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ABSTRACT The advancement of quantum computers undermines the security of classical blockchain,
necessitating either a post-quantum upgrade of the existing architecture or creation of an inherently quantum
blockchain. Here we propose a practically realizable model of a fully quantum blockchain based on a
generalized Gram-Schmidt procedure utilizing dimensional lifting. In this model, information of transactions
stored in a multi-qubit state are subsequently encoded using the generalized Gram-Schmidt process. The
chain is generated as a result of the reliance of orthogonalized state on the sequence of states preceding it.
Various forking scenarios and their countermeasures are considered for the proposed model. It is shown to
be secure even against quantum computing attacks using the no-cloning theorem and non-democratic nature
of Generalized Gram-Schmidt orthogonalization. Finally, we outline a framework for a quantum token built
on the same architecture as our blockchain.

INDEX TERMS Generalized orthogonalization, quantum blockchain, quantum token.

I. INTRODUCTION
The initial concept of Distributed Ledger Technology (DLT)
can be traced back to the Byzantine Generals Problem [1],
before Blockchain and Bitcoin were introduced. The notion
of Blockchain that we know today, i.e., a cryptographically
linked decentralized and distributed database that forms a
chain using timestamped electronic data, was first pioneered
by Haber and Stornetta [2] and Bayer et al. [3]. The account-
ability and transparency of transactions is a key feature of a
blockchain, which makes them appealing for a wide range of
applications [4] such as in healthcare industries [5], govern-
ment organizations [6], finance [7], et cetera. The essential
components of a blockchain network are [8]: (1) Nodes,
which is a form of electronic device that keeps the net-
work running by maintaining local copies of the blockchain;
(2) Blocks, each of which has a cryptographic hash of itself
and of the previous block, as well as a timestamp and trans-
action data. The timestamp establishes that the transaction
data existed at the time of the block’s publication; (3) Miners,
who create new blocks on the chain through a process called
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mining. One of the most important concepts in blockchain
technology is decentralization, in which the authenticity is
confirmed by the community of nodes. Further, it is a dis-
tributed ledger in which records are in a shared form, ensuring
no single organization controls the entire system and also
eliminating the use of intermediaries. Even though every node
has its own copy of the blockchain, they are transparent, and
every action in the ledger can be easily viewed and veri-
fied. Each block also contains information from the previous
block, thus forming a linear chain. This makes blockchains
resistant to data modification because data in a particular
block cannot be modified retroactively without affecting all
subsequent blocks. That is, if a hacker attempts to modify a
block, the hash will change, affecting all subsequent blocks.

The debut of Bitcoin [9] in 2008 signaled the start of a new
era in blockchain technology. Bitcoin being a self-sufficient,
anarchic system, requires the authority of no single central
organization. However, the data which carries monetary value
is controlled and authenticated by each peer in the distributed
network. The democratic aspect of the network is determined
here by the amount of processing capacity of each node rather
than the number of members. Validation of any transaction
is directly linked with the computational power one carries.
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Miners who validate the legitimacy of Bitcoin transactions
need to attach a valid SHA256 hash to the block’s header.
In return for their computational work, miners are rewarded
with Bitcoin (native token), which is the mechanism to intro-
duce new bitcoins into circulation. In addition to its own hash,
a block keeps the hash of the block before it, resulting in the
formation of a chain. At any instant, nodes will follow the
longest chain in the network, considering that most cumu-
lative work is done in that chain and discarding any other
chain from their local repository. Blockchains like Bitcoin
also allow for the creation and execution of smart contracts,
which are on-chain automated programs with multi-signature
and hashed timelock [10]. As the market capitalization of Bit-
coin grows, new cryptocurrencies such as Ethereum, Ripple,
Alastria, and others have begun to appear [8]. Despite the fact
that blockchain and cryptocurrencies have been around for a
decade, the distributed technology is still in its infancy and is
finding new applications in every facet of digital information.
The rising expense of mining, on the other hand, is encour-
aging investors to consider alternate methods for validation.
Further, confirmation of each transaction takes a lot of time,
making transactions very slow.

A blockchain relies on two asymmetrical cryptography:
cryptographic hash functions and digital signatures [11].
Security based on mathematical complexity is not unique to
blockchain. Most of the current cryptography is based on
certain kinds of mathematical encryption that are difficult to
solve with current computational capabilities [12]. Therefore,
one of the most intriguing applications of quantum computers
is breaking the mathematical difficulty that forms the base
for currently used cryptography [13]. With the discovery of
the Shor’s algorithm [14], it was apparent that a sufficiently
powerful quantum computer could break the mathematical
difficulty of asymmetrical cryptography. Quantum computers
can speed up the mining process and crack the SHA256
hash algorithm used by the Bitcoin network, thus making it
vulnerable to 51% attack [15]. Quantum computers could also
completely destroy Bitcoin’s classical signature. Addition-
ally, quantum computers will be able to modify the data con-
tained in a block without altering the hashing function. When
the hash is unchanged, the chain will appear undisturbed and
intact. This seems to make Blockchain completely pointless
and useless in the post-quantum world.

