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Abstract— The eligibility of various advanced quantum algo-
rithms will be questioned if they can not guarantee privacy.
To fill this knowledge gap, here we devise an efficient quantum
differentially private (QDP) Lasso estimator to solve sparse
regression tasks. Concretely, given N d-dimensional data points
with N <« d, we first prove that the optimal classical
and quantum non-private Lasso requires (N + d) and
QN + \/E) runtime, respectively. We next prove that the
runtime cost of QDP Lasso is dimension independent, i.e.,
O(N®°/2), which implies that the QDP Lasso can be faster
than both the optimal classical and quantum non-private Lasso.
Last, we exhibit that the QDP Lasso attains a near-optimal
utility bound O (N -2/ 3) with privacy guarantees and discuss the
chance to realize it on near-term quantum chips with advantages.

Index Terms— Differential privacy, quantum machine learning,
quantum computing.

I. INTRODUCTION

UANTUM machine learning (QML), as a burgeoning

field in quantum computation, aims to facilitate machine
learning tasks with quantum advantages [1]. Numerous the-
oretical studies have shown that QML algorithms can dra-
matically reduce the runtime complexity over their classical
counterparts, e.g., quantum perceptron [2]. Meanwhile, exper-
imental studies have employed near-term quantum devices to
accomplish toy-model learning tasks [3]-[5]. Theoretical and
experimental results suggest that we are stepping into a new
era, in which near-term quantum processors [6], [7] can be
employed to benefit practical learning tasks.

Despite the advance of QML algorithms, the legality of
the proposed quantum learning algorithms in many data-
sensitive applications will be questioned if they cannot guar-
antee privacy, caused by legal, financial, or moral reasons.
Therefore, to broaden the applicability of QML, it is essential
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to design quantum private learning algorithms, which can train
accurate learning models without exposing precise information
of individual training examples such as medical records for
patients. However, how to design such quantum algorithms
with runtime advantages remains unexplored.

In the classical scenario, differential privacy (DP), which
quantitively formalizes a rigorous and standard notion of
‘privacy’, provides one of the most prominent solutions
towards private learning [8]. During the past decade, extensive
DP learning algorithms have been proposed under varied prac-
tical settings [9]-[13]. Motivated by the success of DP learning
and the limited results of quantum private learning, it is
highly desired to devise quantum differentially private (QDP)
learning algorithms to broaden applications of QML in the
data-sensitive areas.

A fundamental topic in private learning is to devise DP
sparse regression learning models [12], [14]. Let D =
{X;,y;}¥, be the given dataset, where X; € R? and
y, € R are the i-th feature vector and the corresponding
target, respectively. Equivalently, we write D = {X € RV*d,
y € RN}, In all practical scenarios, N < d. Suppose that
D satisfies y = X0* + w, where 6% € R? with ||[8*|o = s
(i.e., s < N) is the underlying sparse parameter to be esti-
mated, and w € R? is the noise vector. The goal of DP sparse
regression is to recover 8" while satisfying differential privacy.
The mainstream learning model to tackle this task is the DP
Lasso estimator [15], which estimates 6" by minimizing the
loss function £(0), i.e.,

: _ ! 2
argmin £(6) := 5 [X0 — 2, M
where the constraint set C = {@ € R? : ||@]|; < 1} is an
¢1 norm ball that guarantees the sparsity of the estimated result
and the differential privacy should be preserved with respect
to any change of the individual pair (X;,vy;). Following the
conventions [12], [14]-[16], we set [; = 1, and suppose that
[X[loo <1 and |y|loc < 1 throughout the paper for ease of
comparison. Note that our results can be easily generalized to
li € Ry, || X]|oo < c1, and ||Y|loo < c2, Where ¢1,c2 € Ry
are two positive constants.

