding of a density operator, to another unitary
operator, which prepares the density operator. This motivates
us to directly manipulate density operators rather than unitary
operators. It is also why we chose to extend the definition of
block-encodings (see Definition 1).

3Theoretically, any n-qubit mixed quantum state has a purification with at
most n ancilla qubits, so it is sufficient to assume that the number of ancilla
qubits is no more than n. However, it could be more convenient to use more
than n ancilla qubits in order to prepare a purification of an n-qubit mixed
quantum state in practice. That is why we make a more relaxed assumption
on the number of ancilla qubits, which is just a polynomial in n.

C. Polynomial eigenvalue transformation

Quantum singular value transformation (QSVT) [42] is a
powerful framework in designing quantum algorithms. What
we need is the QSVT technique for polynomial eigenvalue
transformation.

Theorem 3 (Polynomial eigenvalue transformation, Theorem
31 of [42]). Suppose U is a unitary operator, which is an
(α, a, ε)-block-encoding of Hermitian operator A. If δ ≥ 0 and
P ∈ R[x] is a polynomial of degree d such that |P (x)| ≤ 1/2
for all x ∈ [−1, 1]. Then there is a quantum circuit Ũ ,
which is a (1, a+2, 4d

√
ε/α+δ)-block-encoding of P (A/α),

using d queries to U and U†, 1 query to controlled-U ,
and O((a + 1)d) elementary quantum gates. Moreover, the
description of Ũ can be computed by a classical Turing
machine in poly(d, log(1/δ)) time.

Especially, if P is an even or odd polynomial, then |P (x)| ≤
1/2 for x ∈ [−1, 1] can be relaxed to |P (x)| ≤ 1 for x ∈
[−1, 1].

In order to apply the polynomial eigenvalue transformation
for our purpose, the polynomial approximation of negative
power functions is required.

Theorem 4 (Polynomial approximation of negative power
functions, Corollary 67 in the full version of [42]). Let
δ, ε ∈ (0, 1/2], c > 0 and f(x) = δcx−c/2. Then
there is an even/odd polynomial P ∈ R[x] of degree
O
(

max{1,c}
δ log

(
1
ε

))
such that |P (x)− f(x)| ≤ ε for x ∈

[δ, 1] and |P (x)| ≤ 1 for x ∈ [−1, 1].

III. MAIN RESULT

As discussed in Section II-B), we work in the “purified
quantum query access” model. Suppose two (mixed) quantum
states ρ and σ in an N -dimensional Hilbert space are given
by their corresponding purifications |ρ⟩ and |σ⟩; that is, two
quantum unitary oracles (circuits) Oρ and Oσ that prepare |ρ⟩
and |σ⟩, respectively, are assumed as follows:

|ρ⟩ = Oρ |0⟩n |0⟩nρ
, |σ⟩ = Oσ |0⟩n |0⟩nσ

,

where N = 2n, |0⟩nρ
and |0⟩nσ

are ancilla qubits, and nρ and
nσ are polynomials in n. Then ρ and σ are obtained from their
purifications by tracing out their corresponding ancilla qubits:

ρ = trnρ
(|ρ⟩ ⟨ρ|), σ = trnσ

(|σ⟩ ⟨σ|).

In this paper, we use the following definition for Õ:

Õd,e(f(a, b, c)) = O(f(a, b, c)polylog(f(a, b, c), d, e)).
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Then our main result can be stated as the following:

Theorem 5. Given quantum oracles Oρ and Oσ that prepare
N -dimensional quantum states ρ and σ, respectively, there
is a quantum algorithm that computes the fidelity F (ρ, σ)
within additive error ε using Õr,1/ε

(
r12.5/ε13.5

)
queries to

these oracles and ÕN,r,1/ε
(
r12.5/ε13.5

)
additional elementary

quantum gates, where r is the lower rank of ρ and σ.

Our algorithm will be presented in the following way. First,
we develop a technique to compute the square root of a
positive semidefinite operator (see Section IV). Then, we apply
this technique multiple times in order to estimate the fidelity
(see Section V).

