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Brief Papers
Quantum Cryptanalysis on a Multivariate Cryptosystem Based on

Clipped Hopfield Neural Network
Songsong Dai

Abstract— Shor’s quantum algorithm and other efficient quantum
algorithms can break many public-key cryptographic schemes in poly-
nomial time on a quantum computer. In response, researchers proposed
postquantum cryptography to resist quantum computers. The multi-
variate cryptosystem (MVC) is one of a few options of postquantum
cryptography. It is based on the NP-hardness of the computational
problem to solve nonlinear equations over a finite field. Recently,
Wang et al. (2018) proposed a MVC based on extended clipped hopfield
neural networks (eCHNN). Its main security assumption is backed by the
discrete logarithm (DL) problem over Matrics. In this brief, we present
quantum cryptanalysis of Wang et al.’s eCHNN-based MVC. We first
show that Shor’s quantum algorithm can be modified to solve the DL
problem over Matrics. Then we show that Wang et al.’s construction
of eCHNN-based MVC is not secure against quantum computers; this
against the original intention of that multivariate cryptography is one of
a few options of postquantum cryptography.

Index Terms— Clipped Hopfiled neural network,
Diffie-Hellman key exchange scheme, discrete logarithm (DL)
problem, multivariate cryptography, quantum algorithm.

I. INTRODUCTION

In 1994, Shor [1] showed a quantum algorithm that solves
factorization and discrete logarithm (DL) problems in polynomial
time. This means that quantum computers can break the public-key
cryptosystems based on these problems. Moreover, Shor’s algorithm
can also efficiently calculate the elliptic curve DLs (ECDL) problem
[2] and then break the cryptography based on ECDL problem. The
implementation of Shor’s algorithm over elliptic curves is given in
[3]–[5]. In response, postquantum cryptography have been proposed
to resist quantum computers. The goal of postquantum cryptography
is to develop postquantum cryptosystems that are secure even when
the attacker has a large quantum computer. They are constructed
based on other computational problems that are believed hard to
solve even for quantum computers. The multivariate cryptosystems
(MVCs) [7], as one of a few options of postquantum cryptography,
has drawn considerable attention. A MVC has a set of multivariate
quadratic polynomials over a finite field and is based on the difficulty
of solving a system of these multivariate polynomials. Construction
and cryptanalysis of MVCs play an important role in postquantum
cryptography. In the last two decades, researchers have developed
several construction methods of MVCs. Some construction methods
are still viable. For example, the Rainbow signature scheme [8] and
unbalance Oil and Vinegar scheme [9] resisted rigorous cryptanalysis
for more than 15 years and are therefore believed to have high
security. Other construction methods are not as secure as was
claimed initially. For example, tame transformation signatures (TTS)
scheme [10] was broken exactly because of the usage of sparse
polynomials [11].
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As a scheme of postquantum cryptography, quantum security is one
of the most fundamental and important problems. However, quantum
security of a postquantum cryptosystem is elusive. Because most
existing security analysis deal with classical attackers and only a
few quantum algorithms are developed for postquantum cryptog-
raphy. There are two cases: one is that a scheme of postquantum
cryptosystem is classical insecure, then obviously it is quantum
insecure since quantum computers can efficiently simulate classical
computers, the other is that the scheme is quantum insecure, but
maybe classical secure, examples include RSA and ECC. This brief
analyzes the security of a scheme of postquantum cryptosystem from
the perspective of quantum attack and shows that it is insecure against
quantum computers.

Recently, Wang et al. [12] proposed a MVC based on extended
Clipped Hopfield Neural Networks (eCHNN), briefly, eCHNN-MVC.
In Wang et al.’s eCHNN-MVC, the weight matrices are generated by
the Diffie-Hellman key exchange scheme (DHKES) in matrix field.
Then its security assumption is backed by the hardness of the DL
problem over matrices.

This brief shows that the DL problem over matrices can be solved
by Shor’s DL quantum algorithm, thus Wang et al.’s eCHNN-MVC
is not secure on quantum computers and their approach deviates
from the objective of postquantum cryptography. For simplicity, some
symbols and notations from Wang et al.’s brief [12] are employed in
this brief.

II. RELATED WORK

A. Shor’s Algorithm for DL

Let G =< t > be a cyclic group generated by an element t , with
the multiplicative operation. The DL problem is the problem to find
r such that s = t r for given t and s.

Shor’s DL quantum algorithm includes the following steps [2], [6].