In the domain of key distribution, we have already seen
the development of information-theoretically secure quan-
tum cryptography protocols [16], [17], [18]. And unless
quantum technologies are integrated into blockchain tech-
nology, the current classical blockchain may fail [19].
While several attempts have been made to incorporate post-
quantum cryptography, they do not provide unconditional
security [20], [21], [22]. In order to assure authentication
in the post-quantum world is to use quantum computa-
tions, which provide (unconditional) information-theoretic
security based on presumably unbreakable laws of quantum
physics instead of some mathematical complexity. And use
quantum technologies to quantize the network, which keeps

on evolving. Along with the security and robustness, the
Quantum Blockchain protocol has several other advantages
over classical blockchain, including immediate verification
of transactions and less resource consumption in mining.

Threat from quantum computation inspired many recent
studies in the conceptual design of quantum blockchain. Here
the data are encoded in quantum states, which are then con-
verted into a quantum block. Jogenfors, in 2016 simply intro-
duced a quantum bitcoin scheme for transaction systems [23].
His scheme, however, was ineffective. Afterward, Rajan and
Visser [24] using entanglement in time gave a conceptual
scheme for quantum blockchain. It lacked many details and
security analysis. Furthermore, implementing it on a large
scale is difficult. More recently, quantum blockchain based
on weighted hypergraphs was proposed [25]. Although the
concept was interesting, but the consensus was incomplete,
and there was no way to recover back the encoded informa-
tion. As far as we can tell, the research and development of
quantum blockchain is still in its early stage, and there are
numerous issues that need to be addressed.

In this article, we propose a quantum blockchain protocol
based on dimensional lifting generalized quantum Gram-
Schmidt procedure. The construction of each block in the net-
work is done by applying a non-democratic orthogonalization
procedure to multi-qubit state vectors. The proposed scheme
requires fewer quantum capabilities making it practically
realizable even in a small-scale quantum network.

Section 2 introduces the orthogonalization method used in
our protocol. The construction of our quantum blockchain
protocol is then described step by step in sections 3 and 4.
Possible forking scenarios and countermeasures are dis-
cussed in Section 5. Section 6 contains a security analy-
sis that demonstrates robustness not only against currently
known quantum computing attacks but also against those
that may be discovered in the future, potentially making
post-quantum cryptographic schemes vulnerable. Finally,
section 7 describes a quantum token based on our proposed
quantum blockchain.

II. GENERALIZED QUANTUM GRAM-SCHMIDT
ORTHOGONALIZATION
The original Gram-Schmidt orthogonalization procedure that
constructs orthogonal states from an ordered set of linearly
independent states is well-known [26]. This is a useful
method, which can be used to produce an orthonormal basis
set |w1〉 , . . . , |wn〉 from an ordered set of states |v1〉 , . . . , |vn〉
in the Hilbert space H. We can achieve this by defining
|w1〉 ≡ |v1〉 /‖ |v1〉 ‖, and for 1 ≤ k ≤ n−1 we define |wk+1〉
inductively by

|wk+1〉 ≡
|vk+1〉 −

∑k
i=1 〈wi | vk+1〉 |wi〉

‖ |vk+1〉 −
∑k

i=1 〈wi | vk+1〉 |wi〉 ‖

A simple example of this method in the context of qubits
can be found in Appendix A. Several modifications have
been proposed to enhance its efficiency and stability for
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specific scenarios where the original version might not be
suitable [27].

In this paper, we will make use of Havlicek and Svozil’s
generalization of Gram-Schmidt orthogonalization, which
employs dimensional lifting [28]. The constraint of linear
independence on the initial states is relaxed in this generaliza-
tion by extending the dimension of the original Hilbert Space.
As a result, it broadens the range of states for which theGram-
Schmidt orthogonalization can be used. It calculates each
component of the lifted dimension one by one in a recursive
manner, and at each step, there is only one unknown scalar
to be computed and thus provides more accurate results than
the traditional Gram-Schmidt. The end result is demonstrably
orthogonal and projecting along the newly added dimen-
sions returns the initial states. Therefore, the information
encoded in the initial states is preserved in the orthogonalized
outcome.

Here we will give an alternative proof for this generalized
Gram-Schmidt orthogonalization with the help of matrices.
Theorem 1: Let v1, . . . , vm be an arbitrary finite set of

states (not necessarily linearly independent) in a Hilbert
space H = Cn. Then there exists a set of orthogonal states
w1, . . . ,wm in the extended Hilbert space H′ = Cn+m and a
surjective partial isometry P : H′ → H such that Pwi = vi
for all i = 1, . . . , k .

Proof: Let our initial states be v1, v2, · · · , vm, they
might not be linearly independent. And H = Cn represents
the Hilbert space. Using the initial states as columns, let us
construct a matrix

M =
(
v1 · · · vm

)
∈ Cn×m (1)

Now if we define a new matrix as A := r−1M for any fixed
r > ‖M‖2, we get ‖A‖2 < 1. With this matrix A, we define a
new matrix B as

B =
(
Im − ATA

)1/2
∈ Cm×m (2)

where AT is transpose of matrix A and Im is m × m identity
matrix. The existence of B can be easily verified as Im−ATA
is a positive definite matrix. Now observing that(

AT BT
) (A

B

)
= ATA+ BTB = Im (3)

implies
(
A
B

)
has m orthonormal columns and thus can

be extended to a orthogonal matrix N , forming the first m
columns of N .
Therefore, it is easy to notice that every (potentially rectan-

gular) matrixM can be extended to a nonzero scalar multiple
of an orthogonal block matrix

N :=
(
M ∗
∗ ∗

)
Further, the states wj forming the columns of N are not
only mutually orthogonal but also have equal norm r . The
advantage of this technique is that we can recover the initial

states by projecting along the additional dimensions. For i =
1, 2, . . . ,m, consider the following map

P = (In 0n×m) M ∈ Cn×(n+m) (4)

Then P becomes a surjective partial isometry, defined by
P
(
wj
)
= vj, which gives back our initial states. �

Gram-Schmidt orthogonalization is easy to implement in
Quantum Computers as we already have Quantum circuits
for Gram-Schmidt procedure [29], [30], taking input: linearly
independent states b1,b2, . . . ,bn ∈ Rn and giving output:
mutually orthogonal basis states b∗1,b

∗

2, . . . ,b
∗
n and a trans-

formation operatorM.