An important utility measure of the private Lasso is the
expected excess risk R, i.e.,

Re = B(£(6)) — in £(9), @

where the expectation is taken over the internal randomness
of the algorithm for generating 0. For example, the studies
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TABLE I

THE SUMMARY OF THE RUNTIME COST AND UTILITY BOUND OF VARIOUS LASSO ESTIMATORS ON THE INPUT SIZE N, THE FEATURE DIMENSION
d, AND THE PRIVACY BUDGET e. NOTE THAT THE LABEL ‘OPT-C’, ‘CDP’, ‘OPT-Q’, ‘QNP’, AND ‘QDP’ REFERS TO THE OPTIMAL CLASSICAL
NON-PRIVATE, BEST-KNOWN CLASSICAL DP, OPTIMAL QUANTUM NON-PRIVATE, THE PROPOSED QUANTUM NON-PRIVATE, AND QDP
LASSO ESTIMATORS, RESPECTIVELY. FOR THE NON-PRIVATE LASSO, THE ESTIMATION ERROR ¢ IS SET AS A CONSTANT

OPT-C CDP OPT-Q QNP QDP
Runtime | Q(N +d) | O(Nd?) QN +Vd) | O/Nd) | O(N5/2e2)
- = I = -
Vil | — 0 () | — - 0 (aers)

[14], [15] proposed private Lasso algorithms with a utility
bound O(1/N?/3). Ref. [17] presented a private algorithm
with an O(1/N) utility bound, under the strong convexity and
mutual incoherence assumptions. All of these algorithms run
in polynomial time in N and d.

Different from the classical scenario, how to design QDP
Lasso remains unknown because of the disparate priorities
of QML and DP. Specifically, QML algorithms pursue low
runtime overhead, while DP learning concerns a good utility.
Therefore, the proposed QDP algorithm should accommodate
the following two requirements from each side:

1) a lower runtime over its classical counterparts;

2) a near-optimal utility bound.

Contributions: The main contribution in this study is devis-
ing a quantum differentially private Lasso estimator to tackle
the private sparse regression learning tasks in Eqn. (1) with
a lower runtime complexity than both optimal classical and
quantum Lasso estimators and a near-optimal utility bound.
To the best of our knowledge, this is the first quantum private
learning algorithm that can solve practical learning problems
with provable advantages.

Quantum input/output models. To make a fair comparison,
the quantum input/output models used in our study are
restricted to have an almost identical setting to the classical
case [18], except that we allow coherent queries to the entries
of given inputs. The formal definition of quantum input models
used in this study is as follows.

Definition 1 (Input Models): For a given dataset D =
{X € RV*d y € RN}, the classical (quantum) input oracles
Ox and O, can recover the entry X,;; and the entry y, with
i€ [N]and j € [d] in O(1) time (in superposition).

Note that ‘in superposition’ means that coherent queries are
permitted in the quantum input model, i.e., the algorithm is
allowed to query many locations at the same time [19]. Many
quantum algorithms have exploited this condition to gain quan-
tum advantages, e.g., Ref. [20] employed the above quantum
input/out model to design a sublinear runtime quantum kernel
classifier.

Let us further emphasize the importance of the employed
quantum input model in Definition 1. As questioned by [20],
using too powerful quantum input models may render the
achieved quantum speedup inconclusive. Namely, given a
strong classical input model, quantum-inspired classical algo-
rithms can collapse many QML algorithms claiming exponen-
tial speedups [21].

Our first theoretical result is analyzing runtime and utility
bound of the proposed QDP Lasso estimator.

Theorem 1 (Informal, See Theorems 4 and 5 for the Formal
Description): Given the quantum input models Ox and Oy in

Definition 1, the proposed QDP Lasso is (¢, d)-differentially
private, and outputs 0" after T ~ O((Ne)*/?) iterations with
overall O(N®/2¢?) runtime and the utility bound

R =0 ((Ne)*2/3) :

To figure out whether the proposed QDP Lasso can attain
a runtime speedup, we further explore runtime cost of the
optimal classical and quantum non-private Lasso estimators.

Theorem 2 (Modified From Lemma 3 and Corollary 2):
Given the input model formulated in Definition 1, the runtime
complexity of the classical and quantum non-private Lasso
estimators is lower bounded by Q(N +d) and Q(v/N ++/d),
respectively.

Theorems 1 and 2 provide the following three key insights.

o The runtime complexity of QDP Lasso is dimension inde-
pendent, while the runtime for both the optimal classical
and quantum non-private Lasso estimators depends on the
feature dimension d. In other words, QDP Lasso yields
a runtime speedup when d > O(N°/2) and d > O(N?),
respectively.

