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Abstract— The eligibility of various advanced quantum algo-1

rithms will be questioned if they can not guarantee privacy.2

To fill this knowledge gap, here we devise an efficient quantum3

differentially private (QDP) Lasso estimator to solve sparse4

regression tasks. Concretely, given N d-dimensional data points5

with N � d, we first prove that the optimal classical6

and quantum non-private Lasso requires Ω(N + d) and7

Ω(
√

N +
√

d) runtime, respectively. We next prove that the8

runtime cost of QDP Lasso is dimension independent, i.e.,9

O(N 5/2), which implies that the QDP Lasso can be faster10

than both the optimal classical and quantum non-private Lasso.11

Last, we exhibit that the QDP Lasso attains a near-optimal12

utility bound Õ(N −2/3) with privacy guarantees and discuss the13

chance to realize it on near-term quantum chips with advantages.14

Index Terms— Differential privacy, quantum machine learning,15

quantum computing.16

I. INTRODUCTION17

QUANTUM machine learning (QML), as a burgeoning18

field in quantum computation, aims to facilitate machine19

learning tasks with quantum advantages [1]. Numerous the-20

oretical studies have shown that QML algorithms can dra-21

matically reduce the runtime complexity over their classical22

counterparts, e.g., quantum perceptron [2]. Meanwhile, exper-23

imental studies have employed near-term quantum devices to24

accomplish toy-model learning tasks [3]–[5]. Theoretical and25

experimental results suggest that we are stepping into a new26

era, in which near-term quantum processors [6], [7] can be27

employed to benefit practical learning tasks.28

Despite the advance of QML algorithms, the legality of29

the proposed quantum learning algorithms in many data-30

sensitive applications will be questioned if they cannot guar-31

antee privacy, caused by legal, financial, or moral reasons.32

Therefore, to broaden the applicability of QML, it is essential33
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to design quantum private learning algorithms, which can train 34

accurate learning models without exposing precise information 35

of individual training examples such as medical records for 36

patients. However, how to design such quantum algorithms 37

with runtime advantages remains unexplored. 38

In the classical scenario, differential privacy (DP), which 39

quantitively formalizes a rigorous and standard notion of 40

‘privacy’, provides one of the most prominent solutions 41

towards private learning [8]. During the past decade, extensive 42

DP learning algorithms have been proposed under varied prac- 43

tical settings [9]–[13]. Motivated by the success of DP learning 44

and the limited results of quantum private learning, it is 45

highly desired to devise quantum differentially private (QDP) 46

learning algorithms to broaden applications of QML in the 47

data-sensitive areas. 48

A fundamental topic in private learning is to devise DP 49

sparse regression learning models [12], [14]. Let D = 50

{Xi,yi}Ni=1 be the given dataset, where Xi ∈ Rd and 51

yi ∈ R are the i-th feature vector and the corresponding 52

target, respectively. Equivalently, we write D = {X ∈ RN×d, 53

y ∈ RN}. In all practical scenarios, N � d. Suppose that 54

D satisfies y = Xθ∗ + ω, where θ∗ ∈ Rd with �θ∗�0 = s 55

(i.e., s � N ) is the underlying sparse parameter to be esti- 56

mated, and ω ∈ Rd is the noise vector. The goal of DP sparse 57

regression is to recover θ∗ while satisfying differential privacy. 58

The mainstream learning model to tackle this task is the DP 59

Lasso estimator [15], which estimates θ∗ by minimizing the 60

loss function L(θ), i.e., 61

argmin
θ∈C
L(θ) :=

1
2N
�Xθ − y�22 , (1) 62

where the constraint set C = {θ ∈ Rd : �θ�1 ≤ l1} is an 63

�1 norm ball that guarantees the sparsity of the estimated result 64

and the differential privacy should be preserved with respect 65

to any change of the individual pair (Xi,yi). Following the 66

conventions [12], [14]–[16], we set l1 = 1, and suppose that 67

�X�∞ ≤ 1 and �y�∞ ≤ 1 throughout the paper for ease of 68

comparison. Note that our results can be easily generalized to 69

l1 ∈ R+, �X�∞ ≤ c1, and �y�∞ ≤ c2, where c1, c2 ∈ R+ 70

are two positive constants. 71

An important utility measure of the private Lasso is the 72

expected excess risk RL, i.e., 73

RL := E(L(θ))−min
θ∈C
L(θ), (2) 74

where the expectation is taken over the internal randomness 75

of the algorithm for generating θ. For example, the studies 76
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TABLE I

THE SUMMARY OF THE RUNTIME COST AND UTILITY BOUND OF VARIOUS LASSO ESTIMATORS ON THE INPUT SIZE N , THE FEATURE DIMENSION
d, AND THE PRIVACY BUDGET �. NOTE THAT THE LABEL ‘OPT-C’, ‘CDP’, ‘OPT-Q’, ‘QNP’, AND ‘QDP’ REFERS TO THE OPTIMAL CLASSICAL

NON-PRIVATE, BEST-KNOWN CLASSICAL DP, OPTIMAL QUANTUM NON-PRIVATE, THE PROPOSED QUANTUM NON-PRIVATE, AND QDP
LASSO ESTIMATORS, RESPECTIVELY. FOR THE NON-PRIVATE LASSO, THE ESTIMATION ERROR ς IS SET AS A CONSTANT

[14], [15] proposed private Lasso algorithms with a utility77

bound Õ(1/N2/3). Ref. [17] presented a private algorithm78

with an Õ(1/N) utility bound, under the strong convexity and79

mutual incoherence assumptions. All of these algorithms run80

in polynomial time in N and d.81

Different from the classical scenario, how to design QDP82

Lasso remains unknown because of the disparate priorities83

of QML and DP. Specifically, QML algorithms pursue low84

runtime overhead, while DP learning concerns a good utility.85

Therefore, the proposed QDP algorithm should accommodate86

the following two requirements from each side:87

1) a lower runtime over its classical counterparts;88

2) a near-optimal utility bound.89

Contributions: The main contribution in this study is devis-90

ing a quantum differentially private Lasso estimator to tackle91

the private sparse regression learning tasks in Eqn. (1) with92

a lower runtime complexity than both optimal classical and93

quantum Lasso estimators and a near-optimal utility bound.94

To the best of our knowledge, this is the first quantum private95

learning algorithm that can solve practical learning problems96

with provable advantages.97

Quantum input/output models. To make a fair comparison,98

the quantum input/output models used in our study are99

restricted to have an almost identical setting to the classical100

case [18], except that we allow coherent queries to the entries101

of given inputs. The formal definition of quantum input models102

used in this study is as follows.103

Definition 1 (Input Models): For a given dataset D =104

{X ∈ RN×d,y ∈ RN}, the classical (quantum) input oracles105

OX and Oy can recover the entry Xij and the entry yi with106

i ∈ [N ] and j ∈ [d] in O(1) time (in superposition).107

Note that ‘in superposition’ means that coherent queries are108

permitted in the quantum input model, i.e., the algorithm is109

allowed to query many locations at the same time [19]. Many110

quantum algorithms have exploited this condition to gain quan-111

tum advantages, e.g., Ref. [20] employed the above quantum112

input/out model to design a sublinear runtime quantum kernel113

classifier.114

Let us further emphasize the importance of the employed115

quantum input model in Definition 1. As questioned by [20],116

using too powerful quantum input models may render the117

achieved quantum speedup inconclusive. Namely, given a118

strong classical input model, quantum-inspired classical algo-119

rithms can collapse many QML algorithms claiming exponen-120

tial speedups [21].121

Our first theoretical result is analyzing runtime and utility122

bound of the proposed QDP Lasso estimator.123

Theorem 1 (Informal, See Theorems 4 and 5 for the Formal124

Description): Given the quantum input models OX and Oy in125

Definition 1, the proposed QDP Lasso is (�, δ)-differentially 126

private, and outputs θ(T ) after T ∼ O((N�)2/3) iterations with 127

overall Õ(N5/2�2) runtime and the utility bound 128

RL = Õ
�
(N�)−2/3

�
. 129

To figure out whether the proposed QDP Lasso can attain 130

a runtime speedup, we further explore runtime cost of the 131

optimal classical and quantum non-private Lasso estimators. 132

Theorem 2 (Modified From Lemma 3 and Corollary 2): 133

Given the input model formulated in Definition 1, the runtime 134

complexity of the classical and quantum non-private Lasso 135

estimators is lower bounded by Ω(N + d) and Ω(
√
N +

√
d), 136

respectively. 137

Theorems 1 and 2 provide the following three key insights. 138

• The runtime complexity of QDP Lasso is dimension inde- 139

pendent, while the runtime for both the optimal classical 140

and quantum non-private Lasso estimators depends on the 141

feature dimension d. In other words, QDP Lasso yields 142

a runtime speedup when d ≥ O(N5/2) and d ≥ O(N5), 143

respectively. 144

• Note that the non-private Lasso requires O(Nd2) run- 145

time [22] and assigning the DP property generally 146

involves extra operations. Hence, the best known DP 147

Lasso needs O(Nd2) runtime, where the QDP Lasso 148

outperforms it when d > O(N3/4). 149

• The utility bound of the proposed QDP Lasso is near- 150

optimal, since the optimal utility bound of sparse regres- 151

sion learning has proven to be Ω(1/(N logN)2/3) [15]. 152

We summarize the main conclusions in this work in Table I. 153

There are two main technical results that differentiate the 154

QDP Lasso with the classical DP Lasso [15]. The first one is 155

the quantum generalization of the Frank-Wolfe algorithm for 156

non-private Lasso [23], which will be employed as the back- 157

bone of the QDP Lasso estimator. We prove that the runtime 158

cost of the proposed algorithm is Õ(
√
Nd), which achieves a 159

quadratic runtime speedup over the optimal classical Lasso in 160

terms of the feature dimension d. Moreover, we conduct error 161

analysis to confirm its stability (see Theorem 3 for details). 162

Our second key technical result is the devised privacy 163

mechanism, which ensures the QDP Lasso estimator to attain 164

privacy guarantee and achieve a runtime speedup over the 165

optimal quantum non-private Lasso. Note that this result con- 166

tradicts classical DP algorithms, since assigning DP property 167

to non-private algorithms generally requires extra operations. 168

In contrast with the classical scenario, a crucial observation in 169

the QDP Lasso is: 170

‘The probabilistic nature of quantum mechanics enables 171

quantum learning models to efficiently gain the DP property’. 172
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Such an observation indicates that the sampling-based input173