III. QUANTUM BLOCKCHAIN
Taking into account the protocol’s overall structure, which we
will discuss in the following section, the proposed quantum
blockchain is a public and permissionless blockchain which
satisfies the following properties:

1) A Decentralized architecture,
2) A quantum network with a distributed ledger,
3) Each node in this quantum network possesses quantum

capabilities such as quantum storage and quantum state
preparation,

4) Shared common quantum database.

Though blockchain has a wide range of applications,
for the sake of illustration, we will use the example of a
blockchain that manages a digital currency called qCoin. New
transactions are proposed by those nodes whowish to transfer
their funds to another node and are authenticated by their dig-
ital signature. There are various proposed digital signatures.
Unconditionally secure digital signatures, such as Toeplitz
Group Signature [31] and others, have been proposed and
meet the following criteria: Unforgeability, Transferability,
and Non-Repudiation.
The operation of the blockchain consists of the creation of

new transactions and the construction of blocks that aggre-
gate them. The process involves signature, broadcast, veri-
fication, encryption, and linking. Each transaction includes
the information about the sender, receiver, amount, times-
tamp, and a list of transaction records demonstrating that
the sender has sufficient funds to complete the transaction.
The information of blocks containing transactions is encoded
in an n− qubit state. The data are then encrypted using the
Generalized Quantum Gram-Schmidt process and transmit-
ted using quantum key distribution to other nodes in the
blockchain network and are collected in the pool of uncon-
firmed transactions. Each node checks these unconfirmed
transactions with respect to their local copy of the blockchain
in order to validate the encoded information. Further valida-
tion is performed using voting protocol before the verifier
adds the block to its blockchain.
We do not have to presume that every single node is

trustworthy in our vote-based consensus. Instead, the sys-
tem functions as long as a certain proportion of nodes are
trustworthy [32].
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IV. PROTOCOL FOR QUANTUM BLOCKCHAIN
The structure of the Quantum Blockchain is given in the
Algorithm (1) in the Method section. Here we provide a
detailed version of our scheme. For a single transaction round,
we will now go over each phase of the protocol in detail. Each
round of the protocol consists of the following four phases -
the Transaction phase, the Verification phase, Consensus, and
the Block Linking phase.

A. THE TRANSACTION PHASE
Definition 1: A transaction Tx is defined as a tuple

(S,R,A,T), whereS is the sender of this transaction;R are
the receivers of this transaction = {(r1), . . . , (rm)}; A is the
amount of the qCoin to be transmitted. And,T are the sources,
which is a list of transactions (T1, . . . ,Tn) to be redeemed
by Tx . [31]

1) STEP 1: CREATION OF THE TRANSACTION
For this round, we consider a node, say Alice, wish to send
qCoin to another node, say Bob. Because it is Alice who
wants to transfer her qCoin, she will initiate a Transaction Tx
and sign it with her digital signature. Then she will encode
the information of this transaction Tx containing her digital
signature, Bob’s address, the amount to be transferred, and
the sources of this fund. The encoded state can be denoted as:

Vi = Tx (S,R,A,T)

2) STEP 2: BROADCAST
Once Alice has performed the encoding, she broadcasts the
encoded transaction Vi to the entire network. We for the prac-
ticality of the protocol, unlike other models, assume that not
everyone in the network heard it. Let’s say Charlie receives
the broadcast; he will proceed to the verification phase.

We will follow a procedure that is comparable to the origi-
nal Bitcoin transaction to finish a transaction [9]. When Alice
spends the fund she received from an earlier transaction (for
example, a transaction that reports Alice receiving 5 qCoin
from someone). She wants to send Bob, say 3 qcoin. There
will be two transactions, one T1 (A,B, 3,T) sending 3 qCoin
to Bob and the other T2 (A,A, 2,T) sending 2 qCoin to her-
self, and both will have unique encoding because the message
is distinct, necessitating the use of two different state vectors.

B. THE VERIFICATION PHASE
Once Charlie heard the broadcast, he verifies the authen-
ticity of the transaction based on his blockchain and voting
protocol.

1) STEP 1: TRANSACTION VERIFICATION
A transaction Tx is considered to be valid if and only if the
following holds [31]:

1) Tx is properly signed by its sender S,
2) The sender of Tx is one of the receivers in each of its

source transactions T,

3) The certification & signature of Tx evaluates the pro-
tection of all its source to be true,

4) None of its source transactions T has been redeemed
before.

Once the transaction satisfies all the above conditions, it is
collected in the Log (a collection of valid but unconfirmed
transactions that must be agreed upon by a shared consensus)
owned by Charlie.