1) Initializing three quantum registers

|�� = |0, 0, 0�. (1)

2) Choosing q which belongs to [n, 2n].
3) Putting in the first two registers in the uniform superposi-

tion of all possible classical inputs |a� and |b� (mod n) and
computing t a · sb mod p and putting it in the third register,
we get

1

n

n−1�
a=0

n−1�
b=0

|a, b, t a · sb�. (2)

4) Using the quantum Fourier transform to take |a� to

1

q1/2

q−1�
c=0

exp(2πiac/q)|c� (3)

and take |b� to

1

q1/2

q−1�
d=0

exp(2πibd/q)|d�. (4)
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Thus, take |a, b� to

1

q

q−1�
c=0

q−1�
d=0

exp

�
2πi(ac + bd)

q

�
|c, d�. (5)

Then we get

1

nq

n−1�
a,b=0

q−1�
c,d=0

exp

�
2πi(ac + bd)

q

�
|c, d, t a · sb�. (6)

5) Observing the state. The probability of finding the result
|c, d, t k mod p� is

Pr
�|c, d, t k mod p�� =

���� 1

nq

�
(a,b)

a−rb=k

exp

�
2πi(ac + bd)

q

�����2

(7)

where the sum is over all pairs (a, b) satisfying

t a · sb = t k mod p. (8)

6) The probability can be written as

Pr
�|c, d, t k mod p��=

���� 1

nq

n−1�
b=0

exp

�
2πibt

q

�
exp

�
2πiv

q

�����2

.

(9)

where

t = cr + d − r{cn}q

n
(10)

v =
�

br

n
− �br − k

n
�
�

{cp}q (11)

and {cn}q denotes cn mod q with −(q/2) < cn ≤ (q/2).
7) Recovering r from the pair (c, d). Let ρ be the closest integer

to (t/q), then

|{t}q | =
���cr + d − r{cn}q

n
− ρq

��� ≤ 1

2
(12)

and

|{cn}q | ≤ q/12. (13)

This further reduces to���d

q
+ r

�
cn − {cn}q

q

���� ≤ 1

2q
. (14)

A candidate r is obtained by approximating (d/q) to the nearest
multiple of (1/n) and dividing the result ( mod n) by the number

c� = cn − {cn}q

q
. (15)

After obtaining a candidate r , the values (r, c, d) are put into
the functions (12) and (13). If both functions hold, then there is a
reasonable chance that the result is accurate. If the functions do not
hold, then run the quantum computer again.

Therefore, we can get r with a high probability.

B. Shor’s Algorithm for ECDL

Let E = {(x, y)|y2 = x3+ax+b mod p} be an elliptic curve over
the finite field Fp, A = (xA, yA) and B = (xB, yB) the two points,
then the ECDL problem is to find r such that B = r A mod p.

It is quite straightforward to use Shor’s algorithm for ECDL
problem [2], [6].

1) Initializing three quantum registers

|�� = |O,O,O� (16)

where O is the point at infinity in the elliptic curve group
E(Fp).

2) Choosing q which belongs to [n, 2n].
3) Putting in the first two registers in the uniform superposition of

all possible classical inputs |a� and |b� ( mod n) and computing
a A + bB mod p and putting it in the third register, we get

1

n

n−1�
a=0

n−1�
b=0

|a, b, a A + bB�. (17)

4) Using the quantum Fourier transform to take |a� to

1

q1/2

q−1�
c=0

exp(2πiac/q)|c� (18)

and take |b� to

1

q1/2

q−1�
d=0

exp(2πibd/q)|d�. (19)

Thus, take |a, b� to

1

q

q−1�
c=0

q−1�
d=0

exp

�
2πi(ac + bd)

q

�
|c, d�. (20)

Then we get

1

nq

n−1�
a,b=0

q−1�
c,d=0

exp

�
2πi(ac + bd)

q

�
|c, d, a A + bB�. (21)

5) Observing the state. The probability of finding the result
|c, d, k A mod p� is

Pr(|c, d, k A mod p�) =
���� 1

nq

�
(a,b)

a−rb=k

exp

�
2πi(ac + bd)

q

�����2

(22)

where the sum is over all pairs (a, b) satisfying

a A + bB = k A mod p. (23)

6) Just the same as the Shor’s algorithm for the DL problem over
finite field, the probability can be written as

Pr(|c, d, k A mod p�)=
���� 1

nq

n−1�
b=0

exp

�
2πibt

q

�
exp

�
2πiv

q

�����2

(24)

where

t = cr + d − r{cn}q

n
(25)

v =
�

br

n
− �br − k

n
�
�

{cp}q (26)

and {cn}q denotes cn mod q with −(q/2) < cn ≤ (q/2).
7) Recovering r from the pair (c, d). Let ρ be the closest integer

to (t/q), then

|{t}q | =
���cr + d − r{cn}q

n
− ρq

��� ≤ 1

2
(27)

and

|{cn}q | ≤ q/12. (28)

This further reduces to���d

q
+ r

�
cn − {cn}q

q

���� ≤ 1

2q
. (29)
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A candidate r is obtained by approximating (d/q) to the nearest
multiple of (1/n) and dividing the result ( mod n) by the number

c� = cn − {cn}q

q
. (30)

After obtain a candidate r , the values (r, c, d) are putted into
the functions (27) and (28). If both functions hold, then there is a
reasonable chance that the result is accurate. If the functions do not
hold, then run the quantum computer again.