models [18] may provide substantial runtime advantages for174

classical DP learning algorithms.175

II. RELATED WORK176

Previous QML literature related to our work can be divided177

into two groups. The first group is quantum regression algo-178

rithms and the second group is quantum differential privacy.179

Here we separately compare them with our work.180

A. Quantum Regression Algorithms181

There are a few proposals aiming to solve quantum regres-182

sions tasks without the privacy requirement. A seminal work183

is [24], which showed that the ordinary least squares fitting184

problem can be solved with an exponential speedup given185

the assumption that there exists a quantum random access186

memory (QRAM) to encode classical input into quantum187

states in logarithmic runtime [25], [26]. Under such an188

assumption, the quantum linear systems algorithm [27] can189

be employed to compute the closed-form expression for the190

estimated solution with an exponential speedup. Following191

this pipeline, the subsequent works further improve the run-192

time complexity bound with respect to the polynomial terms193

[28]–[30], e.g., rank and condition number, and tackle vari-194

ants of the regression tasks, e.g., nonlinear regression and195

ridge regression [31]. In contrast to solving the closed-form196

expression, the study [32] tackles the ridge regression tasks197

by using the gradient descent method, where the runtime198

complexity achieves the exponential speedup at each iteration199

under the QRAM assumption. We remark that the applicability200

of these algorithms is highly questionable, since it is still an201

open question about how to efficiently implement QRAM.202

Moreover, recent quantum-inspired algorithms adopt the sim-203

ilar assumption of QRAM and dequantize numerous quantum204

algorithms with exponential speedups [21], [33], [34].205

Several studies developed the hybrid quantum-classical206

methods to solve regression tasks on near-term quantum207

devices [35], [36]. Since there is no theoretical convergence208

guarantee for these hybrid methods, they are incomparable209

with our result.210

B. Quantum Private Learning211

Several studies have investigated the topic of quantum pri-212

vate learning [37]–[41]. In particular, the main contribution of213

the two studies [37], [40] is to utilize the result of differential214

privacy to advance quantum tasks, i.e., shadow tomography215

and defending adversarial attacking. The study [39] proposed216

a quantum private perceptron, while the privacy metric used217

in [39] follows the study [42], which is irrelevant to the notion218

of differential privacy and is incomparable with our results.219

The study [38] developed quantum privacy mechanisms and220

analyzed their privacy guarantees. However, how to connect221

QDP with learning algorithms is unexplored. Recently, the222

study [43] explored quantum differential privacy from the223

perspective of learning theory. The study [41] systematically224

exploited the connection between differential privacy and225

algorithms to learn a quantum state. We emphasize that, unlike 226

the above studies, our work aims to develop a private learning 227

algorithm that achieves both the quantum advantage and the 228

provable utility guarantee. These two factors have not been 229

considered together before. 230

III. PRELIMINARIES 231

We unify some basic notation throughout the whole paper. 232

The set {1, 2, . . . , n} is denoted as [n]. Given a matrix X ∈ 233

RN×d and a vector v ∈ RN , the i-th row of X and the i-th 234

entry of v are represented by Xi and vi, respectively. The 235

�p norm of v (X) is denoted as �v�p (�X�p). The Frobenius 236

norm of X is defined as �X�F = (
�n

i=1

�d
j=1 |Xi,j |2)1/2. 237

The notation ei always refers to the i-th unit basis vector, e.g., 238

for ei ∈ R3, e1 = [1, 0, 0]. The identity matrix of size D×D 239

is denoted as ID . 240

A. Convex Optimization 241

We introduce two basic definitions in convex optimization. 242

Refer to [44] for more details. 243

Definition 2 (L-Lipschitz): A function f is called 244

L-Lipschitz over a set C if for all u,w ∈ C, we have 245

|f(u)− f(w)| ≤ L�u−w�2 . (3) 246

If f(·) is L-Lipschitz, differentiable, and convex, then 247

�∇f(u)�2 ≤ L . (4) 248

Definition 3 (Curvature Constant [45]): The curvature 249

constant Cf of a convex and differentiable function 250

f : Rd → R with respect to a compact domain C is 251

Cf := sup
z=x+γ(s−x)

2
γ2

(f(z)−f(x)−�z−x,∇f(x)�), (5) 252

where γ ∈ (0, 1], x, s ∈ C, and �·, ·� denotes usual inner 253

product. 254

B. Quantum Computation 255

We present essential background of quantum computation, 256

i.e., quantum states, quantum oracles, and the complexity 257

measure. We refer to [19] for details. 258

Quantum mechanics works in the Hilbert space H with 259

H � C, where C represents the complex Euclidean space. 260

We use Dirac notation to denote quantum states. A pure 261

quantum state is defined by a vector |·� (named ‘ket’) with unit 262

length. Specifically, the state |a� ∈ C
d is |a� =

�d
i=1 aiei = 263�d

i=1 ai |i� with
�

i |ai|2 = 1, where the computation basis 264

|i� stands for the unit basis vector ei ∈ Cd. The inner product 265

of two quantum states |a� and |b� is denoted by �a|b�, where 266

�a| refers to the conjugate transpose of |a�. We call a state 267

|a� is in superposition if the number of nonzero entries in 268

a is larger than one. Analogous to the ‘ket’ notation, density 269

operators can be used to describe more general quantum states. 270

Given a mixture of m quantum pure states |ψi� ∈ Cd with 271

the probability pi and
�m

i=1 pi = 1, the density operator ρ 272

presents the mixed state {pi, |ψi�}mi=1 as ρ =
�m

i=1 piρi with 273

ρi = |ψi� �ψi| ∈ Cd×d and Tr(ρ) = 1. 274
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The basic element in quantum computation is the quantum275

bit (qubit). A qubit is a two-dimensional quantum state, e.g.,276

a qubit can be written as |a� = a1 |0� + a2 |1�. Let |b� be277

an another qubit. The quantum state represented by these two278

qubits is formulated by the tensor product, i.e., |a� ⊗ |b� as a279

4-dimensional vector. Following conventions, we can also280

write |a�⊗|b� as |a, b� or |a� |b�. For clearness, we sometimes281

denote |a� |b� as |a�A |b�B , which means that the qubits |a�A282

(|b�B) is assigned in the quantum registerA (B). There are two283

typical quantum operations. The first one is quantum (logic)284

gates that operates on a small number qubits. Any quantum285

gate corresponds to a unitary transformation and can be stated286

in the circuit model, e.g., an n-qubit quantum gate U with287

U2n×2n

satisfies UU † = I2n . The second one is the quantum288

measurement, which aims to extract quantum information such289

as the computation result into the classical form. Given a290

density operator ρ, the outcome m will be measured with291

the probability pm = Tr(KmρK†
m) and the post-measurement292

state will be KmρK†
m/pm with

�
b K†

bKb = I.293

A quantum oracle O can be treated as a ‘black box’,294

which encapsulates certain quantum operations and can be295

used as the input to another algorithm. The quantum input296

model OX refers to a unitary transformation that allows us297

to access the input data in superposition, i.e., denote G as298

a set of indexes to be queried, we have OX(|i, j� |0�) =299 �|G|−1�
i,j∈G |i, j� |Xij� for any i ∈ [n] and j ∈ [d]. Note300

that, as with classical computers, the quantum state |Xij�301

records the binary string of Xij , i.e., 2→ |10�. Similar rules302

can be applied to Oy . Finally, the runtime complexity of a303

quantum algorithm is defined as the number of elementary304

operations employed in the algorithm. We use O(·) to denote305

the runtime complexity, or use Õ(·) that hides the poly-306

logarithmic factors. We also employ the little o notation, i.e.,307

f(n) = o(g(n)), to denote that f(n)/g(n)→ 0.308

C. Differential Privacy309

We provide the definition of classical and quantum DP.310

Definition 4 (Differential Privacy [46]): An algorithmA is311

(�, δ)-differential private if for any two neighboring datasets312

X and X� with X,X� ∈ RN×d, and for all measurable sets313

O ⊆ Range(A), the following holds:314

Pr(A(X) ∈ O) ≤ e� Pr(A(X�) ∈ O) + δ. (6)315

Here the neighboring datasets X and X� refer that the number316

of rows in X that need to be modified (e.g., moved) to get the317

X� is one.318

In this study, we exploit the classical notion of DP to denote319

the neighboring states ρ and σ, i.e., ρ and σ are prepared320

by two classical neighboring datasets X and X � given in321

Definition 4. Suppose that the neighboring datasets X and322

X� in Definition 4 differ in the i∗-th row. Following the323

Definition 1, the explicit form of the neighboring quantum324

states (unnormalized) yields ρ =
�

ij |Xij� |i� |j� and σ =325 �
ij

��X�
ij

� |i� |j�, where the basis |Xij� |i� |j� is always the326

same between ρ and σ when i �= i∗.327

IV. QUANTUM NON-PRIVATE LASSO ESTIMATOR 328

The content in this section can be separated into two parts. 329

First, we devise a quantum non-private Lasso estimator and 330

prove its runtime complexity. Note that the proposed quantum 331

non-private Lasso estimator will serve as the backbone of 332

the QDP Lasso. Second, we analyze the runtime complexity 333

(lower bound) of the optimal classical and quantum Lasso, 334

which will be used to compare with the QDP Lasso. 335

A. Quantum Non-Private Lasso Estimator 336

Here we propose a quantum version of the Frank-Wolfe 337

(FW) algorithm [23] to build a quantum non-private Lasso esti- 338

mator, which is our first main technical contribution. Through 339

exploiting the robustness of the FW algorithm, the proposed 340

quantum non-private Lasso attains a quadratic speedup over 341

its classical counterpart (see Theorem 3 and Lemma 3). Note 342

that the proposed algorithm is a prerequisite to devise the QDP 343

Lasso in Section V. 344

1) Classical FW: Let us first review the FW algorithm (also 345

known as the conditional gradient method). Recall that the 346

FW algorithm and its variants are representative methods to 347

solve constrained convex optimization tasks and have been 348

broadly used to build non-private Lasso estimators formulated 349

in Eqn. (1) [45], [47], [48]. Furthermore, the study [15] 350

combines non-private Lasso estimators with a DP mechanism 351

to build the DP Lasso estimator. 352

Algorithm 1 Frank-Wolfe Algorithm for Lasso [45]

1: Input: Dataset D = {X ∈ RN×d,y ∈ RN} with the
quantum input oracles OX and Oy in Definition 1, the loss
L ∈ R+ and the constraint set C = {θ ∈ Rd : �θ�1 ≤ 1}
in Eqn. (1), and the total number of iterations T ∈ N+;

2: Randomly choose θ(1) ∈ C with one nonzero entry;
3: for t = 1 to T − 1 do
4: ∀s ∈ [2d], α

(t)
s ← �ês,∇L(θ(t))�;

5: Compute k(t) = arg mins∈[2d] α
(t)
s and obtain êk(t) ;

6: θ(t+1) ← (1− μt)θ(t) + μtêk(t) , where μt = 2
t+2 ;

7: end for
8: Output: θ(T )

The implementation of the FW method for Lasso is sum- 353

marized in Alg. 1. In detail, FW seeks the target solution 354

θ∗ = argminθ∈C L(θ) in Eqn. (1) through an iteratively 355

updating manner (Line 3-7). Since the constraint domain C 356

is an �1 norm ball, the optimization can be done by checking 357

each vertex ês of the polytope C, where the vertices set is 358

denoted by S = {ês}2d
s=1 so that ês = es for 1 < s ≤ d and 359

ês = −es−d for d < s ≤ 2d. In other words, the vertices 360

set S contains 2d unit basis vectors {±es}ds=1. Figure 1 361

illustrates the geometric intuition of the FW algorithm. At the 362

t-th iteration, the FW algorithm moves θ(t) to the minimizer 363

of a linear function (a vertex in the set S), i.e., 364

êk(t) := arg min
ês∈S
�ês,∇L(θ(t))� . (7) 365
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Fig. 1. The mechanism of the FW algorithm. The red circle refers to the
optimal result θ∗. The yellow circle refers to the trainable parameters θ(t)

with t ∈ [T ]. The initial parameter θ(1) is arbitrarily selected from the
vertices set S , e.g., ê1. The grey dash line represents the location of the
minimizer êk(t) at the t-th iteration in Eqn. (7) (Line 4-5 in Alg. 1). The blue
solid line denotes the updating rule from θ(t−1) to θ(t) (Line 6 in Alg. 1).