2) STEP 2: PRELIMINARY BLOCK CREATION
Subsequently, the unconfirmed transactions from the log are
aggregated to form a preliminary block. The preliminary
block after encoding can be written in an n− dimensional
state given by:

Ṽi = (V1, · · · ,Vk )

where V1 to Vk are the collection of unconfirmed transactions
(in the transaction pool).

We are abandoning the classical blockchain approach of
having blocks produced by individual nodes called ’miners,’
as it is susceptible to attacks by quantum computers. Other-
wise, a miner will have full freedom to create seemingly valid
transactions and put them in a block. Instead, we propose that
blocks be created in a decentralized manner.

C. CONSENSUS
Through the consensusmechanism, nodes reach a shared con-
clusion regarding the transaction encoded in the preliminary
block. The consensus algorithms employed in blockchain
technology can be categorized into two basic types [33].
The first is proof-based consensus algorithms, which we
typically see in permissionless blockchains such as proof-
of-work (PoW) employed in Bitcoin. The second is vote-
based consensus algorithms, which are most commonly used
in permissioned blockchains and may include the Byzantine
fault tolerance algorithms.

Each round of the consensus consists of the following three
steps - the proposing step, the voting step, and the decision
step.

1) STEP 1: THE PROPOSING STEP
After completing the Transaction Verification step from the
Verification phase, the proposing peer sends the preliminary
block proposal to the voting peers. The proposal is signed by
the proposing peer being the sender, and all voting peers as
receivers.

2) STEP 2: THE VOTING STEP
The proposal is sent to all voting peers. Voting peers enter
the voting phase, during which they exchange votes across
the network. The proposal created by any proposing peer is
not sent to all the members of the network. Instead, using a
Quantum Random Number Generator, an arbitrary r number
of peers are selected as voting peers for each round and for
a particular proposing peer. This has two advantages. First,
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if each proposing peer only selects a subset of nodes instead
of all nodes, it makes the Voting phase computationally less
demanding and much faster. Second, randomly choosing a
subset of voting peers makes it secure against the proxy
attack, where the network can be flooded with proxy nodes
by untrusted peers.

Other voting protocols can also be used, but that is not the
focus of this paper. This information-theoretically secure pro-
tocol allows us to achieve consensus in the network connected
by a quantum channel, provided that the number of dishonest
parties is less than some specified percentage. The protocol
can be adjusted by increasing r to tolerate more dishonest
nodes.

3) STEP 3: THE DECISION STEP
Votes for a block after the Voting phase are sent to the
proposing peer. Suppose any individual transaction is not
confirmed by any of the voting peers. In that case, a wrong
transaction message is broadcasted to the network, which can
be used to implement protocols like the Two-phase commit
protocol [34]. And that preliminary block is dropped, and the
process is repeated.

D. BLOCK CREATION
Once the Voting step is completed with a positive result, the
proposing peers proceed to create the block and link it to their
existing blockchain.

1) STEP 1: BLOCK CREATION & LINKING
The final blocks are created using the Generalized Quan-
tum Gram-Schmidt orthogonalization. Because each block
is added one by one and in order of their timestamp, let us
consider Charlie already has the following blockchain in his
memory:

W̃1, · · · , W̃i−1

where W̃1 to W̃i−1 represents the block elements of his
blockchain.

In order to add the ith block W̃i in this blockchain, he uses
Generalized Gram-Schmidt orthogonalization to the prelim-
inary block Ṽi. As this Generalized Quantum Gram-Schmidt
uses dimensional lifting, additional dimensions, say m, will
be added. There is no restriction on m, but it will provide the
bond on the maximum size of the blockchain [28].

So after the orthogonalization the final blockchain that
Charlie has is of the form:

W̃1, · · · , W̃i−1, W̃i

where the information of each block is encoded in a k = m+n
dimensional orthogonalized states and are in order of their
timestamp. Also note that since these blocks W̃j for 1 ≤ j ≤ i
are orthogonal, they constitutes the a basis set of a subspace
of Cn+m.

2) STEP 2: ENCRYPTION
The blockchain that has been created so far is unencrypted
and is on the computational basis. Now we will encrypt each
block in the blockchain. The encryption scheme is applied to
a part of each block and is unique to each node in the network.

The information of any block is divided into two parts dis-
closed part and the encrypted part. The Disclosed part, which
is the first n component of the state encoding the blocks,
consists of the original information of the preliminary block,
which now encodes the confirmed transactions. This part
remains on the computational basis. After the Generalized
Quantum Gram-Schmidt process, additional m− dimensions
were added. The encryption scheme is applied to this part of
the encoded block.

3) ENCRYPTION SCHEME
1) Each member of the network selects a secret number

θ ∈ [0, π].
2) Based on their number θ , they create a unitary basis

change transformation Uθ .
3) On each of their block the member applies a unitary

transformation I⊗n ⊗ U⊗mθ .

By applying encryption scheme the disclosed part of each
block remains in computational basis, but the encrypted sec-
ond part is now encoded in (|0〉±eιθ |1〉)/(

√
2). Because the θ

is secret and unique to each member of the network, no other
member has access to the encrypted information of the block.
So, for all other users it is in an unknown state and thus
protected by the no-cloning theorem.

V. FORKING CONDITION AND THEIR SOLUTION
There is also the possibility of two proposing peer mining the
different blocks at the same time, resulting in a fork. There
will then be ambiguity as to which block is considered the
valid one.