IV. SQUARE ROOT OF POSITIVE SEMIDEFINITE
OPERATORS

The key technique of our algorithm is to compute the square
root of a positive semidefinite operator stored in a quantum
state in the sense of block-encoding. This technique can be
described as the following:

Theorem 6 (Square root of positive semidefinite operators
block-encoded in density operators). Suppose:

1) ρ is an (n+a)-qubit density operator with an (n+a+b)-
qubit pure quantum state |ρ⟩ being its purification; that
is, ρ = trb(|ρ⟩ ⟨ρ|). An (n+a+b)-qubit unitary operator
Uρ is given to prepare |ρ⟩ = Uρ |0⟩;

2) A is an n-qubit positive semidefinite operator such that
ρ is a (1, a, 0)-block-encoding of A.

Then for every real number δ, ε ∈ (0, 1/2], there is an O(n+
a+ b)-qubit quantum circuit Uϱ such that

• Uϱ uses O(d) queries to (controlled-)Uρ and its inverse
and O(d(n + a + b)) elementary quantum gates, where
d = O(log(1/ε)/δ); and

• Uϱ prepares the purification |ϱ⟩ = Uϱ |0⟩ of a
(4δ−1/2, O(n+a+b),Θ(δ1/2+εδ−1/2))-block-encoding
ϱ of
√
A.

• The description of Uϱ can be computed by a classical
Turing machine in poly(d) time.

Proof. Recall Theorem 2 that a unitary operator that prepares
a mixed quantum state ρ implies another unitary operator that
is a block-encoding of ρ. Then there is a unitary operator ŨA,
which is a (1, n+a+ b, 0)-block-encoding of ρ, and therefore
a (1, n+2a+ b, 0)-block-encoding of A, using 1 query to Uρ,
and O(a+ b) elementary quantum gates.

Let f(x) = (δ/x)1/4/2. By Theorem 4, there is an even
polynomial P (x) of degree O(d) such that |P (x)− f(x)| ≤ ε
for every x ∈ [δ, 1] and |P (x)| ≤ 1 for every x ∈ [−1, 1].
By Theorem 3, there is a unitary operator ŨP (A), which is a
(1, O(n+ a+ b), ε)-block-encoding of P (A) using d queries
to ŨA and O(d(n+ a+ b)) elementary quantum gates.

Applying ŨP (A) on ρ, we obtain a density operator ϱ, which
is a (1, O(n + a + b), 0)-block-encoding of A(P (A))2, and
therefore a (4δ−1/2, O(n + a + b),Θ(δ1/2 + εδ−1/2))-block-
encoding of

√
A. To see this, we need to show that∥∥∥4δ−1/2A(P (A))2 −

√
A
∥∥∥ ≤ Θ(δ1/2 + εδ−1/2).

Since 0 ≤ A ≤ I , it is sufficient to show that∣∣∣4δ−1/2x(P (x))2 −
√
x
∣∣∣ ≤ Θ(δ1/2 + εδ−1/2)

for every x ∈ [0, 1]. We consider two cases as follows.
Case 1. x ∈ [δ, 1]. In this case,∣∣∣4δ−1/2x(P (x))2 −

√
x
∣∣∣

=
∣∣∣4δ−1/2x(P (x))2 − 4δ−1/2x(f(x))2

∣∣∣
≤ 4δ−1/2 |x| |P (x) + f(x)| |P (x)− f(x)|
≤ 8δ−1/2ε.

Case 2. x ∈ [0, δ]. In this case,∣∣∣4δ−1/2x(P (x))2 −
√
x
∣∣∣

≤
∣∣∣4δ−1/2x(P (x))2

∣∣∣+ ∣∣√x∣∣ ≤ 5δ1/2.

These yield the proof.

Theorem 6 is derived following the basic procedure of
quantum singular value transformation (QSVT) [42]. But a
different idea we used in Theorem 6 is the extension of the
block-encoding for unitary operators employed in QSVT to
that for density operators. This new idea enables us to obtain
a better complexity. Specifically, if we try to derive the

√
A

in Theorem 6 by QSVT in a similar way of implementing
the power function (in our case, the square root function) of
an Hermitian matrix block-encoded in a unitary operator [42],
[58], [59] (which is, for example, later used to implement
the Petz recovery channels [17]), we will meet an additional
restriction of I/κ ≤ A ≤ I for some κ > 0 [58]. As a result,
an unfavorable factor κ is introduced in the complexity, and κ
can be arbitrarily large for any density operator A. In contrast,
Theorem 6 circumvents this difficulty by preparing density
operators as block-encodings rather than unitary operators as
in QSVT, and thus makes the complexity of our algorithm
independent of the parameter κ.