Therefore, we can get r with a high probability.

III. DESCRIPTION OF THE WANG et al.’S ECHNN-MVC

Wang et al.’s eCHNN-MVC is composed of two part: weight
matrices generation and threshold vector synchronization. The former
mainly generates a weight matrix pair based on the DHKES over
matrix field; the latter mainly generates a threshold vector based on
the weight matrix pair.

A. Weight Matrices Generation for eCHNN-MVC

Wang et al. [12] first presented the weight matrix pair generation
based on the DHKES in matrix field.

Let T and T −1 be two nth-order matrices, p be a prime, then the
weight matrix pair Tk and T �

k could be generated in the following
steps.

1) Alice chooses an integer x and sends Bob

TA = T x mod p (31)

T �
A = �

T −1
�x

mod p. (32)

2) Bob chooses an integer y and sends Alice

TB = T y mod p (33)

TB = �
T −1

�y
mod p. (34)

3) Bob calculates

Tk = T y
A mod p (35)

T �
k = �

T �
A

�y
mod p (36)

and Alice calculates

Tk = T x
B mod p (37)

T �
k = �

T �
B

�x
mod p. (38)

Because

Tk = T x
B = T xy = T b

A mod p (39)

T �
k = �

T �
B

�x = �
T ��xy = �

T �
A

�b
mod p. (40)

Then Tk and T �
k are used as the weight matrices.

For example

Example 1: Let T =
�

4 5
2 3

�
and p = 17, then we have < T >17=

{I, T, T 2, . . . , T 15} because of T 16 mod 17 = I , where I =
�

1 0
0 1

�
.

Let x = 5 and y = 7, then TA = T 5 mod 17 =
�

15 16
13 12

�
, TB = T 7

mod 17 =
�

5 6
7 6

�
, and Tk = T x

B = T y
A = T xy =

�
10 11
10 9

�
.

B. Threshold Vector Synchronization for eCHNN-MVC

Based on the base matrix Tk , the generation of the threshold vector
ϑ could be described as the following steps [12].

1) Alice and Bob first agree on a vector Q = (q1, q2, . . . , qn).
2) Alice chooses a vector VA = (a1, a2, . . . , au) as her private key

and gets

HA =
u�

j=0

T
a j

k mod p (41)

then sends Bob

PA = Q HA mod p. (42)

3) Bob chooses a vector VB = (b1, b2, . . . , bv ) as his private key
and gets

HB =
v�

j=0

T
b j

k mod p (43)

then sends Alice

PB = Q HB mod p. (44)

4) Alice calculates

ϑA = PB HA mod p (45)

and Bob calculates

ϑB = PA HB mod p. (46)

It is easy to know that ϑA = ϑB , then it is used as the threshold
vector ϑ .

Then the encryption could be written as

C = f

⎛⎝T r
k M +

r�
j=0

T j
k ϑ

⎞⎠ (47)

where f (·) is the following function

f (a) =
�

a mod p, if a ≥ 0

p − |a| mod p, if a < 0.
(48)

M is the message and C is the cipher text. Alice sends (C, r) to Bob.
Then Bob gets M from

M = f

⎛⎝T �r
k

⎛⎝C − f

⎛⎝ r�
j=0

T j
k ϑ

⎞⎠⎞⎠⎞⎠. (49)

IV. SHOR’S DISCRETE LOGARITHM QUANTUM

ALGORITHM FOR MATRICES

Let T be a nth-order matrix ( mod p), that is, T n = I mod p,
where I denotes the identity matrix. Then denote the set of matrices
generated from T by Mn(T ) = {I, T, T 2, . . . , T n−1}.

Wang et al. [12] introduced the DL problem on matrix field as the
problem: given two matrices T, S ∈ Mn(T ) and a prime p, find an
integer r such that T r ≡ S mod p.

It is quite straightforward to use Shor’s DL quantum algorithm for
matrices.