Denote �ês,∇L(θ(t))� := α
(t)
s (in Line 4). The explicit form366

of α
(t)
s for s ≤ d yields367

α(t)
s := − 1

N

n�
i=1

Xis

�
yi − �Xi,θ

(t)�
�
. (8)368

For d < s ≤ 2d, we have α
(t)
s = −α

(t)
s−d. Locating the369

minimizer êk(t) is accomplished in Line 5 of Alg. 1. Note that370

the updating rule in the FW algorithm is a linear combination371

of T vertexes (i.e., {êk(t)}Tt=1), which implies that θ(T ) is372

sparse with �θ(T )�0 ≤ T .373

2) Quantum Non-Private Lasso: We now introduce the374

quantum non-private Lasso, where its implementation is sum-375

marized in Alg. 2. In particular, there are two key steps that376

differ with the classical FW algorithm (Alg. 1); namely, the377

construction of the oracle Oα(t) to replace the computation of378

α(t), and the employment of the quantum minimum finding379

algorithm [49] to find êk(t) . These two steps enable the380

quantum Lasso estimator to quadratically reduce its runtime381

complexity to find êk(t) for any t ∈ [T ].382

Algorithm 2 Quantum Lasso Estimator

1: Input: Dataset D = {X ∈ RN×d,y ∈ RN} with the
quantum input oracles OX and Oy in Definition 1, the loss
L ∈ R+ and the constraint set C = {θ ∈ Rd : �θ�1 ≤ 1}
in Eqn. (1), and the total number of iterations T ∈ N+;

2: Randomly choose θ(1) ∈ C with one nonzero entry;
3: for t = 1 to T − 1 do
4: Implement the oracle Oα(t) : |s� |0� → |s�

���α(t)
s

	
in

Lemma 1;
5: Compute k(t) = arg mins∈[2d] α

(t)
s using the quantum

minimum finding algorithm in Corollary 1 and the oracle
Oα(t) ;

6: θ(t+1) ← (1− μt)θ(t) + μtêk(t) , where μt = 2
t+2 ;

7: end for
8: Output: θ(T )

We next elaborate on how to implement Lines 4-5 in Alg. 2.383

3) State Preparation (Line 4 in Alg. 2): This step aims to 384

build the oracle Oα(t) that prepares a quantum state related to 385

the classical vector α(t) in Eqn. (8) to earn a runtime speedup. 386

Lemma 1 (Oracle Oα(t) ): Given access to quantum input 387

models OX and Oy in Definition 1, the estimated state 388

preparation oracle Oα̃(t) , which with success probability 1−2b 389

and b ∈ (0, 1) prepares a quantum state that estimates the 390

target state Oα(t) |s� |0� = |s�
���α(t)

s

	
, i.e., 391

Oα̃(t) |s� |0� = |s�
���α̃(t)

s

	
, (9) 392

can be constructed in Õ(T 2
√
N/ς) runtime, where |α(t)

s − 393

α̃(t)
s | ≤ ς for any s ∈ [2d], and the runtime hides a poly- 394

logarithmical term O(log(1/b)). 395

We defer the construction details of Oα(t) and the proof of 396

Lemma 1 in Appendix . Notice that the runtime of calculating 397

the classical vector α(t) is at least O(Nd) due to the multipli- 398

cation of X� ∈ Rd×N and (y−Xθ(t)) ∈ RN . In contrast, the 399

runtime to prepare the estimated state
���α̃(t)

	
is Õ(T 2

√
N/ς) 400

and is independent of the feature dimension d, celebrated 401

by the coherent property in the quantum input model. Since 402

T,N � d in most practical scenarios, this result indicates 403

the efficacy to prepare the state
���α̃(t)

	
instead of directly 404

computing classical form α(t), and enables the quantum Lasso 405

to earn a runtime speedup over the classical Lasso. 406

4) Find êk(t) (Line 5 in Alg. 2): Given access to the 407

oracle Oα(t) , we can directly employ the quantum minimum 408

finding algorithm [49] to find k(t), or equivalently êk(t) . 409

We summarize the runtime complexity to find êk(t) below. 410

Corollary 1: Suppose that the state preparation oracleOα(t) 411

in Lemma 1 can be implemented in Tα runtime. With success 412

probability at least 1/2, the classical output êk(t) can be 413

obtained in Õ(Tα

√
d) runtime. The success probability can 414

be boosted to 1 − 1/2c by repeating the quantum minimum 415

finding algorithm c times. 416

Proof of Corollary 1: Let us first recap a crucial tech- 417

nique used in the quantum non-private Lasso estimator, 418

i.e., the quantum minimum finding algorithm (Dürr-Høyer’s 419

algorithm) [49]. Recall the quantum minimum finding algo- 420

rithm [49]. Given an unordered list {f(i)}2d
i=1 with 2d items, 421

the goal of the minimum finding algorithm is to find an index 422

k∗, i.e., 423

k∗ = arg min
i
f(i) , ∀i ∈ [2d] . (10) 424

The theoretical result of quantum minimum finding algorithm 425

is as follows. 426

Lemma 2 (Quantum Minimum Finding Algorithm, [49]): 427

The quantum minimum algorithm finds the index k∗ defined in 428

Eqn. (10) with the probability at least 1/2. The corresponding 429

runtime complexity is 22.5
√

2d+ 1.4 log2
2(2d). 430

We follow Ref. [49] to explain the implementation details 431

of the quantum minimum finding algorithm, summarized in 432

Alg. 3, and refer the interested readers to Ref. [50] for 433

the detailed explanation. First, the input of the algorithm is 434

a quantum oracle Ô, i.e., Ô |i� ⊗ |0� = |i� |f(i)�, where 435

f(i) refers to the i-th item of the unordered list {f(i)}2d
i=1, 436

denote by T the total runtime. When T � < T , the algorithm 437
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Algorithm 3 Quantum Minimum Finding Algorithm (Dürr-Høyer’s
Algorithm) Reformulated

1: Input: Ô;
2: Set T = 22.5

√
2d+ 1.4 log2

2(2d), k ∼ [2d], and T � = 0;
3: while T � ≤ T do
4: Initialize the state ( 1√

2d

�2d
i=1 |i�R1

)⊗ |k�R2
;

5: Use the comparator oracle Ocomp to mark every item i
for which f(i) ≤ f(k) with runtime T̂1;

6: Apply Grover search algorithm to increase the probability
of the marked items with runtime T̂2, and then observe
the first register R1 and let k� be the outcome;

7: T � ← T � + T̂1 + T̂2;
8: If f(k�) ≤ f(k), then set k ← k�;
9: end while

10: Output: k

continuously employs the Grover search to obtain the index438

k� and compare f(k) and f(k�). Once T � > T , the quantum439

minimum finding algorithm outputs k as the prediction of k∗.440

A central component of the quantum minimum finding441

algorithm is the comparator oracle Ocomp, which is employed442

to mark every item with f(i) ≤ f(k) for a given k. Mathe-443

matically, Ocomp is defined as444

Ocomp |i� |j� |0� = |i� |j� |g(i, j)� ,445

where g(i, j) = 1 if f(i) ≤ f(k); otherwise, g(i, j) = 0. Note446

that Ocomp can be implemented efficiently by querying the447

input oracle Ô twice.448

We now leverage the result of the quantum minimum finding449

algorithm in Alg. 3 and Lemma 2 to prove Corollary 1.450

Recall Alg. 3 and Lemma 2. The runtime of the quantum451

minimum finding algorithm, i.e., 22.5
√

2d + 1.4 log2
2(2d),452

is dominated by applying Grover search algorithms and prepar-453

ing the initialized state, where the first part takes 22.5
√

2d454

(Line 6 of Alg. 3) and the second part takes 1.4 log2
2(2d)455

(Line 4 of Alg. 3), respectively [50]. However, such a runtime456

cost is based on the assumption that, the input oracle can457

be prepared in O(1) runtime. This is not the case for the458

quantum Lasso. The construction of the input oracle Oα(t)459

to load different entries of α(t) takes Tα runtime. Therefore,460

the total runtime of the quantum minimum finding algorithm461

used in the quantum non-private Lasso becomes Õ(Tα

√
2d),462

since the runtime to execute the Grover search algorithms is463

Õ(Tα

√
2d) instead of O(

√
2d).464

Since the success probability of the quantum minimum465

finding algorithm is 1/2, with repeatedly querying such an466

algorithm c times, the probability that none of the c outcomes467

belong to the minimum result is 1/2c. Therefore, with success468

probability 1 − 1/2c, there exists at least one target result469

among c outcomes. �470

In conjunction with Lemma 1 and Corollary 1, we attain a471

main result of the quantum non-private Lasso estimator.472

Theorem 3: Denote ς as the error parameter and Cf as the473

curvature constant of the loss function L. Given access to OX474

and Oy formulated in Definition 1, with success probability475

1 − o(1), the quantum Lasso as described in Alg. 2 after T476

iterations outputs θ(T ) with the utility bound RL ≤ O(Cf/ 477

T + ς) in Õ(T 3
√
Nd/ς) runtime complexity. 478

Proof of Theorem 3: The proof of Theorem 3 utilizes a 479

technical result of the Frank-Wolfe algorithm. A crucial prop- 480

erty of the Frank-Wolfe algorithm is its robustness. Specifi- 481

cally, instead of calculating the exact solution êk(t) as shown 482

in Eqn. (7), employing any approximated solution êk̃(t) ∈ S 483

(e.g., obtained by a noisy solver), where êk̃(t) is sampled from 484

a certain distribution P , to update the learning parameters θ(t)
485

can also promise the convergence of Frank-Wolfe algorithm, 486

as long as êk̃(t) satisfies the following relation, 487

Eê
k̃(t)∼P



�êk̃(t) ,∇L(θ(t))�

�
≤min

ês∈S
�ês,∇L(θ(t))�+ 1

2
ϑμtCf ,

(11) 488

where Cf is the curvature constant formulated in Definition 3, 489

μt is the learning rate, and 1
2ϑμtCf refers to the additive 490

approximation quality in the step t with ϑ ≥ 0 being an 491

arbitrary fixed error parameter [45]. The following proposition 492

quantifies the convergence rate of Frank-Wolfe algorithm. 493

Proposition 1 (Theorem 1, [45]): Let {êk̃(1) , . . . , êk̃(T )} 494

be a sequence of vectors from S with θ(t+1) = 495

(1 − μt)θ(t) + μtêk̃(t) , such that for all t ∈ [T ], Eqn. (11) is 496

satisfied. Then the result θ(T ) satisfies 497

RL ≤ 2Cf

T + 2
(1 + ϑ) . (12) 498

We emphasize that, although the original proof of Proposi- 499

tion 1 only takes account of the deterministic case, it can be 500

easily extended to the expectation setting given in Eqn. (11). 501

Proposition 1 implies that the only difference between the 502

exact (i.e., êk(t) = êk̃(t) and ϑ = 0) and approximate scenarios 503

(i.e., êk(t) �= êk̃(t) and ϑ > 0) is that the utility bound of the 504

latter is slightly worse than the former. Moreover, under the 505

exact setting, Lasso achieves the utility bound O(Cf/T ). 506

We are now ready to prove Theorem 3. 507

5) Error Analysis and Utility Bound: The error of quantum 508

Lasso comes from the two subroutines, Line 4 and Line 509

5 of Alg. 2, respectively. First, the state preparation oracle 510

only generates an approximated state |s�
���α̃(t)

s

	
with success 511

probability 1 − 2b and b ∈ [0, 1], as stated in the proof of 512

Lemma 1. Second, the quantum minimum finding algorithm 513

can only locate the index that corresponds to the minimum 514

entry of α̃(t) with success probability 1 − 1/2c, as shown in 515

Corollary 1. 516

Since the quantum minimum finding algorithm queries the 517

oracle Oα(t) at most
√

2d times as illustrated in Alg. 3, the 518

probability that the state |s�
���α̃(t)

s

	
can always be successfully 519

prepared in all
√

2d queries is (1−2b)
√

2d. Overall, the success 520

probability to obtain êk̃(t) is (1−1/2c)(1−2b)
√

2d, where the 521

index k̃(t) is defined as 522

k̃(t) = arg min
s∈[2d]