Our new idea brings another benefit — statistical properties
of the operator block-encoded in the density operator of a
quantum state can be extracted more easily by measurements;
while the same task seems hard for the operator block-encoded
in a unitary operator (as in QSVT). For example, given that A
is block-encoded in a density operator ϱ of a mixed quantum
state, whose purification is prepared by a unitary operator Uϱ,
the trace tr(A) can be simply evaluated by quantum amplitude
estimation [43] (see step 4 in Section V below). However,
computing tr(A) seems to be hard if A is block-encoded in
an n-qubit unitary operator U , as there is no known efficient
quantum algorithm even to compute tr(U) within additive
error 1/poly(n) — the best known approach has additive error
2n/poly(n) [38], which is exponentially worse than required.
Furthermore, computing tr(U)/2n was shown to be DQC1-
complete [38].

V. FIDELITY ESTIMATION

A. The Algorithm

Now we are able to describe the main algorithm for fidelity
estimation. Without loss of generality, we assume that the rank
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of ρ is lower than or equal to that of σ and let r = rank(ρ).
Note that in this case the state σ only contributes to the fidelity
on the support of ρ, because F (ρ, σ) = F (ρ,ΠρσΠρ), where
Πρ is the projector onto the support of ρ.

Our algorithm is presented as Algorithm 1. For a better

Algorithm 1 Quantum algorithm for fidelity estimation.
Input: Quantum oracles Oρ and Oσ that prepare mixed

quantum states ρ and σ, respectively, the desired additive
error ε > 0, and r = rank(ρ).

Output: An approximation of F (ρ, σ) within additive error ε
with high probability.

1: δσ ← Θ̃(ε4/r4).
2: εσ ← Θ̃(ε4/r4).
3: δη ← Θ̃(ε6/r6).
4: εη ← Θ̃(ε6/r6).
5: M ← Θ̃(ε2.5/r3.5).
6: Vσ , a unitary operator using O(log(1/εσ)/δσ) queries

to Oσ (by Theorem 6), prepares σ′ such that σ′ is a
(4δ

−1/2
σ , b,Θ(δ

1/2
σ + εσδ

−1/2
σ ))-block-encoding of

√
σ,

where b = O(n+ nσ).
7: Wσ , a unitary operator using O(1) queries to Vσ (by

Theorem 2), is a (4δ
−1/2
σ , O(n+nσ),Θ(δ

1/2
σ +εσδ

−1/2
σ ))-

block-encoding of
√
σ.

8: Uη ← (Wσ ⊗ Inρ)(Oρ ⊗ Ia) prepares η that (by Claim
7) is a (16δ−1

σ , a,Θ(δ
1/2
σ + εσδ

−1/2
σ ))-block-encoding of√

σρ
√
σ, where a = O(n+ nσ).

9: Vη , a unitary operator using O(log(1/εη)/δη) queries
to Uη (by Theorem 6), prepares η′ such that η′

is a (4δ
−1/2
η , c,Θ(δ

1/2
η + εηδ

−1/2
η ))-block-encoding of√

a⟨0|η |0⟩a, where c = O(n+ nρ + nσ).
10: x̃← x± δ with high probability, using O(M) queries to

Vη (by quantum amplitude estimation [43]), where x =
tr (c⟨0|η′ |0⟩c) and

δ = 2π

√
x(1− x)
M

+
π2

M2
.

11: return 16x̃/
√
δηδσ .

understanding, let us explain it in five steps:
Step 1. Note that σ is a (1, 0, 0)-block-encoding of it-

self, and Oσ prepares its purification |σ⟩. By Theorem 6
and introducing two parameters δσ and εσ , we can obtain
a unitary Vσ using O(log(1/εσ)/δσ) queries to Oσ that
prepares the purification Vσ |0⟩ = |σ′⟩ of σ′, and σ′ is a
(4δ

−1/2
σ , b,Θ(δ

1/2
σ + εσδ

−1/2
σ ))-block-encoding of

√
σ, where

b = O(n+ nσ).
Step 2. By Theorem 2, we can construct a unitary operator

Wσ using 1 query to Vσ that is a (1, O(n + nσ), 0)-block-
encoding of σ′, and therefore a (4δ

−1/2
σ , O(n+nσ),Θ(δ

1/2
σ +

εσδ
−1/2
σ ))-block-encoding of

√
σ. By applying Wσ on ρ, we

obtain a density operator η that is a (16δ−1
σ , a,Θ(δ

1/2
σ +

εσδ
−1/2
σ ))-block-encoding of

√
σρ
√
σ, where a = O(n+nσ).