« Note that the non-private Lasso requires O(Nd?) run-
time [22] and assigning the DP property generally
involves extra operations. Hence, the best known DP
Lasso needs O(Nd?) runtime, where the QDP Lasso
outperforms it when d > O(N3/4).

o The utility bound of the proposed QDP Lasso is near-
optimal, since the optimal utility bound of sparse regres-
sion learning has proven to be Q(1/(N log N)?/?) [15].

We summarize the main conclusions in this work in Table I.

There are two main technical results that differentiate the
QDP Lasso with the classical DP Lasso [15]. The first one is
the quantum generalization of the Frank-Wolfe algorithm for
non-private Lasso [23], which will be employed as the back-
bone of the QDP Lasso estimator. We prove that the runtime
cost of the proposed algorithm is O(v/Nd), which achieves a
quadratic runtime speedup over the optimal classical Lasso in
terms of the feature dimension d. Moreover, we conduct error
analysis to confirm its stability (see Theorem 3 for details).

Our second key technical result is the devised privacy
mechanism, which ensures the QDP Lasso estimator to attain
privacy guarantee and achieve a runtime speedup over the
optimal quantum non-private Lasso. Note that this result con-
tradicts classical DP algorithms, since assigning DP property
to non-private algorithms generally requires extra operations.
In contrast with the classical scenario, a crucial observation in
the QDP Lasso is:

‘The probabilistic nature of quantum mechanics enables
quantum learning models to efficiently gain the DP property’.
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Such an observation indicates that the sampling-based input
models [18] may provide substantial runtime advantages for
classical DP learning algorithms.

II. RELATED WORK

Previous QML literature related to our work can be divided
into two groups. The first group is quantum regression algo-
rithms and the second group is quantum differential privacy.
Here we separately compare them with our work.

A. Quantum Regression Algorithms

There are a few proposals aiming to solve quantum regres-
sions tasks without the privacy requirement. A seminal work
is [24], which showed that the ordinary least squares fitting
problem can be solved with an exponential speedup given
the assumption that there exists a quantum random access
memory (QRAM) to encode classical input into quantum
states in logarithmic runtime [25], [26]. Under such an
assumption, the quantum linear systems algorithm [27] can
be employed to compute the closed-form expression for the
estimated solution with an exponential speedup. Following
this pipeline, the subsequent works further improve the run-
time complexity bound with respect to the polynomial terms
[28]-[30], e.g., rank and condition number, and tackle vari-
ants of the regression tasks, e.g., nonlinear regression and
ridge regression [31]. In contrast to solving the closed-form
expression, the study [32] tackles the ridge regression tasks
by using the gradient descent method, where the runtime
complexity achieves the exponential speedup at each iteration
under the QRAM assumption. We remark that the applicability
of these algorithms is highly questionable, since it is still an
open question about how to efficiently implement QRAM.
Moreover, recent quantum-inspired algorithms adopt the sim-
ilar assumption of QRAM and dequantize numerous quantum
algorithms with exponential speedups [21], [33], [34].

Several studies developed the hybrid quantum-classical
methods to solve regression tasks on near-term quantum
devices [35], [36]. Since there is no theoretical convergence
guarantee for these hybrid methods, they are incomparable
with our result.

B. Quantum Private Learning

Several studies have investigated the topic of quantum pri-
vate learning [37]-[41]. In particular, the main contribution of
the two studies [37], [40] is to utilize the result of differential
privacy to advance quantum tasks, i.e., shadow tomography
and defending adversarial attacking. The study [39] proposed
a quantum private perceptron, while the privacy metric used
in [39] follows the study [42], which is irrelevant to the notion
of differential privacy and is incomparable with our results.
The study [38] developed quantum privacy mechanisms and
analyzed their privacy guarantees. However, how to connect
QDP with learning algorithms is unexplored. Recently, the
study [43] explored quantum differential privacy from the
perspective of learning theory. The study [41] systematically
exploited the connection between differential privacy and
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algorithms to learn a quantum state. We emphasize that, unlike
the above studies, our work aims to develop a private learning
algorithm that achieves both the quantum advantage and the
provable utility guarantee. These two factors have not been
considered together before.