α̃(t)
s . (13) 523

Since there are in total T iterations in the quantum Lasso 524

algorithm, the success probability to collect {êk̃(t)}Tt=1 is 525�
(1− 1/2c)(1− 2b)

√
2d
�T

= (1− 2b)T (1− 2b)
√

2dT , (14) 526
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where c = �log2(1/2b)�. Eqn. (14) can be simplified as527

(1− 2b)T (1+
√

2d) ≥ 1− 1/κ = 1− o(1), (15)528

where we choose b = 1
κT (

√
2d+1)

, κ > 0. The inequality uses529

(1+x/n)n ≥ 1+x for n > 1 and |x| ≤ n (x and n correspond530

to −1/κ and T (
√

2d+ 1), respectively). In other words, with531

success probability 1− o(1), we can collect {êk̃(t)}Tt=1.532

We then analyze of the utility bound of quantum Lasso533

when the collected basis vectors are {êk̃(t)}Tt=1. Followed from534

Lemma 1 and the definition of k(t) as formulated in Line 5 of535

Alg. 2, we have536

α
(t)

k̃(t) ≤ α̃
(t)

k̃(t) + ς ≤ α̃
(t)

k(t) + ς ≤ α
(t)

k(t) + 2ς , (16)537

where the first inequality uses |α(t)

k̃(t) − α̃
(t)

k̃(t) | ≤ ς , the second538

inequality comes from the fact α̃
(t)

k̃(t) = mins∈[2d] α̃
(t)
s ≤539

α̃
(t)

k(t) , and the last inequality employs |α(t)

k(t) − α̃
(t)

k(t) | ≤ ς .540

By expanding α
(t)

k̃(t) and α
(t)

k(t) with their explicit forms,541

we obtain the following relation, i.e.,542

α
(t)

k̃(t) ≤ α
(t)

k(t) + 2ς ⇔ �êk̃(t) ,∇L(θ(t))� ≤ min
ês∈S

�ês,∇L(θ(t))� + 2ς .

(17)543

In conjunction with Eqn. (11) and (17), we can choose ϑ =544

4ς
μtCf

. Finally, Proposition 1 yields545

RL ≤ 2Cf

T + 2
(1 + ϑ) ≤ 2Cf

T
+ 4ς = O(Cf/T + ς) , (18)546

where the second inequality employs μt = 2/(T + 2) and547

ϑ = 4ς
μtCf

.548

6) Runtime Analysis: We then analyze the runtime com-549

plexity of each iteration, which can be efficiently obtained550

from Lemma 1 and Corollary 1. As shown in Lemma 1, the551

runtime of using the oracle Oα(t) to prepare the state
��α(t)

�
552

is Tα = Õ((T 2
√
N)/ς). Note that we omit the influence553

of b in the runtime analysis of quantum Lasso, since the554

runtime to prepare Oα(t) only has a logarithmic dependence555

in terms of b. Following the results in the error analysis,556

at the t-th iteration, by repeatedly querying the quantum557

minimum finding algorithm c = �log2(1/2b)� times, the558

target basis vectors êk̃(t) that k̃(t) satisfies Eqn. (13) can be559

collected with success probability 1 − o(1). Therefore, based560

on the claim of Corollary 1, the runtime to find êk̃(t) is561

Õ(cTα

√
d). The runtime of quantum Lasso with T iterations562

is therefore Õ(cTTα

√
d). By exploiting the explicit form of563

Tα = Õ((T 2
√
N)/ς) and c = �log2(1/2b)�, the runtime564

complexity of quantum Lasso is then equal to565

Õ(T 3
√
Nd/ς) .566

�567

B. The Runtime Lower Bounds in Non-Private Settings568

We end this section by proving the optimal (lower bound)569

runtime complexity of classical and quantum non-private570

Lasso estimators with the input model in Definition 1. The cen-571

tral tool toward this goal is the equivalence between Lasso and572

support vector machine (SVM) [51]. This equivalence enables573

us to leverage the advanced results of the optimal (quantum)574

SVM [18], [20] to infer the runtime of the optimal (quantum) 575

non-private Lasso. The derived results allow us to evaluate 576

performance of the quantum non-private Lasso and the QDP 577

Lasso. 578

The runtime cost of the optimal classical Lasso is as follows. 579

Lemma 3: Given access to the input model in Definition 1, 580

the runtime complexity of the classical non-private Lasso is 581

lower bounded by Ω(N + d). 582

Proof of Lemma 3: Let us first recall the result achieved 583

in [51]. In particular, the dual optimization problem of support 584

vector machine (SVM) and its variants (i.e., kernel SVM, soft- 585

margin SVM variants using l2-loss, and one-class SVMs) is 586

of the form 587

min
θ∈Δ
�Xθ�2 , (19) 588

where Δ is the unit simplex in Rd. The key observation in 589

Sec. 3 of [51] is that the optimization problem in Eqn. (19) 590

is equivalent to Lasso as defined in Eqn. (1), i.e., minθ∈C 591

�Xθ−y�2. In particular, [51] states that any instance of Lasso 592

can be reformulated as a l2-loss soft-margin (or hard-margin) 593

SVM instance with the same optimal solutions. This result 594

guarantees the equivalence between SVM and Lasso even 595

though the relaxations are considered. To be more specific, 596

as addressed in Section 4.1 of [51], the SVM algorithm pro- 597

posed in [18] can be directly employed to design a sublinear 598

time algorithm for the Lasso. 599

Following the above observation, we now employ the result 600

obtained from SVM study to quantify the lower bound runtime 601

complexity of the classical Lasso estimator. In particular, the 602

study [18] proves that, given the input model formulated 603

in Definition 1, the optimal runtime for the support vector 604

machine (SVM) is Ω(N + d). Supported by the equivalence 605

between SVM and Lasso, the optimal runtime for Lasso is 606

lower bounded by Ω(N + d). � 607

We further quantify the runtime complexity of the optimal 608

quantum non-private Lasso estimator. 609

Corollary 2: When the estimation error ς = Ε(1) is set as 610

a constant, the runtime complexity of the quantum non-private 611

Lasso is lower bounded by Ω(
√
N +

√
d). 612

Proof of Corollary 2: The proof of this corollary follows 613

Lemma 3 closely. Given the input model formulated in Defini- 614

tion 1, the lower bound of quantum SVM is Ω(
√
N+
√
d) [20]. 615

In favor of the equivalence between Lasso and SVM [51], then 616

the runtime lower bound of the corresponding quantum Lasso 617

is also Ω(
√
N +

√
d). � 618

We now use the above two results to assess the performance 619

of the quantum non-private Lasso, while the analysis of the 620

QDP Lasso will be deferred to the next section. In particular, 621

based on Lemma 3, the proposed quantum non-private Lasso 622

in Theorem 3 achieves a quadratical runtime speedup over the 623

optimal classical Lasso in terms of the feature dimension d. 624

Moreover, the runtime complexity of the quantum non-private 625

Lasso is near-optimal when N � d, supported by the results 626

of Corollary 2. 627

V. QUANTUM PRIVATE LASSO ESTIMATOR 628

To ease understanding, let us first review the general rule of 629

transforming non-private learning algorithms to DP algorithms 630
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before elaborating on the proposed QDP Lasso. Concretely,631

there are three mainstream strategies to assign DP properties632

to a classical learning algorithm, i.e., injecting randomness to633

1) the input datasets; 2) the optimization information such634

as gradients; and 3) the employed loss function [52]. For635

example, the DP Lasso [15] attains the privacy promise by636

adding noise sampled from Laplacian or Gaussian distributions637

with certain variances to α(t) in Line 4 of Alg. 1.638

Due to the fact that injecting noise into non-private algo-639

rithm generally involves extra operations, almost all cur-640

rent classical DP learning algorithms have a worse runtime641

complexity than their non-private counterparts. However, the642

probabilistic nature of quantum mechanics motivates us to643

rethink:644

Can we use such randomness to attain the DP property instead645

of injecting handcrafted noise?646

The proposed QDP Lasso provides a positive affirmation647

towards the above question. As summarized in Alg. 4, the QDP648

Lasso adopts the following two simple procedures instead649

of introducing extra cumbersome operations as classical DP650

algorithms do to impose DP property on the quantum non-651

private Lasso in Alg. 2. First, the quantum minimum finding652

algorithm in Line 5 of Alg. 2 is abandoned in the QDP653

Lasso. Second, the searched index k(t) of the QDP Lasso is654

acquired by sampling from an engineered state
��α(t)

�
denoted655

by
��W(α(t))

�
.656

In the rest of this section, we first introduce the quantum657

subroutine W(α(t)) in Line 7 of Alg. 4 that prepares the658

state
��W(α(t))

�
. We next analyze runtime and utility of the659

proposed QDP Lasso. Last, we elaborate on the necessity of660

the involved examination procedure Line 3-5 of Alg. 4.661

Algorithm 4 (�, δ)-QDP Lasso Estimator

1: Input: Dataset D = {X ∈ RN×d,y ∈ RN} with the
quantum input oracles OX and Oy in Definition 1, the loss
L ∈ R+ and the constraint set C = {θ ∈ Rd : �θ�1 ≤ 1}
in Eqn. (1), the total number of iterations T ∈ N+, the
Lipschitz constant L1 ∈ R+, the error threshold ς ∈ R+,
and the differential privacy parameters (�, δ);

2: Calculate the the hyper-parameter λ =
�

2T ln(1/δ) 8
�N ∈

R+ in Eqn. (21);
3: Randomly choose θ(1) ∈ C with one nonzero entry;
4: if L1/λ ≥ ln(1/ς) then
5: Break;
6: end if
7: for t = 1 to T − 1 do
8: Prepare the state

��W(α(t))
�

in Eqn. (20) by the quantum
subroutine W(α(t)) in Lemma 4;

9: Measure the index register |s� of
��W(α(t))

�
conditioned

on seeing the last qubit as 0, and set the received index
k(t) ∈ [2d] as K(t) = k(t);

10: θ(t+1) ← (1 − μt)θ(t) + μtêK(t) , where μt = 2
t+2 ;

11: end for
12: Output: θ(T )

The aim of the well-designed subroutineW(α(t)) in Line 7662

of Alg. 4 is to achieve the DP property. Mathematically,663

W(α(t)) prepares a superposition state
��W(α(t))

�
, i.e., 664���W(α(t))

	
=

2d�
s=1

1√
2d
|s�
���α(t)

s

	�
e−

|α(t)
s +2L1|

2λ |0�+ |⊥s�


,

(20) 665

where |⊥s� =

�
1− e− |α(t)

s +2L1|
λ |1� refers to the garbage 666

state. Based on the explicit form of
��W(α(t))

�
, we obtain 667

the following two observations. On the one side, when the 668

index qubit |s� of the quantum state
��W(α(t))