In other words, Uη = (Wσ ⊗ Inρ)(Oρ ⊗ Ia) can prepare the
purification Uη |0⟩ = |η⟩ of η. To see this, we note that η
is a (1, a, 0)-block-encoding of a⟨0|η |0⟩a = σ′

bρ (σ
′
b)

†, where

σ′
b = b⟨0|σ′ |0⟩b. Here, we note that σ′

bρ (σ
′
b)

† is a scaled
approximation of

√
σρ
√
σ (see Claim 7 for details).

Step 3. Similar to the previous, by Theorem 6 and
introducing another two parameters δη and εη , we find
Vη using O(log(1/εη)/δη) queries to Uη that prepares
η′ as a (4δ

−1/2
η , c,Θ(δ

1/2
η + εηδ

−1/2
η ))-block-encoding of√

a⟨0|η |0⟩a, where c = O(n + nρ + nσ). Intuitively,√
a⟨0|η |0⟩a is approximately proportional to

√√
σρ
√
σ with

a scaling factor 16δ−1
σ δ−1

η .
Step 4. Estimate tr (c⟨0|η′ |0⟩c) through Vη by quantum

amplitude estimation [43]. More precisely, we can obtain x̃ in
O(M) queries to Vη (with high probability) such that

|x̃− x| ≤ δ,

where

δ = 2π

√
x(1− x)
M

+
π2

M2
, x = tr (c⟨0|η

′ |0⟩c) .

Step 5. Finally, we compute the value of 16x̃/
√
δηδσ as

our estimation of F (ρ, σ). Intuitively, x̃ is an approximation of
tr
(√

a⟨0|η |0⟩a
)
≈
√
δηδσtr

(√√
σρ
√
σ
)
/16 as mentioned

in step 3.

B. Error Analysis

Now we are going to analyze the error of Algorithm 1. Let
r = min{rank(ρ), rank(σ)}. First, we show that σ′

bρ (σ
′
b)

† is
a scaled approximation of

√
σρ
√
σ.

Claim 7.∥∥∥16δ−1
σ σ′

bρ (σ
′
b)

† −
√
σρ
√
σ
∥∥∥ ≤ Θ(δ1/2σ + εσδ

−1/2
σ ).

Proof. Note that

16δ−1
σ σ′

bρ (σ
′
b)

† −
√
σρ
√
σ =

(4δ−1/2
σ σ′

b −
√
σ)ρ

(
4δ−1/2
σ σ′

b

)†
+
√
σρ

((
4δ−1/2
σ σ′

b

)†
−
√
σ

)
.

By the triangle inequality for the operator norm that
∥A+B∥ ≤ ∥A∥ + ∥B∥ and the sub-multiplicativity that
∥AB∥ ≤ ∥A∥ ∥B∥, we have∥∥∥16δ−1

σ σ′
bρ (σ

′
b)

† −
√
σρ
√
σ
∥∥∥

≤
∥∥∥∥(4δ−1/2

σ σ′
b −
√
σ)ρ

(
4δ−1/2
σ σ′

b

)†∥∥∥∥
+

∥∥∥∥√σρ((4δ−1/2
σ σ′

b

)†
−
√
σ

)∥∥∥∥
≤
∥∥∥4δ−1/2

σ σ′
b −
√
σ
∥∥∥ ∥ρ∥∥∥∥4δ−1/2

σ σ′
b

∥∥∥
+
∥∥√σ∥∥ ∥ρ∥∥∥∥∥(4δ−1/2

σ σ′
b

)†
−
√
σ

∥∥∥∥ .
Recall that σ′

b = b⟨0|σ′ |0⟩b, where σ′ is a (4δ−1/2
σ , b,Θ(δ

1/2
σ +

εσδ
−1/2
σ ))-block-encoding of

√
σ. That is,∥∥∥4δ−1/2

σ σ′
b −
√
σ
∥∥∥ ≤ Θ

(
δ1/2σ + εσδ

−1/2
σ

)
.
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This gives that if δ1/2σ + εσδ
−1/2
σ < 1, then we have∥∥∥4δ−1/2

σ σ′
b

∥∥∥ ≤ ∥∥∥4δ−1/2
σ σ′

b −
√
σ
∥∥∥+ ∥∥√σ∥∥ ≤ Θ(1).