The orthogonalization process and consensus used in our
protocol make it very easy to tackle significant forking con-
ditions that can arise in a blockchain. Consider the following
two major forking scenarios:

A. FORKING DUE TO DOUBLE SPENDING
Definition 2: Double-spending is a potential flaw in a

digital cash scheme in which a single unit of cryptocurrency
is spent simultaneously more than once. This results in a
discrepancy between the transaction record and the available
currency. The main reason for double spending is that clas-
sical digital currency can be easily replicated. [35]

Double spending remains a risk in a classical blockchain.
The likelihood of a secret block being inserted into the quan-
tum blockchain is very slim because it has to be accepted and
verified by the network of voting peers.

Consider Alice has one qCoin and tries to spend it twice
in two distinct transactions. She could attempt to do this
by sending the same qCoin to two separate recipients. Both
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of these transactions will subsequently be added to the
pool of unconfirmed transactions, which already contains a
large number of unconfirmed transactions. As transactions
(requests to send the qCoin) are broadcast, they will arrive
at each node at slightly different times. If two transactions
attempt to spend the same qCoin, each node will consider
the first transaction it receives to be valid and the other
invalid. However, once different nodes become mismatched,
the validation of true balances becomes nearly impossible.
Such a problem can be resolved by the use of a consensus
algorithm, which syncs the various nodes.

Suppose two different proposing peers pick both transac-
tions at the same time and start creating a block. Now suppose
if both of them received the voting confirmation at nearly the
same time. When the block is confirmed, both will wait for
confirmation on their transaction from the Voting Phase of
other proposing peers. Whichever transaction passes Voting
Phase, more number of proposing peers will be validated, and
another transaction will be pulled out from the network.

It is worth noting that the encrypted blocks of each peer
contain the original information of the transaction, which is
publicly available to all other peers in the network. Other
members can see what transaction each peer has added
by using appropriate surjective partial isometry, which in
this case is nothing but measuring the first n component
of the encrypted block on the computational basis (see the
Theorem (1) for details).

B. FORKING DUE TO BROADCAST
As for the practicality, we have assumed in our model not
everyone hears the broadcast of every transaction or at least
not at the same time. So it might happen that one peer hears
one transaction before the next, while another hears the trans-
action in a different order. This is different from the Double-
Spending case as here the same qCoin is not spent twice and
all the transactions are valid. The following theorem resolves
any such issues.
Theorem 2: Suppose one node in the network carries a

different blockchain than others. Then the node can transform
its local blockchain to the majority chain using a local unitary
operation, provided all the transactions are valid.

The proof of the above theorem is given in Appendix B.
So, as long as transactions are legitimate, no one is obligated
to work in the same common chain at all times since they
can turn their chain into a network-wide unique chain at any
moment.

VI. SECURITY ANALYSIS
The quantum blockchain scheme presented here is secured by
the non-democratic nature of the Generalized Gram-Schmidt
orthogonalization and quantum no-cloning theorem.

The following two theorems formally state and provide
proof of the above argument. The first theorem guarantees
the security of the blockchain, in the sense that no trans-
action can be modified without changing the final state of
the blockchain. The second theorem is about the correctness,

which states that the final state of the blockchain is unique for
a given set of transactions.
Theorem 3 (Security): If any of the previous transactions

are altered, then the final state of the blockchain will be
changed.

Proof: Recall when the preliminary block Ṽi =
(V1, · · · ,Vk) is encoded using Generalized Gram-Schmidt
orthogonalization, we get the final block W̃i. But if we con-
sider a different set of transactions for the preliminary block
then the final orthogonalized state will be different.

Consider on the contrary that a transaction in the ith block
is changed without affecting the final state of the blockchain.
So the initial encoding of ith block is changed from Ṽi to say
X̃ . Then we claim that the final state remains the same after
applying generalized Gram-Schmidt orthogonalization using
the transformation operatorM on this state. That is,

M
(
Ṽ1, · · · , Ṽi−1, X̃ , · · · Ṽn

)
= W̃1, · · · , W̃n (5)

But from the Theorem (1) it follows that there exists a
surjective partial isometry, namely the orthogonal projection
operator P such that it acts on the final state to give the initial
state. Hence it follows that PW̃j = Ṽj for all j = 1, . . . , n.
But it also follows from the same argument that PW̃i = X̃ .
Comparing the action of P on the ith block we have that
Ṽi = X . This is contradictory as we have assumed that the
encoding of ith block is changed.

Hence we conclude that none of the previous transac-
tions can be changed without altering the final state of the
blockchain. Further, because the states of all the blocks in
the final blockchain are in the orthogonal state, it is easy to
distinguish between them. �

Further, if someone tries to alter any transaction from the
ith block of Charlie. Then, it immediately invalidates all the
successive blocks as they were orthogonalized with respect
to the ordered set containing an encoding of the ith block.
This means not only the final block W̃i is changed, but all
the successive blocks i.e., W̃j for j ≥ i are also changed and
hence invalidated. Suppose some peer in the network, say
Charlie, has a different transaction encoded in any of their
blocks then by measuring the disclosed part of the block on
the computational basis, state information can be retrieved.
In that case, all the other peers can know that there is an
invalid transaction in the local blockchain owned by Charlie.