�
is measured, 669

the index s ∈ [2d] whose corresponding entry α
(t)
s is close 670

to α
(t)
k∗ = mins∈[2d] α

(t)
s will be chosen as K(t) with high 671

probability. On the other side, due to the non-zero probability 672

amplitude, all indices s ∈ [2d] could be selected as the output 673

K(t). As shown in Theorem 4, these two properties ensure the 674

QDP Lasso to meet the requirements of differential privacy in 675

Definition 4. 676

Theorem 4 (Privacy Guarantee): Given the dataset D = 677

{X ∈ RN×d,y ∈ RN} in Definition 1, the QDP Lasso, 678

as illustrated in Alg. 4, achieves (�, δ)-differential privacy after 679

T iterations, with setting 680

λ =
�

2T ln(1/δ)
8
�N

. (21) 681

Proof of Theorem 4: A technical tool employed to prove 682

Theorem 4 is the strong composition property in differential 683

privacy. 684

Proposition 2 (Strong composition, Theorem 3.3, [53]): 685

For every �� > 0, δ, δ� > 0, and k ∈ N, the class of (��, δ�)- 686

differentially private mechanism is (�, kδ� + δ)-differentially 687

private under k-fold adaptive composition, i.e., 688

� =
�

2k ln(1/δ)�� + k���0 , (22) 689

where �0 = e�� − 1. 690

We are now ready to prove Theorem 4. 691

Here we first quantify the differential privacy of the QDP 692

Lasso at the t-iteration and then employ the strong com- 693

position property as formulated in Proposition 2 to demon- 694

strate the privacy guarantee of the proposed QDP Lasso 695

estimator. 696

To ease notation, we refer Line 7-8 of Alg. 4 as the privacy 697

mechanism M. At the t-th iteration, when the input dataset 698

is D, denoted Z(t) =
�2d

s=1 exp
�
−|α

(t)
s +2L1|

λ



, the index 699

k(t) ∈ [2d] will be accepted as the output K(t) = k(t) with 700

probability 701

Pr(M(D) = k(t)) =
1
Z(t)

exp

⎛⎝−
���α(t)

k(t) + 2L1

���
λ

⎞⎠ . (23) 702

When the same rule applies to the neighboring dataset 703

D�, denoted Z �(t) =
�2d

s=1 exp
�
−|α

�(t)
s +2L1|

λ



, the same 704

index k will be accepted as the output K(t) = k(t) with 705

probability 706

Pr(M(D�) = k(t)) =
1

Z �(t) exp

⎛⎝−
���α�(t)

k(t) + 2L1

���
λ

⎞⎠ . (24) 707

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:45:41 UTC from IEEE Xplore.  Restrictions apply. 



DU et al.: QUANTUM DIFFERENTIALLY PRIVATE SPARSE REGRESSION LEARNING 5225

Based on the differential privacy formulated in Definition 4,708

we now bound the ratio709

Pr(M(D) = k(t))
Pr(M(D�) = k(t))

710

=
exp

�
−
���α(t)

k(t) + 2L1

��� /λ�Z �(t)

exp
�
−
���α�(t)

k(t) + 2L1

��� /λ�Z(t)
711

=
exp

�
−
���α(t)

k(t) + 2L1

��� /λ�
exp

�
−
���α�(t)

k(t) + 2L1

��� /λ�
�2d

s=1 exp
�
−
���α�(t)

s + 2L1

��� /λ��2d
s=1 exp

�
−
���α(t)

s + 2L1

��� /λ�712

≤ exp

⎛⎝−
���α(t)

k(t) + 2L1

���+ ���α�(t)
k(t) + 2L1

���
λ

⎞⎠713

×
�2d

s=1 exp
�
−
���α(t)

s + 2L1

��� /λ� exp (4/(λN))�2d
s=1 exp

�
−
���α(t)

s + 2L1

��� /λ�714

≤ exp

⎛⎝
���α�(t)

k(t) + 2L1 −α
(t)

k(t) − 2L1

���
λ

⎞⎠ exp
�

4
λN



715

≤ exp
�

8
λN



, (25)716

where the first inequality uses |α(t)
s − α

�(t)
s | ≤ 4

N as proved717

below and |α�(t)
s | ≤ L1 for ∀s ∈ [2d], the second inequality718

comes from ||a|−|b|| ≤ |a−b|, and the last inequality employs719

|α(t)
s −α

�(t)
s | ≤ 4

N again. In particular, the difference of α
(t)
s720

and α
�(t)
s for each entry s ∈ [2d] is upper bounded by721

|α(t)
s −α�(t)

s |722

=
���− 1

N

N�
i=1

Xis

�
yi − �Xi,θ

(t)�
�

723

+
1
N

N�
i=1

X�
is

�
y�

i−�X�
i,θ

(t)�
� ���724

≤ 1
N
|Xks|

���yk−�Xk,θ
(t)�
���+ 1

N
|X�

ks|
���y�

k−�X�
k,θ

(t)�
���725

≤ 1
N
|Xks| (|yk|+

����Xk,θ
(t)�
���)+ 1

N
|Xks| (|y�

k|+
����X�

k,θ
(t)�
���)726

≤ 1
N
�X�F (1+�X�F )+

1
N
�X��F (1+�X��F )727

≤ 4
N

. (26)728

The first equality in Eqn. (26) comes from Eqn. (8). The first729

inequality employs the triangle inequality and the fact that730

only one example, said the k-th example, in D and D� is731

varied. The second inequality uses the triangle inequality. The732

third inequality is guaranteed by the facts that |Xks| ≤ �X�F ,733

|X�
ks| ≤ �X��F , |yk| ≤ �y� ≤ 1, |y�

k| ≤ �y�� ≤ 1, and734

�Xk��θ(t)� ≤ �X�F and �X�
k��θ(t)� ≤ �X��F (due to735

�θ(t)� ≤ 1, see Eqn. (1)). The last inequality exploits the736

results �X�F ≤ 1 and �X��F ≤ 1.737

To ensure the ratio Pr(M(D)=k(t))
Pr(M(D�)=k(t))

is upper bounded by e�� , 738

we have to bound 739

exp
�

8
λN



≤ e�� ⇒ �� ≥ 8

λN
. (27) 740

Then, with employing the strong composition property given 741

in Proposition 2, the proposed quantum Lasso estimator 742

achieves (�, δ)-privacy after T iterations, where 743

� ≈
�

2T ln(1/δ)
8
λN

. (28) 744

In other words, with setting 745

λ =
�

2T ln(1/δ)
8
�N

, 746

the proposed quantum private Lasso with weighted sampling 747

mechanism achieves (�, δ)-differential privacy. � 748

We remark that the devised privacy mechanism used in 749

the QDP Lasso, as our second main technical contribution, 750

amounts to sampling k(t) from the state
��W(α(t))

�
in Line 8 751

of Alg. 4. Mathematically, at the t-th iteration, the quantum 752

subroutine W(α(t)) as will be described below is employed 753

to prepare
��W(α(t))

�
in Eqn. (20). This privacy mechanism is 754

a crucial element to dramatically reduce runtime of the QDP 755

Lasso to outperform both the optimal classical and quantum 756

non-private Lasso estimators, since it avoids involving extra 757

operations such as noise injection and removes the quantum 758

minimum finding algorithm, which dominates the runtime 759

complexity of the quantum non-private Lasso. 760

We next exhibit that the subroutine W(α(t)) can be effi- 761

ciently implemented. This result is the precondition to assure 762

the efficacy of the proposed QDP Lasso. Based on Eqn. (20), 763

we observe that the state
��W(α(t))

�
can be prepared by 764

applying the conditional rotation operation [27] to the state 765��α(t)
�

accompanied with an ancillary qubit. In other words, 766

the subroutine W(α(t)) can be effectively constructed by 767

employing the oracle Oα(t) in Theorem 1 with extra O(1) 768

overhead. The following lemma summarizes the runtime cost 769

of implementing W(α(t)). 770

Lemma 4: Following notations used in Lemma 1, there 771

exists a quantum algorithm which with success probability 772

1− 2b and b ∈ (0, 1), prepares a quantum state 773����W(α(t))
	

=
2d�

s=1

1√
2d
|s�
���α̃(t)

s

	�
e−

|α̃(t)
s +2L1|

2λ |0�+
���⊥̃s

	

,

(29) 774

where
���⊥̃s

	
=

�
1− e− |α̃(t)

s +2L1|
λ |1� in Õ(T 2

√
N/ς) run- 775

time. Moreover, the prepared state
����W(α(t))

	
estimates the 776

state
��W(α(t))

�
in Eqn. (20) with |α(t)

s − α̃(t)
s | ≤ ς , ς ≤ L1, 777

and α̃(t)
s = −α̃

(t)
s+d for any s ∈ [2d]. 778

Proof of Lemma 4: Let us first recall the construction of 779

the quantum subroutine W(α(t)), as the backbone of Alg. 4. 780

Specifically, we first exploit the oracle Oα(t) in Lemma 1 and 781

quantum arithmetic operations such as addition and multipli- 782

cation to prepare a uniform superposition state 783���ϕ(α(t))
	

=
1√
2d

2d�
s=1

|s�
���exp(−|α̃(t)

s + 2L1|/λ)
	
. (30) 784
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We then introduce an ancillary qubit to the state
��ϕ(α(t))

�
and785

rotate the state conditioned on exp(−|α̃(t)
s + 2L1|/λ)/Z(t) to786

obtain the target state
��W(α(t))

�
.787

Here we first detail the implementation of the above two788

steps and then analyze their runtime cost step by step.789

The preparation of the state
��ϕ(α(t))

�
can be accomplished790

with an extra O(1) runtime complexity if we have access to791

the oracle Oα̂(t) defined in Eqn. (47). In particular, we first792

append an ancillary qubit and apply H gate to create the state793

H ⊗Oα̂(t) |0�⊗|0�→ 1√
2d

d�
s�=1

|0� |s��
���α̃(t)

s�

	
+|1� |s��

���α̃(t)
s�

	
.794

(31)795

Next, we use a CNOT gate to flip the sign of α̃s� , where the796

control and target qubits are the first qubit and the specific797

qubit that records the sign information of α
(t)
s� , i.e., the state798

in Eqn. (31) transforms to799

1√
2d

d�
s�=1

�
|0� |s��

���α̃(t)
s�

	
+ |1� |s��

���−α̃
(t)
s�

	�
. (32)800

Absorbing the first qubit into the index register |s�, we obtain801

1√
2d

2d�
s=1

|s�
���α̃(t)

s

	
. (33)802

Notably, even though there exists an error ς with |α̃(t)
s −803

α
(t)
s | ≤ ς as discussed in Appendix , the above implementation804

procedure guarantees805

α̃(t)
s = −α̃

(t)
s+d , ∀s ∈ [d] , (34)806

since α̃
(t)
s+d is produced by flipping the sign qubit of α̃

(t)
s+d.807

This property will be employed in the utility bound analysis.808

Once the state in Eqn. (33) is prepared, we apply a quantum809

adder, multiplier, and exponential operation [54], [55] to810

obtain the state811

1√
2d

2d�
s=1

|s�
���α̃(t)

s

	
+2L1−−−→ 1√

2d

2d�
s=1

|s�
���α̃(t)

s + 2L1

	
812

× 1
λ−−→ −1√

2d

2d�
s=1

|s�
�����− α̃(t)

s + 2L1

λ

�
813

exp(·)−−−−→
���ϕ(α(t))

	
=

1√
2d

2d�
s=1

|s�
�����exp

�
− α̃(t)

s + 2L1

λ

��
,814

(35)815

where we omit the absolute value operation since α̃(t)
s +816

2L1 ≥ 0 for ∀s ∈ [2d].817

Last, we introduce an ancillary qubit and apply a controlled818

rotation operation used in [27] to estimate the target state819 ��W(α(t))
�
, i.e.,820

1√
2d

2d�
s=1

|s�
�����exp

�
− α̃(t)

s +2L1

λ

��
|0� conditional rotation−−−−−−−−−−−−−−→

on the 2cd quantum register
821

����W(α(t))
	