Finally, together with ∥ρ∥ ≤ 1, ∥
√
σ∥ ≤ 1 and ∥A∥ =

∥∥A†
∥∥,

we have ∥∥∥16δ−1
σ σ′

bρ (σ
′
b)

† −
√
σρ
√
σ
∥∥∥

≤
∥∥∥4δ−1/2

σ σ′
b −
√
σ
∥∥∥(∥∥∥4δ−1/2

σ σ′
b

∥∥∥+ 1
)

≤ Θ
(
δ1/2σ + εσδ

−1/2
σ

)
.

Next, we show how
√
a⟨0|η |0⟩a relates to the fidelity

F (ρ, σ).

Claim 8. ∣∣∣∣4δ−1/2
σ tr

(√
a⟨0|η |0⟩a

)
− F (ρ, σ)

∣∣∣∣
≤ Θ

(
r

√
δ
1/2
σ + εσδ

−1/2
σ

)
.

Proof. Let

J =
δσ
16

√
σρ
√
σ − a⟨0|η |0⟩a .

In step 2 of the algorithm, it is shown in Claim 7 that∥∥16δ−1
σ a⟨0|η |0⟩a −

√
σρ
√
σ
∥∥ ≤ Θ(δ

1/2
σ + εσδ

−1/2
σ ). This

leads to
∥J∥ ≤ Θ(δ3/2σ + εσδ

1/2
σ ).

We assume that the eigenvalues of δσ
√
σρ
√
σ/16, a⟨0|η |0⟩a

and J are

µ1 ≥ µ2 ≥ · · · ≥ µN ,
ν1 ≥ ν2 ≥ · · · ≥ νN ,
ξ1 ≥ ξ2 ≥ · · · ≥ ξN ,

respectively. In our case, note that µr+1 = · · · = µN = 0
and νr+1 = · · · = νN = 0. Since the three operators are all
Hermitian, by Weyl’s inequality, we have

νj + ξN ≤ µj ≤ νj + ξ1

for every 1 ≤ j ≤ N . Now for each j, let us consider two
cases:

Case 1. νj ≤ 2 ∥J∥. In this case, 0 ≤ µj ≤ 3 ∥J∥, and then∣∣√µj −√νj∣∣ ≤√3 ∥J∥.
Case 2. νj > 2 ∥J∥. We have

√
νj −

√
∥J∥ ≤

√
νj − ∥J∥ ≤

√
µj

≤
√
νj + ∥J∥ ≤

√
νj +

√
∥J∥.

Then it holds that
∣∣√µj −√νj∣∣ ≤√∥J∥.

The above two cases together yield that∣∣∣∣∣tr
(√

a⟨0|η |0⟩a

)
− tr

(√
δσ
16

√
σρ
√
σ

)∣∣∣∣∣
=

∣∣∣∣∣∣
r∑
j=1

(√
µj −

√
νj
)∣∣∣∣∣∣ ≤ r√3 ∥J∥.

These yield the proof.

Finally, we establish the relationship between c⟨0|η′ |0⟩c and√
a⟨0|η |0⟩a.

Claim 9.∣∣∣∣∣tr (c⟨0|η′ |0⟩c)− δ
1/2
η

4
tr

(√
a⟨0|η |0⟩a

)∣∣∣∣∣ ≤ Θ(r (δη + εη)) .

Proof. In step 3 of the algorithm, we have∥∥∥∥4δ−1/2
η c⟨0|η

′ |0⟩c −
√
a⟨0|η |0⟩a

∥∥∥∥ ≤ Θ(δ1/2η + εηδ
−1/2
η ).

We note that a⟨0|η |0⟩a = σ′
bρ (σ

′
b)

†, and thus
rank

(√
a⟨0|η |0⟩a

)
= rank(a⟨0|η |0⟩a) ≤ rank(ρ) ≤ r.

For the same reason, we have rank(c⟨0|η′ |0⟩c) ≤ r.
Therefore, we have∣∣∣∣4δ−1/2

η tr (c⟨0|η
′ |0⟩c)− tr

(√
a⟨0|η |0⟩a

)∣∣∣∣
≤ Θ(r(δ1/2η + εηδ

−1/2
η )).

These yield the proof.