In comparison to the standard blockchain protocol where
only the hash of the previous block is encoded in the next
block by the linearity of the chain. In our case in some
sense the information from all prior blocks that have appeared
before the concerned block are encoded. This is because
altering any state immediately invalidates all the encoded
blocks that came after it.
Theorem 4 (Correctness): If |W̃1〉, . . . , |W̃m〉 are obtained

after performing the generalized Gram-Schmidt orthogonal-
ization on the states |Ṽ1〉, . . . , |Ṽm〉, all in Ck , where k =
n+m. Then these vectors form a unique system of orthogonal
states such that the following conditions are satisfied:
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1) For all 1 ≤ i ≤ m, the orthogonal projection P of Ck

onto Cn (as defined in equation (4)) sends |W̃i〉 to |Ṽi〉.
2) The orthogonal projection of Ck onto Cm sends
|W̃1〉, . . . , |W̃m〉 to some (ordered) basis of the sub-
space Cm. Applying the Gram-Schmidt process to
this (ordered) basis gives the computational basis
|e1〉 , . . . , |em〉.

The proof and details of the above theorem are given in
Ref. [28].

Furthermore, as discussed previously, the quantum no-
cloning theorem makes the proposed blockchain even more
robust than the standard classical blockchain. For a standard
vote-based consensus algorithm, the security is provided by
algorithms like Byzantine fault tolerance algorithms [36].
Hence if any hacker wants to change a particular transaction,
he needs to hack into at least one-third of the network at
the same time. There is a possibility that such attacks are
feasible and can be aided by using proxies. But because of
the encryption scheme that we are using in this blockchain
protocol, it is not possible for any hacker to hack into even a
single node of the network.

Further, as mentioned in Ref. [32], in earlier models that
were proposed, the database is still somewhat vulnerable
while it is locally stored. A possible attack scenario is when
a malicious party equipped with a quantum computer works
offline to forge the blockchain. To make the forged version
appear legitimate, it modifies one of the previous transaction
records to its profit and runs a Grover search [37] for a
variant of other transactions within the same block such that
its hash remains the same. When the search is complete,
it hacks into all or some network nodes and replaces the
legitimate database with the counterfeit version. But in this
case, it is not possible for any hacker to change any of the
past transactions because of the encrypted part of the block.
Because the hacker does not know the value of θ , which is
unique for each member in the network and hence he does
not know the quantum states of the encrypted part. Therefore,
the quantum no-cloning theorem prevents such kind of attack.
Even if he tries to alter the state to any arbitrary state, from the
security theorem (3) it follows that the block encoding will be
invalidated. Only the disclosed part of the block encoding is
public. But changing the disclosed part without proper change
in the encrypted part, again due to the security theorem (3),
will make the block encoding invalid and also all the blocks
that follows.

To sum up, the security of the proposed quantum
blockchain protocol is ensured by two properties. Firstly,
quantum mechanics principles such as the quantum no-
cloning theorem and the Heisenberg uncertainty principle
provide protection against counterfeiting. Secondly, it is
secured by the non-democratic nature of Generalized Quan-
tum Gram-Schmidt orthogonalization. As a result, even
under quantum computing attacks, the proposed quantum
blockchain scheme is secure. This is because the quantum
capabilities of any hacker do not provide any advantage for
this blockchain network.

VII. QUANTUM TOKEN BASED ON QUANTUM
BLOCKCHAIN
In this section, based on the proposed quantum blockchain,
we present the inner workings of a Quantum Token called
qToken, a quantum currency with no central authority.
Definition 3: A quantum token is defined by a pair of

classical and quantum states ti = (ci, |qi〉), where i is a serial
number and ci is a transaction record made of classical bits
and transaction is done by using a token machine or passing
token to another person. [38]

These classical bits ci and quantum bits (qubits) |qi〉 given
to tokens should be in one-to-one correspondence so that no
one can duplicate them. Namely, they obey ci 6= cj ⇐⇒
|qi〉 6= |qj〉 for all serial numbers i, j.
As is the case with the majority of quantum money

schemes, the main idea is based on the no-cloning theo-
rem, which states that an unknown quantum state cannot be
copied. So quantummechanics provides apparent advantages
for quantum states to be regarded as a cryptocurrency. And
this new type of token offers a further advantage over just
quantum blockchain. For example, being a physical quantity,
there is no double-spending scenario.

When one uses the token machine, it implements our quan-
tum blockchain scheme and each such token machine acts
as an automated peer. The orthogonalized state is encoded
in the token and the disclosed part of the block is used as
the classical state ci for that token. Hence knowing disclosed
part provides information about the value associated with the
token. It can also be used to indicate the person to which the
token belongs.

Even though the disclosed part is visible to the public
as the serial number but the quantum state encoded in the
token is still encrypted. So whenever a token is inserted in a
tokenmachine, themachine recognizes the serial number, i.e.,
disclosed classical part and retrieves the information about
the corresponding encrypted quantum state vector. Then it is
measured in an appropriate basis to validate its authenticity
and completes the transaction.

The internal workings of the device are not accessible to
the user. The security of this quantum token is guaranteed
by the same logic as our quantum blockchain. And hence it
is secure against counterfeiting. If the qToken is not part of
our quantum blockchain network, then the transaction will be
objected. The no-cloning theorem, in particular, ensures that
quantum tokens cannot be duplicated or altered, prohibiting
counterfeiting.

This system is difficult to hack because even when partial
data are exposed or hacked from the system. The Gram-
Schmidt orthogonalization which is highly non-democratic,
necessitates the knowledge of all vectors before orthogonal-
izing the next vector. So a hacker needs to hack all of the
information in the system, starting with the first transaction,
which can be prevented easily.