=
2d�

s=1

1√
2d
|s�
���α̃(t)

s

	
822

×

⎛⎜⎝
����e−

|α̃(t)
s +2L1|

λ

C1
|0�+

����
1− e−

|α̃(t)
s +2L1|

λ

C1
|1�

⎞⎟⎠ , (36) 823

where C1 depends on λ and L1 as defined in Line 3-7 of 824

Alg. 4. 825

Under the above description, the runtime cost to prepare the 826

state in Eqn. (31) is Õ(T 2
√
N/ς), supported by Lemma 1. 827

The subsequent steps from Eqn. (32) to Eqn. (35), which 828

aims to prepare the state
��ϕ(α(t))

�
, only involve Hadamard 829

transformations and basic quantum arithmetic operations and 830

can be completed in O(log(d)) runtime. In the last step, the 831

conditional rotation operation as formulated in Eqn. (36) can 832

be achieved in O(1) runtime [27]. Overall, the runtime cost 833

to prepare the state
����W(α(t))

	
is Õ(T 2

√
N/ς). � 834

The result of Lemma 4 and the optimization results of the 835

FW algorithm allow us to quantify the utility and runtime cost 836

of the QDP Lasso. 837

Theorem 5 (Utility and Runtime): Let L1 ∈ R+ be the 838

Lipschitz constant of the loss L in Eqn. (1), 0 ≤ ς < L1 be the 839

error threshold, and Cf ∈ R+ be the curvature constant of L in 840

Definition 3. Given the dataset D = {X ∈ RN×d,y ∈ RN}, 841

with success probability 1 − o(1), after T = (N�)2/3

ln1/3(1/δ)
itera- 842

tions, (�, δ)-QDP Lasso in Alg. 4 achieves the utility bound 843

RL ≤ Õ
�

C
1/3
f

N2/3�2/3 + ς + L1



in runtime Õ

�
C2

f N5/2�2

ς



. 844

Proof of Theorem 5: We first analyze the Error and utility 845

bound of QDP and then derive its runtime complexity. 846

Error analysis and utility bound. We now analyze how 847

the selected basis êK(t) as described in Alg. 4 affects the 848

error term ϑ given in Proposition 1, when the imperfection of 849

the state preparation oracle Oα(t) is considered. Specifically, 850

supported by Lemma 1, with success probability 1 − 2b, the 851

obtained result in Line 5 satisfies |α(t)

k(t) − α̃
(t)

k(t) | ≤ ς for 852

∀k(t) ∈ [2d]. Consequently, the probability to accept k(t) as the 853

output index shown in Line 6 is proportional to exp(−|α̃(t)

k(t) + 854

2L1|/λ). Under this estimated acceptance rate, we now discuss 855

the upper bound of E



�êK(t) ,∇L(θ(t))�

�
. Note that, the 856

symmetry property of α(t) = [∇L(θ(t)),−∇L(θ(t))] implies 857

that its minimal entry, i.e., α
(t)
k∗ = minês∈S�ês,∇L(θ(t))�, 858

is always less than zero. 859

Denote Z̃ =
�2d

s=1 exp
�
−|α̃

(t)
s +2L1|

λ



. The upper bound 860

of E



�êK(t) ,∇L(θ(t))�

�
satisfies 861

E



�êK(t) ,∇L(θ(t))�

�
862

=
2d�

s=1

Pr(Accept|K(t) = s)�ês,∇L(θ(t))� 863

=

�2d
s=1 exp

�
−|α̃

(t)
s +2L1|

λ



α̃(t)

s

Z̃
864

=α̃
(t)
k∗ − α̃

(t)
k∗ +

�2d
s=1 exp

�
−|α̃

(t)
s +2L1|

λ



α̃(t)

s

Z̃
865
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≤α
(t)
k∗ + ς + L1 + ς +

�2d
s=1 exp

�
−|α̃

(t)
s +2L1|

λ



α̃(t)

s

Z̃
866

=α
(t)
k∗ + 2ς + L1 +

�2d
s=1 exp

�
−|α̃

(t)
s +2L1|

λ



α̃(t)

s

Z̃
867

=α
(t)
k∗ + 2ς + L1 +

�
s−∈S− exp

�
−

�
�
�α̃

(t)
s−+2L1

�
�
�

λ



α̃

(t)

s−

Z̃
868

+

�
s+∈S+ exp

�
−

�
�
�α̃

(t)
s++2L1

�
�
�

λ



α̃

(t)
s+

Z̃
869

≤α
(t)
k∗ + 2ς + L1 +

�
s+∈S+

exp
�
−

�
�
�α̃

(t)
s++2L1

�
�
�

λ



Z̃

α̃
(t)
s+870

≤α
(t)
k∗ + 2ς + L1 + λ . (37)871

The first and second inequalities employ the facts that, for872

any s ∈ [2d], |α(t)
s − α̃(t)

s | ≤ ς as shown in Lemma 1, and873

|α(t)
s | ≤ L1, since every entry of α(t) belongs to {±∇sL}ds=1874

and �∇L�2 ≤ L1. The third equality splits the summation into875

two groups, where the first and second group only includes the876

index that corresponds to the positive and negative entries of877

the projected gradient, respectively, i.e, S+ = {s+|α̃(t)
s+ > 0}878

and S− = {s−|α̃(t)
s− ≤ 0}. The cardinality of these two groups879

are equal such that |S+| = |S−| = d. Then, in the third880

inequality, we exploits the following relation, i.e.,881 �
s−∈S− exp

�
−

�
�
�α̃

(t)
s−+2L1

�
�
�

λ



α̃

(t)
s−

�2d
s=1 exp

�
−

�
�
�α̃

(t)
s +2L1

�
�
�

λ


 ≤ 0 , (38)882

since α̃
(t)
s− ≤ 0 and its coefficient is positive. The last883

inequality is derived as follows, i.e.,884

�
s+∈S+

exp

�
−

�
�
�α̃

(t)
s++2L1

�
�
�

λ

�

�2d
s=1 exp

�
−

�
�
�α̃

(t)
s +2 L1

�
�
�

λ

� α̃
(t)

s+885

=

�
s+∈S+ exp

�−
��α̃(t)

s++2L1

��
λ

�
α̃

(t)

s+�
s+∈S+ exp

�−
��α̃(t)

s++2L1

��
λ

�
+
�

s−∈S− exp
�−

��α̃(t)
s−+2L1

��
λ

�886

≤
�

s+∈S+

exp

�
−

�
�
�α̃

(t)
s++2L1

�
�
�

λ

�

�
s−∈S− exp

�
−

�
�
�α̃

(t)
s−+2L1

�
�
�

λ

� α̃
(t)

s+887

=
�

s+∈S+

1

�
s−∈S− exp

� �
�
�α̃

(t)
s++2L1

�
�
�−

�
�
�α̃

(t)
s−+2L1

�
�
�

λ

� α̃
(t)

s+888

≤
�

s+∈S+

α̃
(t)

s+�
s−∈S−

α̃
(t)
s+
λ

889

= λ, (39)890

where the first inequality uses 1
a+b ≤ 1

a when a, b > 0, and891

the last inequality utilizes the facts ex ≥ 1 + x and892

L1 ≥ −α
(t)
s− ≥ 0, which leads to 893

exp(

�
�
�α̃

(t)
s++2 L1

�
�
�−

�
�
�α̃

(t)
s−+2 L1

�
�
�

λ ) ≥ 1+

�
�
�α̃

(t)
s++2 L1

�
�
�−

�
�
�α̃

(t)
s−+2 L1

�
�
�

λ ≥ 894

α̃
(t)
s++2 L1−(α̃

(t)
s−+2 L1)

λ ≥ α̃
(t)
s+

λ . 895

The result of Eqn. (37) indicates that by choosing ϑ = 896

4ς
μtCf

+ 2L1+λ
μtCf

, the output of Alg. 4 satisfies Eqn. (11). 897

Therefore, with success probability 1 − o(1), Proposition 1 898

yields 899

RL ≤ 2Cf

T + 2
(1 +

4ς
μtCf

+
2L1

μtCf
+

2λ
μtCf

) . (40) 900

By replacing the parameter λ with its explicit form given in 901

Line 6 of Alg. 4, the utility bound follows 902

RL ≤ 2Cf

T + 2
(1 +

4ς
μtCf

+
2L1

μtCf
+

16
�

2T ln(1/δ)
μtCf �N

) 903

=
2Cf

T + 2
+ 4ς + 2L1 +

16
�

2T ln(1/δ)
�N

. (41) 904

The tight upper bound of RL can be achieved by setting T = 905

C
2/3
f (N�)2/3

ln1/3(1/δ)
, i.e., 906

RL ≤ Õ
�

C
1/3
f

N2/3�2/3
+ ς + L1

�
. (42) 907

The runtime complexity. We first quantify the required run- 908

time cost at the t-th iteration, and then generalize to the entire 909

T iterations. Recall Alg. 4. At the t-th iteration, the runtime 910

cost is dominated by the implementation of the weighted 911

sampling subroutineW(α(t))) (Line 4). In particular, the state 912��W(α(t)))
�

for all t ∈ [T ] requires Õ(T 2
√
N/ς) runtime, 913

as proved in Lemma 4. Given access to
��W(α(t)))

�
, when 914

L1/λ ≥ ln(1/ς), the probability that we always see ‘1’ during 915

whole M observations yields, 916�
1− e− |α̃(t)

s +2L1|
λ


M

917

<
�
1− e− 4

ln(1/ς)

�M

= (1− ς4)M ≤ e−4Mς4
, (43) 918

where the first inequality employs α̃(t)
s + 2L1 < 4L1, and 919

the second inequality employs 1 − x ≤ e−x. Let the rightest 920

term in the above equation is upper bounded by b, we obtain 921

e−4Mς4 ≤ b⇒M ≥ 1
4ς4

ln
1
b
. (44) 922

This result indicates that, when M is larger than a certain 923

constant, which is inversely proportional to ς , with probability 924

1 − o(1), we can always observe the status ‘0’ at least once. 925

Consequently, the runtime complexity to accomplish the t-th 926

iteration is Õ(T 2
√
N/ς). 927

By leveraging the runtime to complete each iteration and 928

the result of Eqn. (42) that the optimal iterations follows 929

T =
C

2/3
f (N�)2/3

ln1/3(1/δ)
, we conclude that the runtime complexity 930

of Alg. 4 is 931

Õ(T · T 2
√
N/ς) = Õ

�
C2

fN
5/2�2

ς

�
. (45) 932

� 933
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Fig. 2. The simulation results. The label ‘Baseline’ and ‘CDP’ corresponds to the non-private Lasso in Alg. 1 and the proposal [15]. The
left panel and the right panel separately illustrate the reconstruction error for the datasets D(1) and D(2).