1) Initializing three quantum registers

|�� = |1, 1, I � (50)

where I is the identity matrix.
2) Choosing q which belongs to [n, 2n].
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TABLE I

SHOR’S QUANTUM ALGORITHM FOR THREE TYPES OF DL PROBLEMS

3) Putting in the first two registers in the uniform superposition of
all possible classical inputs |a� and |b� ( mod n) and computing
T a · Sb mod p and putting it in the third register, we get

1

n

n−1�
a=0

n−1�
b=0

|a, b, T a · Sb�. (51)

4) Using the quantum Fourier transform to take |a� to

1

q1/2

q−1�
c=0

exp(2πiac/q)|c� (52)

and take |b� to

1

q1/2

q−1�
d=0

exp(2πibd/q)|d�. (53)

Thus, take |a, b� to

1

q

q−1�
c=0

q−1�
d=0

exp
�

2πi(ac + bd)

q

�
|c, d�. (54)

Then we get

1

nq

n−1�
a,b=0

q−1�
c,d=0

exp

�
2πi(ac + bd)

q

�
|c, d, T a · Sb�. (55)

5) Observing the state. The probability of finding the result
|c, d, T k mod p� is

Pr
�|c, d, T k mod p�� =

���� 1

nq

�
(a,b)

a−rb=k

exp

�
2πi(ac + bd)

q

�����2

(56)

where the sum is over all pairs (a, b) satisfying

T a · Sb = T k mod p. (57)

6) Just the same as the Shor’s algorithm for the DL problem over
finite field, the probability can be written as

Pr
�|c, d, T k mod p��=

���� 1

nq

n−1�
b=0

exp

�
2πibt

q

�
exp

�
2πiv

q

�����2

(58)

where

t = cr + d − r{cn}q

n
(59)

v =
�

br

n
− �br − k

n
�
�

{cp}q (60)

and {cn}q denotes cn mod q with −(q/2) < cn ≤ (q/2).
7) Recovering r from the pair (c, d). Let ρ be the closest integer

to (t/q), then

|{t}q | =
���cr + d − r{cn}q

n
− ρq

��� ≤ 1

2
(61)

and

|{cn}q | ≤ q/12. (62)

This further reduces to���d

q
+ r

�
cn − {cn}q

q

���� ≤ 1

2q
. (63)

A candidate r is obtained by approximating (d/q) to the nearest
multiple of (1/n) and dividing the result ( mod n) by the number

c� = cn − {cn}q

q
. (64)

After obtaining a candidate r , the values (r, c, d) are put into
the functions (61) and (62). If both functions hold, then there is a
reasonable chance that the result is accurate. If the functions do not
hold, then run the quantum computer again.

Therefore, we can get r with a high probability.

V. CRYPTANALYSIS OF THE THRESHOLD VECTOR

SYNCHRONIZATION

Alice uses the vector VA = (a1, a2, . . . , au) as her private key
and the vector PA as her public key. Bob uses the vector VB =
(b1, b2, . . . , bu) as his private key and the vector PB as his public
key. Since

HA =
u�

j=0

T
a j

k mod p (65)

PA = Q HA mod p (66)

HB =
v�

j=0

T
a j

k mod p (67)

PB = Q HB mod p (68)
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and

ϑ = PA HB = PB HA mod p. (69)

It can be viewed as PA = Q HA mod p, PB = Q HB mod p, and
ϑ = Q HA HB briefly.

Thus, HA and HB can be viewed as the substitutes of the private
key VA and VB . It is not needed to find vectors VA and VB , we need
only to get a pair of matrices HA and HB such that Q HA = PA =
Q HA and Q HB = PB = Q HB .

Then Bob can calculate

Q−1 = �
q−1

1 , q−1
2 , . . . , q−1

n

�
mod p (70)

and HA = Q−1 PA which can be viewed as the substitute of HA

because Q HA = QQ−1 PA = PA = Q HA. Similarly, Alice can
calculate HB = Q−1 PB as the substitute of HB .

Example 2: Let p = 17, if Alice and Bob agree on the vector

Q = (6, 7), Alice’s public key is PA =
�

15 16
13 12

�
, and Bob’s public

key is PB =
�

5 6
7 6

�
. Then they can get Q−1 = (61, 7−1) mod 17 =

(3, 5). Moreover, Bob can get HA = Q−1 PA mod 17 = (8, 6) as the
substitute of Alice’s private key HA, he does not need to find VA.
Similarly, Alice can get HB = Q−1 PB mod 17 = (16, 14) as the
substitute of Bob’s private key HB .

VI. CONCLUSION

In this brief, we present quantum cryptanalysis of Wang et al.’s
eCHNN-MVC, as well as a practical method for solving the DL prob-
lem over matrices. Inspired by Eicher and Opoku’s work, we modified
Shor’s quantum algorithm to solve this problem. It turns out that
this problem can be solved efficiently on a quantum computer and
therefore should not be used as a basis for postquantum cryptography.
To see more clearly how a quantum computer will solve different
types of DL problem, we summarized Shor’s quantum algorithm for
these problems in Table I.

As mentioned in [12], Wang et al.’s eCHNN-MVC tried to be a
potential alternative for postquantum cryptography. It also is secure
against several classical attacks and allows hardware realization
practicality. However, this brief shows that Wang et al.’s approach,

although worthwhile studying, is not quantum-secure since the usage
of the DHKES over matrices. Thus, their approach is deviates from
the original intention of postquantum cryptography.
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