This quantum token based on the quantum blockchain
scheme has an advantage over other quantum token models
that work like quantum coins [39], [40] since it contains
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genuine information about the transaction rather than arbi-
trary states. As a result, each coin has a distinct worth instead
of all coins having the same value. A cryptocurrency ATM
based on the quantum blockchain can also be prepared by
adding a passcode similar to a peer’s private key in the
machine, preventing any other peer from using any lost or
stolen token without the private key. The most well-known
classical example of such an ATM at the moment is the
Bitcoin ATM [41].

VIII. CONCLUSION
Recent advancements in quantum computing have piqued the
curiosity of researchers and developers towards Distributed
Ledger Technologies (DLTs) such as blockchain, which are
vulnerable to quantum computation attacks. A new quantum-
resistant blockchain architecture is needed. This paper pro-
vides a functional model in this direction by formulating a
practically realizable model of a fully Quantum Blockchain
using generalized quantum Gram-Schmidt orthogonalization
with dimensional lifting. Furthermore, it allows us to develop
alternative variants by incorporating other consensus strate-
gies. We have given a comprehensive analysis of forking
scenarios with their countermeasures along with proof of
security and robustness. These researchworks will allow us to
continually use blockchains in a wide range of applications,
even in the face of quantum computing attacks. We have also
shown in the last section how this technology can be used to
formulate a new type of quantum coin in the form of tokens,
which offers greater flexibility.

Our research brings us one step closer to the development
of a practical quantum cryptographic scheme. Our scheme
has reasonably low computational complexity and requires
limited quantum capabilities like quantum storage and quan-
tum state preparation. Therefore, it is much easier to put
into practice in real-world circumstances in comparison to
other proposed methods in the same direction. Nevertheless,
implementingmultiparty schemes like these requires a proper
quantum network. Additionally, the complexity analysis of
our subroutine provided in Ref. [29] and [30], demonstrates
that we still needmore capable quantum computers to create a
practical quantum blockchain. We are witnessing tremendous
interest and progress in this direction. It would be worthwhile
to investigate how we can minimize the resource counts even
further in order to implement it even in a small-scale quan-
tum computer. In future research, it will also be essential to
examine any security challenges in practical implementation,
such as due to side-channel attacks. In the UAV context, it has
already been shown how we can retain the anonymity and
secrecy outlined in Ref. [42], [43], and [44], while overcom-
ing hardware and physical security concerns that were not
considered in the theoretical model.

This proposed quantum blockchain can be regarded as
a conceptual design to provide scientific development of
a practical and fully quantum blockchain. Finally, because
of faster processing speed, lower resources, and safer

transactions, the quantum blockchain has a clear advantage
over the classical blockchain. Therefore, it can be used for
a wide range of applications while maintaining transparency
and integrity of transactions, even under attack using quantum
computers.

METHODS

Algorithm 1: Protocol for the Quantum Blockchain

Sender:
Input : Signature S, Receivers

R = {(r1), . . . , (rm)}, qCoin amount A &
sources T = (T1, . . . ,Tn).

Vj← encode{Tx (S,R,A,T)}
Broadcast: Vj
Minors:
Receive : V1 · · ·Vn

Tverificationi← verify{Vi} // local
verification
if for 1 ≤ i ≤ n,Tverificationi = TRUE then

Ṽ = encode{V1, · · · ,Vn}
Function Consensus(V , r, Decision):

r ← rand{all nodes} // randomly
selecting
Decision← vote{V , r}
return Decision

Def Encryption(W):
encrypt{W } = I⊗n ⊗ U⊗mθ (W )
Wenc← encrypt{W }
return Wenc

if Decision = True then
W̃j←M(W̃1, · · · , W̃j−1, Ṽ )
W̃j,enc← encrypt{W̃j}

BCj← link{BCj−1, W̃j,enc} // blockchain
with i blocks

else
Reject

else
Reject

Access:
Input : W̃i,enc

Transaction Information ← P(W̃i,enc)

Most of the results in this work are determined via theo-
retical calculations. The basic quantum blockchain protocol
proposed above is summarized in the Algorithm 1.
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APPENDIX A
EXAMPLE SHOWING CALCULATION OF GRAM-SCHMIDT
PROCEDURE
Assume we have n sets of states similar to

{|1i〉 ⊗ |2i〉 ⊗ |3i〉 ⊗ · · · ⊗ |ni〉 | i = 1 . . .N }

where i = 1, . . . ,N denotes the number of states in the
sets, and n is the number of tensor products of components
from C2.
We are now seeking to orthogonalize this set of N states.