Theorem 5 allows us to infer all results presented in Table I.934

Specifically, in conjunction with Lemma 3 and Theorem 5,935

an immediate observation is that the QDP Lasso is faster than936

the optimal classical non-private Lasso when d > O(N5/2).937

Moreover, combining Lemma 2 with Theorem 5, the QDP938

Lasso could be even faster than the optimal quantum non-939

private Lasso when N > O(N5). These results separate940

quantum DP learning with its classical counterparts, where the941

implementation of classical private Lasso estimators generally942

require much more runtime than non-private cases. We note943

that in the quantum domain, the DP requirement separates944

the QDP Lasso with the quantum non-private Lasso to be945

two different learning problems. The former concerns finding946

a solution with the DP property and a good utility bound,947

while the latter pursues the optimal solution in Eqn. (1).948

These different aims enable that the proposed QDP Lasso may949

achieve a lower runtime complexity than that of the quantum950

non-private Lasso. Next, the utility bound of the QDP Lasso is951

near-optimal, since the study [15] has proven that the optimal952

utility of DP Lasso is Ω(1/(N logN)2/3). Last, achieved near-953

optimal utility bound and runtime speedups indicate that the954

proposed QDP Lasso meets the two requirements of QDP955

learning.956

Remark 1: We remark that the number of iterations of T in957

Theorem 5 is a positive integer. In other words, when � is small958

and results in T < 1, we should keep T = 1. In this case,959

the runtime complexity of the proposed QDP Lasso estimator960

is Õ(
√
N/ς) and its corresponding utility bound is RL ≤961

Õ(2Cf +ς+ 1
�N ) (see proof of Theorem 5 for details). We next962

explain the examination procedure in Line 3-5 of Alg. 4 in963

the QDP Lasso. This step aims to ensure the legality of the964

privacy mechanism. Specifically, when L1/λ ≥ ln(1/ς), the965

probability to sample the index s for all s ∈ [2d] will be966

near to zero, which renders the sampling process in Line 8 of967

Alg. 4 to be ill-posed. Furthermore, when L1/λ ≥ ln(1/ς),968

the error term ς caused by the state preparation oracle will969

heavily affect the performance of the quantum private Lasso.970

We further address the importance of examining the degree971

of the required privacy, driven by the distinguished runtime972

complexity between quantum private and non-private Lasso.973

Recall the conclusions of Theorem 3 and Theorem 5. When974

the privacy budget � is sufficiently small, the runtime cost for 975

quantum private Lasso is Õ(N5/2�2/ς), while a large privacy 976

budget � that is close to the non-private setting results in 977

the Õ(
√
Nd) runtime. Without the examination in Line 3-5 978

of Alg. 4, it is difficult to explain when the runtime of 979

quantum Lasso should depend on the feature dimension d, 980

since the privacy budget can be continuously degraded from 981

the absolutely private case to the non-private case. 982

We last emphasize why the runtime of the quantum DP 983

Lasso may be less than that of the quantum non-private Lasso 984

when both of them employ the input/output quantum model 985

formulated in Dentition 1. The central reason is that these 986

two models focus on different aims, as stated in Introduction. 987

Namely, quantum DP Lasso pursues both a lower runtime over 988

its classical counterparts and a near-optimal utility bound for 989

the specified differential privacy parameters, while quantum 990

non-private machine learning algorithms only pursue low 991

runtime when �θ(T ) − θ∗� ≤ ς . These different aims lead 992

them to be two different learning problems. To elucidate 993

how this separation allows QDP Lasso to advance quantum 994

non-private Lasso, let us consider an extreme setting where 995

the second requirement of QDP (i.e., attain a near-optimal 996

utility bound) is discarded. In this scenario, the extreme QDP 997

Lasso targets to output all possible solutions θ with non-zero 998

probability. This can be efficiently achieved by outputting the 999

index k(t) randomly sampled from a uniform quantum state 1000

1√
2d

�2d
s=1 |s� for ∀t ∈ [T ], which takes Õ(1) runtime. Instead, 1001

the goal of quantum non-private Lasso is to find the optimal 1002

result θ∗ in Eqn. (1). Therefore, according to Theorem 3, for 1003

the same T , the runtime complexity of this extreme QDP Lasso 1004

is lower than the quantum non-private Lasso, i.e., Õ(T ) versus 1005

Õ(T 3
√
Nd/ς). 1006

VI. NUMERICAL SIMULATIONS 1007

In this section, we validate the performance of the QDP 1008

Lasso using a synthetic dataset. We choose the reconstruction 1009

error, i.e., �θp − θ∗�2/�θ�2 that θp is the output of the 1010

employed private Lasso estimator, as the metric to evaluate the 1011

utility guarantee. To collect statistical information, all settings 1012

are repeated with 10 times and then compute the average 1013
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reconstruction error. The construction rule of the synthetic1014

dataset X ∈ Rn×d is as follows. Each entry of X is drawn1015

i.i.d. from a uniform distribution U(−1, 1), and the s∗ non-1016

zero entries of the optimal parameters θ∗ is drawn i.i.d.1017

from U(0, 1). Based on this construction rule, we build two1018

synthetic datasets D(1) = (X(1),y(1)) ∈ (R400×1000,R400)1019

and D(2) = (X(2),y(2)) ∈ (R1000×5000,R1000) with s∗ =1020

10 to evaluate performance of the QDP Lasso. The value of1021

the privacy budget � is ranging from 0.1 to 1.1022

Figure 2 illustrates the simulation results. The reconstruction1023

error of the classical DP Lasso with the Laplacian privacy1024

mechanism [15] and the QDP Lasso is continuously decreasing1025

with respect to the increased privacy budget � for both D(1)
1026

and D(2). This empirical results accord with the theoretical1027

results as shown in Theorem 5.1028

VII. APPLICATIONS1029

A recent study indicates that quantum system noise1030

enhances the threshold to attain quantum advantages [56].1031

Concretely, quadratic speedups will not enable quantum1032

advantages on early generations of fault-tolerant devices and1033

quartic speedups look significantly more practical. This result1034

denies the possibility to implement quantum kernel classi-1035

fier [20] or quantum kernel perceptron [2] on a modest fault-1036

tolerant quantum computer to attain quantum advantages.1037

Moreover, many quantum algorithms claiming exponential1038

speedups are dequantized by quantum-inspired classical algo-1039

rithms [21]. The proposed QDP Lasso, whose runtime is1040

independent with feature dimension, paves a new way to attain1041

advantages on early fault-tolerant quantum machines.1042

VIII. CONCLUSION1043

In this paper, we propose a QDP Lasso estimator to accom-1044

plish private sparse regression learning tasks. To the best1045

of our knowledge, this is the first quantum private learning1046

algorithm with runtime advantages and near-optimal utility.1047

Moreover, we exhibit that the runtime of the QDP Lasso can1048

be even lower than the optimal quantum non-private Lasso.1049

The achieved results open an avenue to apply NISQ devices1050

to attain runtime speedups. One of the interesting directions1051

for the future study is to design other QDP algorithms that1052

can provide both computational efficiency and utility improve-1053

ments.1054

APPENDIX1055

The organization of the Appendix is as follows. Specifically,1056

in Subsection A, we first demonstrate that the oracle Oα̃(t) ,1057

which prepares a quantum state that approximates the target1058

state Oα(t) |s� |0� = |s�
���α(t)

s

	
with an additive error, can1059

be effectively implemented. We then analyze the required1060

runtime complexity to implement Oα̃(t) in Subsection B. Last,1061

we present the proof of Lemma 5 and Lemma 6, which are1062

employed to support the runtime analysis of implementing1063

Oα̃(t) , in Subsection C and Subsection D, respectively.1064

A. Implementation of the State Preparation Oracle 1065

The state preparation oracle Oα(t) in Alg. 2 aims to prepare 1066

the quantum state Oα(t) |s� |0� = |s�
���α(t)

s

	
, where 1067

α(t)
s :=�ês,∇L(θ(t))� 1068

=∇sL(θ(t)) 1069

=− 1
N

n�
i=1

Xis

�
yi − �Xi,θ

(t)�
�
, (46) 1070

for 1 < s ≤ d, and α
(t)
s = −α

(t)
s−d for d < s ≤ 2d. The above 1071

equation implies that the oracle Oα(t) can be constructed with 1072

an extra O(1) runtime complexity if we have access to 1073

Oα̂(t) |s� |0� = |s�
���α(t)

s

	
∀s ∈ [d] . (47) 1074

To be concrete, when the query |s� satisfies d < s ≤ 2d, 1075

we first query Oα̂(t) by the basis |s�� with s� = s − d 1076

to obtain |s��
���α(t)

s�

	
. We then flip the qubit that records 1077

the sign information of αs� to obtain |s��
���−α

(t)
s�

	
. Based 1078

on this fact, the implementation of the oracle Oα̃(t) that 1079

approximates to Oα(t) amounts to preparing an oracle that 1080

approximates to Oα̂(t) . With a slight abuse of notation, in the 1081

following subsections, we use Oα̃(t) to specify the oracle that 1082

approximates to Oα̂(t) . For elucidating, Table II summarizes 1083

the definitions and intuitions of quantum oracles explored in 1084

this section. 1085

1) Implementation of Oα̂(t) : The implementation of the 1086

oracle Oα̂(t) , which leverages the reformulated expression of 1087

α(t) in Eqn. (46), is summarized in Algorithm 5. The detailed 1088

explanation of each step is as follows. 1089

The inputs of Alg. 5 are two oracles, i.e., OX and Oy in 1090

Definition 1, and the classical input θ(t) for t ∈ [T ]. From Line 1091

2 to Line 3 of Alg. 5, we employ Hadamard transformations 1092

and an oracle Oz , i.e., 1093

Oz :
1√
N

N�
i=1

|i�r1
→ 1√

N

N�
i=1

|i�r1

���z(t)
i

	
r2

, (48) 1094

to load the vector z(t), where z
(t)
i := yi − �Xi,θ

(t)� in 1095

Eqn. (46) for any i ∈ [N ], into the quantum register r2. The 1096

construction of Oz requires Õ(T 2) runtime, whose proof is 1097

given in Subsection C. 1098

Lemma 5: Given access to oracles OX and Oy in Defini- 1099

tion 1, and the classical input θ(t), the oracle Oz in Eqn. (48) 1100

can be implemented in Õ(T 2) runtime. 1101

In Line 5 of Alg. 5, we aim to compute z
(t)
i Xis and 1102

record the result in the quantum register r4. Specifically, 1103

we apply the oracle Uinner to the quantum registers r1 and r4 1104

to compute α
(t)
s =

�
i z

(t)
i Xis. The implementation of Uinner 1105

is summarized by the following lemma. 1106

Lemma 6: Given the access to the oracle OX and Oz, 1107

there exists a quantum operation Uinner that estimates the inner 1108

product �X�
s , z

(t)�, ∀s ∈ [d] within the error threshold ς and 1109

outputs the state formulated in Line 5 of Alg. 5 with success 1110

probability 1 − 2b. Suppose that the runtime to implement 1111

Oz is Tz, the runtime complexity to implement Uinner is 1112

O(Tz

√
N log(1/b)/ς). 1113
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TABLE II

THE SUMMARY OF QUANTUM ORACLES. THE INTUITION AND DEFINITION OF QUANTUM ORACLES EXPLOITED IN ALGS. 1-5 ARE ILLUSTRATED.