III. PRELIMINARIES

We unify some basic notation throughout the whole paper.
The set {1,2,...,n} is denoted as [n]. Given a matrix X €
RNV*d and a vector v € RY, the i-th row of X and the i-th
entry of v are represented by X; and w;, respectively. The
¢, norm of v (X) is denoted as ||v||, (||X]|,). The Frobenius
norm of X is defined as ||X||r = (301, Z;l:l X, ;%)M
The notation e; always refers to the i-th unit basis vector, e.g.,
for e; € R, e; = [1,0,0]. The identity matrix of size D x D
is denoted as Ip.

A. Convex Optimization

We introduce two basic definitions in convex optimization.
Refer to [44] for more details.

Definition 2 (L-Lipschitz): A function f is called
L-Lipschitz over a set C if for all u,w € C, we have
|f(u) = f(w)] < Lfu - wl> . 3)
If f(-) is L-Lipschitz, differentiable, and convex, then
V()2 <L . ©)
Definition 3 (Curvature Constant [45]): The curvature

constant Cy of a convex and differentiable function
f: R — R with respect to a compact domain C is

sup = (f(2)- (@)~ (2, Vi())),

Cy =
z=x+vy(s—x) Y

5)
where v € (0,1], ¢,s € C, and (-,-) denotes usual inner
product.

B. Quantum Computation

We present essential background of quantum computation,
i.e., quantum states, quantum oracles, and the complexity
measure. We refer to [19] for details.

Quantum mechanics works in the Hilbert space H with
‘H =~ C, where C represents the complex Euclidean space.
We use Dirac notation to denote quantum states. A pure
quantum state is defined by a vector |-) (named ‘ket’) with unit
length. Specifically, the state |a) € C? is |a) = Zle ae; =
Z?zl a;|i) with ), |a;|* = 1, where the computation basis
|i) stands for the unit basis vector e; € C?. The inner product
of two quantum states |a) and |b) is denoted by (a|b), where
(a| refers to the conjugate transpose of |a). We call a state
|a) is in superposition if the number of nonzero entries in
a is larger than one. Analogous to the ‘ket’ notation, density
operators can be used to describe more general quantum states.
Given a mixture of m quantum pure states |1;) € C? with
the probability p; and 221 p; = 1, the density operator p
presents the mixed state {p;, [¢;)}, as p = > ..*, pip; with
pi = |:) (Wi € C¥*4 and Tr(p) = 1.

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:45:41 UTC from IEEE Xplore. Restrictions apply.



5220

The basic element in quantum computation is the quantum
bit (qubit). A qubit is a two-dimensional quantum state, e.g.,
a qubit can be written as |a) = a1 |0) + a2 |1). Let |b) be
an another qubit. The quantum state represented by these two
qubits is formulated by the tensor product, i.e., |a) ® |b) as a
4-dimensional vector. Following conventions, we can also
write |a)®|b) as |a, b) or |a) |b). For clearness, we sometimes
denote |a) |b) as |a) 4 |b) 5, which means that the qubits |a) 4
(|b) p) is assigned in the quantum register A (B). There are two
typical quantum operations. The first one is quantum (logic)
gates that operates on a small number qubits. Any quantum
gate corresponds to a unitary transformation and can be stated
in the circuit model, e.g., an n-qubit quantum gate U with
U?"*2" satisfies UUT = Iyn. The second one is the quantum
measurement, which aims to extract quantum information such
as the computation result into the classical form. Given a
density operator p, the outcome m will be measured with
the probability p,, = Tr(K,,pK],) and the post-measurement
state will be K., oK}, /pm with 3, K/ K, = 1.

A quantum oracle O can be treated as a ‘black box’,
which encapsulates certain quantum operations and can be
used as the input to another algorithm. The quantum input
model Ox refers to a unitary transformation that allows us
to access the input data in superposition, i.e., denote G as
a set of indexes to be queried, we have Ox(]i,j)|0)) =
VIGT ' 1 eg li- ) |X;) for any i € [n] and j € [d). Note
that, as with classical computers, the quantum state |X;;)
records the binary string of X;;, i.e., 2 — |10). Similar rules
can be applied to O,. Finally, the runtime complexity of a
quantum algorithm is defined as the number of elementary
operations employed in the algorithm. We use O(-) to denote
the runtime complexity, or use O(-) that hides the poly-
logarithmic factors. We also employ the little o notation, i.e.,
f(n) =o(g(n)), to denote that f(n)/g(n) — 0.