Combining the result of quantum amplitude estimation in
step 4 of the algorithm with Claim 7, Claim 8 and Claim 9,
we obtain an upper bound of the error of our estimation, which
is ∣∣∣∣∣ 16x̃√

δηδσ
− F (ρ, σ)

∣∣∣∣∣
≤ Θ

(
r(δη + εη) + δ√

δηδσ
+ r

√√
δσ +

εσ√
δσ

)
.

(1)

C. Complexity

In Algorithm 1, the number of queries to Oρ and Oσ is
bounded by

O

(
1

δσ
log

(
1

εσ

)
· 1
δη

log

(
1

εη

)
·M
)

= Õεσ,εη

(
M

δσδη

)
.

In order to make the right hand side of Equation (1) ≤ ε,
we take δσ = Θ̃(ε4/r4), δη = Θ̃(ε6/r6), δ = Θ̃(ε6/r5),
εσ = Θ̃(ε4/r4), εη = Θ̃(ε6/r6) and M = Θ̃(r2.5/ε3.5) to
minimize the number of queries

Õεσ,εη

(
M

δσδη

)
= Õr, 1ε

(
r12.5

ε13.5

)
.

In addition, the number of elementary quantum gates is
ÕN,r,1/ε(r

12.5/ε13.5) = poly(log(N), r, 1/ε).
It can be seen that our algorithm exponentially outper-

forms the best known classical and even quantum algorithms
for quantum fidelity estimation when r is small, e.g., r =
polylog(N). In spite of its large exponents of r and ε in the
complexity, we believe that our algorithm can be applied on
real-world problems, as several quantum-inspired algorithms
proposed recently [60], [61] also with large exponents in their
complexities are later shown to perform well in practice [62].
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VI. HARDNESS

Even though some quantum-inspired algorithms [60], [61]
suggest that quantum exponential speedup can disappear in
low-rank cases, quantum fidelity estimation still remains hard
even under the low-rank assumption as discussed above. To
show this, we first formally define LOW-RANK FIDELITY
ESTIMATION in the following.

Problem 1 (LOW-RANK FIDELITY ESTIMATION). Given the
description of two quantum circuits Oρ and Oσ of size poly(n)
that prepare purifications of n-qubit (mixed) quantum states ρ
and σ, respectively, where the rank of ρ is poly(n), and the
additive error ε = 1/poly(n), find an estimation of F (ρ, σ)
within additive error ε.

Indeed, the description of quantum circuits is not required
in our algorithm, but is needed for classical algorithms. It
was proved in [34] that a variant of LOW-RANK FIDELITY
ESTIMATION is DQC1-hard, but the same proof also yields
the DQC1-hardness of the problem stated here. It is known
that DQC1-complete problems cannot be efficiently solved by
classical computers unless the polynomial hierarchy collapses
to the second level [39], [40], which is commonly believed
to be false. Therefore, our algorithm could be a candidate
that shows the advantage of quantum computers over classical
counterparts.

VII. CONCLUSION

In this paper, we proposed a quantum algorithm for quantum
fidelity estimation, which yields an exponential speedup over
the best known algorithms in the low-rank case. We hope
it could be used as a subroutine in developing fidelity-based
quantum algorithms [12]. The exponents of some complexity
factors in our algorithm are large, but we believe they could
be reduced by some more sophisticated techniques (see, for
example, [63]). Furthermore, an interesting problem is whether
it is possible to keep the advantage of exponential speedup in
our algorithm with restricted quantum operations (e.g., Pauli
measurements).

One of our main technical results (Theorem 6) can be
extended to positive powers (not only square root) of positive
semidefinite operator A, and therefore can be used in solving
other problems, e.g., computing the sandwiched quantum
Rényi relative entropy [64], [65] for 0 < α < 1:

exp ((α− 1)Dα(ρ∥σ)) = tr
((
σ

1−α
2α ρσ

1−α
2α

)α)
,

which reduces to the quantum state fidelity F (ρ, σ) when α =
1/2.

For the topics of future research, it would be interesting
to try to adapt our quantum algorithms to computing other
quantum information quantities with a similar form to the
fidelity F (ρ, σ) = tr

(√√
σρ
√
σ
)

, such as the von Neu-
mann entropy S(ρ) = −tr(ρ log ρ), the quantum relative von
Neumann entropy D(ρ∥σ) = tr (ρ(log ρ− log σ)), and the
quantum relative min-entropy − log (tr(Πρσ)) [66], where Πρ
is the projector onto the support of ρ.
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