By writing these vectors in terms of 2n × 1 matrix, we may
use Gram-Schmidt decomposition (because it is tensor prod-
ucts of C2). In order to write the corresponding vector in
[C2]⊗n := C2

⊗ · · · ⊗ C2︸ ︷︷ ︸
n

given a vector x ∈ C2n , we must

first grasp the conventional interpretation of a state |φ〉 rep-
resented as a vector x = (x1, . . . , x2n ) ∈ C2n in a tensor
product. Qubits are represented by these states, which implies
that each replica of C2 has the same standardized basis
{|0〉, |1〉}. The following basis of [C2]⊗n is induced by the
computational basis {|0〉, |1〉} of C2:

B = {|b1〉|b1〉 · · · |bn〉 : bi ∈ {0, 1} for i = 1, . . . , n}

It is worth noting that this basis is arranged in lexicographical
order. If |φi〉 is the ith element of B, then x is the vector that
corresponds to |φ〉 if

|φ〉 = x1|φ1〉 + · · · + xn|φn〉

Now, an intriguing implication of lexicographical sequencing
is that the ith element |φi〉 and the binary expression of the i
have a beautiful connection : if i has digits in its n-digit binary
representation b1, b2, . . . , bn then

|φi〉 = |b1〉|b2〉 · · · |bn〉

For example: with n = 5, the 5-digit binary representation of
11 is 010112,which means that |φ11〉 (the 12th element of the
induced basis on the tensor product) is

|φ11〉 = |0〉|1〉|0〉|1〉|1〉

Note that the state |φi〉 ∈ [C2]⊗n is sometimes abbreviated as
|i〉 in the literary works, however this appears to be incompat-
ible with our notation.

Consider the following vector as an example.

1
2
(0, 1, 0, i, 0,−1,−i, 0) ∈ C23

The tensor product’s associated element will be

|φ〉 =
1
2
|φ2〉 +

i
2
|φ4〉 −

1
2
|φ6〉 −

i
2
|φ7〉

=
1
2
|0〉|0〉|1〉 +

i
2
|0〉|1〉|1〉 −

1
2
|1〉|0〉|1〉 −

i
2
|1〉|1〉|0〉.

APPENDIX B
PROOF OF THEOREM 5.1

Proof: Say if Charlie notices that the network has a
different chain, he then investigates which chain the majority
of individuals own. Assuming he was in sync up to the first i
th block, after which transactions are in a different order due
to difference in broadcast receiving.

Say the blockchain of Charlie is C1 = {W̃1, · · · , W̃i,

X̃i+1, · · · , X̃n} and majority of the network holds the chain
C = {W̃1, · · · , W̃n}. Intuitively it is clear because both the
chains are essentially bases of the subspace, as previously
stated, such a unitary transaction always exists. We will first
show the existence of an operator that transforms the states
in C1 to respective states in C . Then we will show that this
operator is unitary.

To make the calculation simpler, we assume that all the
states W̃ s and X̃s are of unit length. We begin by selecting
unit length state vectors P = {pn+1, · · · , pk} each in Ck such
thatC1∪P consists of k orthogonal state vectors and therefore
is an orthogonal basis of Ck . The existence of P follows from
a version of the Basis Extension Theorem. By applying the
same result to C we find another set Q = {qn+1, · · · , qk}
each inCk such thatC1∪Q forms another orthogonal basis of
Ck . Note that this extension is to make sure that the operator
O is unitary.

Now we define an operator using the above notation as:

O =
i∑

j=1

W̃jW̃ T
j +

n∑
j=i+1

W̃jX̃Tj +
k∑

j=n+1

qjpTj (6)

Now consider the following operations, using orthogonal-
ity and unity conditions we have:

OW̃l =

i∑
j=1

W̃jW̃ T
j W̃l +

n∑
j=i+1

W̃jX̃Tj W̃l +

k∑
j=n+1

qjpTj W̃l

= W̃lW̃ T
l W̃l = W̃l · 1 = W̃l

OX̃l =
i∑

j=1

W̃jW̃ T
j X̃l +

n∑
j=i+1

W̃jX̃Tj X̃l +
k∑

j=n+1

qjpTj X̃l

= W̃l X̃Tl X̃l = W̃l · 1 = W̃l

Opl =
i∑

j=1

W̃jW̃ T
j pl +

n∑
j=i+1

W̃jX̃Tj pl +
k∑

j=n+1

qjpTj pl

= qlpTl pl = ql · 1 = ql

From the first two equations, the existence of the operator O
is proved.

Now in order to prove that the operator O is unitary,
consider an arbitrary state v ∈ Ck . Since the set C1∪P forms
the basis of Ck , we can express the state v as:

v =
i∑

j=1

X̃jW̃j +

n∑
j=i+1

X̃jX̃j +
k∑

j=n+1

X̃jpj (7)
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Now again using the orthogonality and unity conditions,
we have the following equations

||v||22 = ||
i∑

j=1

X̃jW̃j +

n∑
j=i+1

X̃jX̃j +
k∑

j=n+1

X̃jpj||

=

i∑
j=1

||X̃jW̃j||
2
2 +

n∑
j=i+1

||X̃jX̃j||22 +
k∑

j=n+1

||X̃jpj||22

=

i∑
j=1

X̃2
j +

n∑
j=i+1

X̃2
j +

k∑
j=n+1

X̃2
j (8)

||Ov||22 = ||
i∑

j=1

X̃jOW̃j +

n∑
j=i+1

X̃jOX̃j +
k∑

j=n+1

X̃jOpj||22

= ||

i∑
j=1

X̃jW̃j +

n∑
j=i+1

X̃jW̃j +

k∑
j=n+1

X̃jqj||22

=

i∑
j=1

||X̃jW̃j||
2
2 +

n∑
j=i+1

||X̃jW̃j||
2
2 +

k∑
j=n+1

||X̃jqj||22

=

i∑
j=1

X̃2
j +

n∑
j=i+1

X̃2
j +

k∑
j=n+1

X̃2
j (9)

From the last two equations it follows that ||Ov||2 =
||v||2 for all v ∈ Ck . Hence it is proved that O is a unitary
operator. �
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