C. Differential Privacy

We provide the definition of classical and quantum DP.

Definition 4 (Differential Privacy [46]): An algorithm A is
(e, 9)-differential private if for any two neighboring datasets
X and X’ with X, X’ € RN¥*4 and for all measurable sets
O C Range(.A), the following holds:

Pr(A(X) € 0) < e Pr(A(X') € O) + 4. ©6)

Here the neighboring datasets X and X’ refer that the number
of rows in X that need to be modified (e.g., moved) to get the
X' is one.

In this study, we exploit the classical notion of DP to denote
the neighboring states p and o, i.e., p and o are prepared
by two classical neighboring datasets X and X’ given in
Definition 4. Suppose that the neighboring datasets X and
X’ in Definition 4 differ in the i*-th row. Following the
Definition 1, the explicit form of the neighboring quantum
states (unnormalized) yields p = >, [Xy;) [i) |j) and o =
D i |X§j> i) |j), where the basis |X;;) |i)|j) is always the
same between p and o when i #£ i*.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

IV. QUANTUM NON-PRIVATE LASSO ESTIMATOR

The content in this section can be separated into two parts.
First, we devise a quantum non-private Lasso estimator and
prove its runtime complexity. Note that the proposed quantum
non-private Lasso estimator will serve as the backbone of
the QDP Lasso. Second, we analyze the runtime complexity
(lower bound) of the optimal classical and quantum Lasso,
which will be used to compare with the QDP Lasso.

A. Quantum Non-Private Lasso Estimator

Here we propose a quantum version of the Frank-Wolfe
(FW) algorithm [23] to build a quantum non-private Lasso esti-
mator, which is our first main technical contribution. Through
exploiting the robustness of the FW algorithm, the proposed
quantum non-private Lasso attains a quadratic speedup over
its classical counterpart (see Theorem 3 and Lemma 3). Note
that the proposed algorithm is a prerequisite to devise the QDP
Lasso in Section V.

1) Classical FW: Let us first review the FW algorithm (also
known as the conditional gradient method). Recall that the
FW algorithm and its variants are representative methods to
solve constrained convex optimization tasks and have been
broadly used to build non-private Lasso estimators formulated
in Eqn. (1) [45], [47], [48]. Furthermore, the study [15]
combines non-private Lasso estimators with a DP mechanism
to build the DP Lasso estimator.

Algorithm 1 Frank-Wolfe Algorithm for Lasso [45]

I: Input: Dataset D = {X € RV*4 y € RN} with the
quantum input oracles Ox and O, in Definition 1, the loss
L € Ry and the constraint set C = {8 € R% : |0, < 1}
in Eqn. (1), and the total number of iterations 7' € N ;

: Randomly choose 6 € C with one nonzero entry;

cfort=1to T —1do

Vs € [2d], ol — (&,,vL(OD)):

Compute k(Y = arg mine[24) agt) and obtain e ;

ot (1- ut)B(t) + (1€, where p; =

: end for

: Output: 8

2 .
t4+27

The implementation of the FW method for Lasso is sum-
marized in Alg. 1. In detail, FW seeks the target solution
0" = argmingec £(0) in Eqn. (1) through an iteratively
updating manner (Line 3-7). Since the constraint domain C
is an ¢; norm ball, the optimization can be done by checking
each vertex es of the polytope C, where the vertices set is
denoted by S = {&,}24, so that &, = e, for 1 < s < d and
es = —e,_q for d < s < 2d. In other words, the vertices
set S contains 2d unit basis vectors {+es}¢_ ;. Figure 1
illustrates the geometric intuition of the FW algorithm. At the
t-th iteration, the FW algorithm moves 8 to the minimizer
of a linear function (a vertex in the set S), i.e.,

e, = arg még(és, vLOWY)) . @)
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é1,101)

é,,100)

é,,110)

é5,111)

Fig. 1. The mechanism of the FW algorithm. The red circle refers to the
optimal result 8*. The yellow circle refers to the trainable parameters o)
with ¢ € [T]. The initial parameter 6(*) is arbitrarily selected from the
vertices set S, e.g., €1. The grey dash line represents the location of the
minimizer ék;(f’) at the ¢-th iteration in Eqn. (7) (Line 4-5 in Alg. 1). The blue

solid line denotes the updating rule from 01 10 6 (Line 6 in Alg. 1).