THE DIMENSIONALITY OF QUANTUM STATE DEPENDS ON THE PRECISION TO STORE A REAL NUMBER. HERE WE SUPPOSE THAT ALL REAL

NUMBERS (I.E., Xij , yi , α̂
(t)
s , z

(t)
i , AND θ

(t)
j ) ARE STORED BY THE SINGLE-PRECISION

FLOATING-POINT FORMAT, WHICH REQUESTS 32 QUBITS

Algorithm 5 Quantum State Preparation Oracle Oα̂(t)

1: Input: Input oracles OX, Oy , and the classical input θ(t).
2: Initialize |s�r0

|0�r1
for quantum registers r0 and r1, and

apply Hadamard transformation to the r1 register

|s�r0
|0�r1

Hadamard−−−−−−−→
transformation

|s�r0

�
1√
N

N�
i=1

|i�r1

�
;

3: Introduce the quantum register r2 and apply oracle Oz

formulated in Lemma 5 to the register r1 and r2, i.e., let
z

(t)
i = yi − �Xi,θ

(t)�,
1√
N
|s�r0

N�
i=1

|i�r1
→ 1√

N
|s�r0

N�
i=1

|i�r1

���z(t)
i

	
r2

;

4: Introduce the quantum register r3 and employ OX to
generate

1√
N
|s�r0

N�
i=1

|i�r1

���z(t)
i

	
r2

|Xis�r3
;

5: Introduce the quantum register r4, and apply the quantum
operation Uinner as formulated in Lemma 6 to the quantum
registers r2 and r3 to obtain the state

|s�r0

���α(t)
s

	
r4

;

6: Output: Output |s�
���α(t)

s

	
;

The proof of Lemma 6 is given in Subsection D.1114

B. Runtime Complexity1115

Proof of Lemma 1: The runtime complexity of the imple-1116

mentation of Oα̂(t) as presented in Alg. 5 can be effectively1117

obtained by combining the results of Lemma 5, 6, and 7.1118

Note that, the error and uncertainty is introduced by Line 5 of1119

Alg. 5. Due to the result of Lemma 6, the target state in Line 51120

of Alg. 5 can only be approximately prepared in error ς with1121

success probability 1 − 2b. Therefore, the oracle constructed1122

in Alg. 5 refers to Oα̃(t) instead of Oα(t) , which prepares the 1123

state |s�
���α̃(t)

s

	
that satisfies |α(t)

s −α̃(t)
s | ≤ ς for any s ∈ [2d], 1124

with success probability 1− 2b. 1125

We now analyze the required runtime complexity Line by 1126

Line. The computation cost of Line 2 is Õ(1), since only 1127

Hadamard transformation is employed. In Line 3, we use the 1128

oracle Oz with the runtime complexity Õ(T 2), supported by 1129

Lemma 5. In Line 4, we call the oracle OX , which takes 1130

O(1) runtime. Therefore, the runtime complexity from Line 2 1131

to Line 4 is Õ(T 2). 1132

In Line 5, we employ Uinner to prepare the target state. Fol- 1133

lowing the conclusion of Lemma 5, the oracle Oz corresponds 1134

to the unitary transformations used in Line 2-4, which requires 1135

Õ(T 2) runtime complexity to implement it. Then, supported 1136

by Lemma 6, with success probability 1−2b, the oracle Uinner 1137

prepares the target state with error ς in runtime Õ(T 2
√
N/ς). 1138

Overall, the runtime complexity of Alg. 5 is Õ(T 2
√
N/ς), 1139

which is dominated by Line 5. Since the oracle Oα(t) can 1140

be efficiently implemented by using Oα̂(t) with an extra O(1) 1141

runtime as explained in Appendix A, the runtime complexity to 1142

implement the oracle Oα̃(t) |s� |0� = |s�
���α̃(t)

s

	
for ∀s ∈ [2d] 1143

is also Õ(T 2
√
N/ς). � 1144

C. Proof of Lemma 5 1145

The proof of Lemma 5, or equivalently, the implementation 1146

of oracle Oz, uses the following lemma. 1147

Lemma 7: Denote the quantum oracle that prepares a state 1148

corresponding to θ(t) as Oθ(t) , i.e., 1149

Oθ(t) : |0� → 1√
d

d�
j=1

|j�
���θ(t)

j

	
. (49) 1150

Given the classical input θ(t) ∈ R
d with t ∈ [T ], the oracle 1151

Oθ(t) formulated in Eqn. (49) can be constructed in Õ(T ) 1152

runtime complexity. 1153

Proof of Lemma 7: Recall the updating rule of θ(t)
1154

described in Frank-Wolfe algorithm. The number of non- 1155

zero entries of θ(t) at the t step is no greater than t. 1156

The sparsity of θ(t) implies that the oracle Oθ(t) can be 1157

efficiently implemented by using single-qubit and two-qubit 1158
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gates with Õ(T ) complexity. The implementation of Oθ(t) is1159

as follows, i.e.,1160

|0� O(log d) H gates−−−−−−−−−−→ 1√
d

d�
j=1

|j� |0�1161

Õ(T ) multi-control gates−−−−−−−−−−−−−→ 1√
d

d�
j=1

|j�
���θ(t)

j

	
. (50)1162

For each entry θ
(t)
j with a constant precision, we need O(1)1163

multi-control (log d)-qubit gates to encode it into the state1164

|j�
���θ(t)

j

	
. Since the multi-control (log d)-qubit gate can be1165

implemented by O(poly(log d)) Toffoli gates and each Tof-1166

foli gate can be implemented by constant single-qubit and1167

two-qubit gates [57], the required number of single-qubit and1168

two-qubit gates to implement the multi-control (log d)-qubit1169

gate is O(poly(log d)). The sparsity of θ(t) implies that the1170

total number of multi-control (log d)-qubit gates is O(T ).1171

Alternatively, the required number of single-qubit and two-1172

qubit gates to build Oθ(t) is O(poly(log d)T ) = Õ(T ). �1173

Algorithm 6 Quantum Oracle Oz

1: Input: Oracles OX, Oy , and Oθ(t) .
2: Define the set J as the collection of indexes that corre-

sponds to the non-zero entries of θ(t);
3: Prepare the uniform superposition state 1√

N

�N
i=1 |i�;

4: Introduce quantum registers r1, r2, and r3, and separately
apply Oy , OX, and Oθ(t) to obtain

1�
N |J |

N�
i=1

|i� |yi�r1

�
j∈J

|j� |Xij�r2

���θ(t)
j

	
r3

;

5: Apply quantum multiplier [54] to r2 and r3, store the result
in quantum register r4, and then uncompute and delete
r2 and r3, i.e.,

1�
N |J |

N�
i=1

|i� |yi�r1

�
j∈J

|j�
���Xijθ

(t)
j

	
r4

;

6: Apply the oracle Ov (see Eqn. (51)) to the register r4 and
record v

(t)
i =

�
j Xijθ

(t)
j in quantum register r5, i.e.,

1√
N |J |

N�
i=1

|i� |yi�r1

���v(t)
i

	
r5

;

7: Output: Apply quantum subtractor [54] to record z
(t)
i

in the quantum register r6 conditionally controlled by
|i�, and then uncompute and delete r1 and r5, i.e.,

1√
N

�N
i=1 |i�

���z(t)
i

	
r6

.

We now employ the result of Lemma 7 to prove Lemma 5.1174

Proof of Lemma 5: We illustrate the implementation of1175

the oracle Oz in Alg. 6 and analyze its runtime complexity1176

Line by Line. In particular, the runtime complexity of Line 31177

is Õ(1) by applying Hadamard transformation. The runtime1178

complexity of Line 4 is Õ(T ), since the runtime complexity1179

to implement OX and Oy is O(1) and the runtime complexity 1180

to implement Oθ(t) is Õ(T ). In Line 5 and Line 7, the runtime 1181

complexity to conduct the multiplication and subtraction is 1182

O(1), supported by [54]. 1183

In Line 6, the oracle Ov is employed to compute v(t) and 1184

record the result in the quantum register r5. Note that, due to 1185

the sparsity of θ(t), the result of v
(t)
i only relates to non-zero 1186

entries of θ(t). Motivated by such a fact, instead of encoding 1187

in total d entries, we only encode the entries whose indexes 1188

belong to the set J into quantum states. The implementation of 1189

Ov exploits the property that the cardinality |J | is no greater 1190

than T with T ∼ O(log(N)). In particular, given the quantum 1191

state formulated in Line 5 of Alg. 6, the oracle Ov is composed 1192

of the following unitary transformations, i.e., 1193

1�
N |J |

N�
i=1

|i� |yi�
�
j∈J

|j�
���Xijθ

(t)
j

	
r4

1194

→ 1�
N |J |

N�
i=1

|i� |yi�
�
j∈J

|j�
���Xijθ

(t)
j

	
r4

|0�q2,...,q|J| 1195

→ 1�
N |J |

N�
i=1

|i� |yi�
�
j∈J

|j�
���Xijθ

(t)
j

	
r4

���Xi,j+1θ
(t)
j+1

	
q2

1196

|· · · �q3,...,q|J|−1

���Xi,j−1θ
(t)
j−1

	
q|J|

1197

→ 1�
N |J |

N�
i=1

|i� |yi�
�
j∈J

|j�
���Xijθ

(t)
j

	
r4

���Xi,j+1θ
(t)
j+1

	
q2

1198

|· · · �q3,...,q|J|−1

���Xi,j−1θ
(t)
j−1

	
q|J|

|v1�r5
1199

→ 1�
N |J |

N�
i=1

|i� |yi�
���v(t)

i

	
r5

. (51) 1200

The first arrow in Eqn. (51) is introducing |J | − 1 quantum 1201

registers. The second arrow indicates that, the result Xijθ
(t)
j 1202

for the different j is recorded in |J | − 1 quantum regis- 1203

ters separately, by repeatedly calling Line 4-5 of Alg. 6 to 1204

{q2, . . . , q|J|} in total |J | − 1 queries. The last arrow shows 1205

that we uncompute and delete all quantum registers |j�, r4, 1206

and {qi}|J|
i=2. 1207

An observation of Eqn. (51) is that the runtime complexity 1208

to implement Ov is dominated by the second arrow. Since 1209

the runtime complexity of Line 4-5 is Õ(T ), the runtime 1210

complexity to implement Ov is O((|J | − 1)T ) ≤ Õ(T 2). 1211

Overall, the runtime complexity of Alg. 6 is Õ(T 2), which 1212

is dominated by implementing Ov . � 1213

D. Proof of Lemma 6 1214

Lemma 6 is a direct consequence of the following propo- 1215

sition [58], which computes the inner product of two vectors. 1216

Proposition 3 (Modified from Lemma A.10, [58]): 1217

Suppose that we have access to two quantum oracles 1218

OX� and Oz with X� ∈ Rd×N and z ∈ RN , 1219

OX� : |i� |0� → 1√
N
|i�

N�
j=1

|j� ��X�
ij

�
(52) 1220

Oz : |0� → 1√
N

N�
j=1

|j� |zj� . (53) 1221
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Denote the runtime complexity to implement OX� and Oz1222

is at most O(Tmax), and �Xi∗� = maxi �Xi�, there exists a1223

quantum algorithm that with the probability at least 1 − 2b,1224

outputs the state1225

|i�
����X�

i , z�
	
, (54)1226

where |�X�
i , z� − �X�

i , z�| ≤ ς in O(Tmax	Xi∗	 log(1/b)
ς )1227

runtime.1228

Proof of Lemma 6: The implementation of Uinner directly1229

employs the result of Proposition 3. Recall that, given the state1230

1√
N
|s�

N�
i=1

|i�r1

���z(t)
i

	
r2

|Xis�r3
, (55)1231

the operation Uinner aims to estimate the inner production1232

�X�
s , z

(t)� for any s ∈ [2d].1233

Following the above observation, we apply Proposition 31234

to the quantum register r2 and r3 to estimate �X�
s , z

(t)� in1235

superposition. The result is stored in the quantum register r4.1236

We then uncompute the quantum registers r2 and r3, and1237

output the obtained state.1238

With success probability 1−2b, the quantum operation Uinner1239

prepares the estimated state 1√
2d

�
s |s�

���α(t)
s

	
r4

with error ς1240

in runtime1241

O

�
Tz

√
N log(1/b)
ς

�
,1242

since Tmax = Tz and �Xi∗� ≤
√
N with the assumption1243

�X�∞ ≤ 1. �1244

We remark that the core ingredients of Proposition 3 are the1245

amplitude amplification and phase estimation [59], [60]. Due1246

to a huge number of control qubits gates used in quantum1247

phase estimation, the computation-resource requirement may1248

be unfriendly to the near-term quantum devices. Toward this1249

issue, it is possible to attempt to employ a more advanced1250

subroutine instead of the original one such as [61].1251
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