Denote (&,, VL(OW)) := al’ (in Line 4). The explicit form
of agt for s < d yields

a§t> = _% ixis (yz - <Xi’0(t)>) ' ®)
i=1

For d < s < 2d, we have agt) = —ai’?d. Locating the

minimizer €, is accomplished in Line 5 of Alg. 1. Note that
the updating rule in the FW algorithm is a linear combination
of T vertexes (i.e., {€y }7_,), which implies that 87 is
sparse with |0 ||y < T.

2) Quantum Non-Private Lasso: We now introduce the
quantum non-private Lasso, where its implementation is sum-
marized in Alg. 2. In particular, there are two key steps that
differ with the classical FW algorithm (Alg. 1); namely, the
construction of the oracle O, to replace the computation of
a®, and the employment of the quantum minimum finding
algorithm [49] to find €, . These two steps enable the
quantum Lasso estimator to quadratically reduce its runtime
complexity to find é) for any ¢ € [T].

Algorithm 2 Quantum Lasso Estimator

I: Input: Dataset D = {X € RV*4 y € RN} with the
quantum input oracles Ox and O, in Definition 1, the loss
L € R, and the constraint set C = {8 € R? : ||0]; < 1}
in Eqn. (1), and the total number of iterations 7' € N ;

2: Randomly choose 6 € C with one nonzero entry;

:fort=1to T —1do
Implement the oracle Og,¢) : |s)]|0) — |s) ‘agt)> in
Lemma 1;

s:  Compute k() = arg min, ¢ [2q) agt) using the quantum
minimum finding algorithm in Corollary 1 and the oracle
On)s

.ot (1- ut)O(t) + (1€, where pi; =

7: end for

8: Output: 0"

2 .
t4+27

We next elaborate on how to implement Lines 4-5 in Alg. 2.
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3) State Preparation (Line 4 in Alg. 2): This step aims to
build the oracle O, that prepares a quantum state related to
the classical vector a*) in Eqn. (8) to earn a runtime speedup.

Lemma 1 (Oracle Ogy): Given access to quantum input
models Ox and O, in Definition 1, the estimated state
preparation oracle O+, which with success probability 1 —2b
and b € (0,1) prepares a quantum state that estimates the

target state O, |$) [0) = |s) ‘agt)>, ie.,
Ogto [3)10) = Is) | &) ©)

can be constructed in O(T%v/N /<) runtime, where |agt) -
Y| < ¢ for any s € [2d], and the runtime hides a poly-
logarithmical term O(log(1/b)).

We defer the construction details of O, and the proof of
Lemma 1 in Appendix . Notice that the runtime of calculating
the classical vector a) is at least O(Nd) due to the multipli-
cation of X7 € R*N and (y—X0") € RN In contrast, the

runtime to prepare the estimated state ‘d(t)> is O(T*V/N /<)

and is independent of the feature dimension d, celebrated
by the coherent property in the quantum input model. Since
T,N < d in most practical scenarios, this result indicates

the efficacy to prepare the state ‘d(t)> instead of directly

computing classical form a*), and enables the quantum Lasso
to earn a runtime speedup over the classical Lasso.

4) Find ey (Line 5 in Alg. 2): Given access to the
oracle O, we can directly employ the quantum minimum
finding algorithm [49] to find k), or equivalently &.
We summarize the runtime complexity to find &) below.

Corollary 1: Suppose that the state preparation oracle O, )
in Lemma 1 can be implemented in 7, runtime. With success
probability at least 1/2, the classical output €, can be
obtained in O(T,+/d) runtime. The success probability can
be boosted to 1 — 1/2¢ by repeating the quantum minimum
finding algorithm c times.

Proof of Corollary 1: Let us first recap a crucial tech-
nique used in the quantum non-private Lasso estimator,
i.e., the quantum minimum finding algorithm (Diirr-Hgyer’s
algorithm) [49]. Recall the quantum minimum finding algo-
rithm [49]. Given an unordered list {f(i)}2¢, with 2d items,
the goal of the minimum finding algorithm is to find an index
k*, ie.,

k* =argmin f(z) , Vi € [2d] . (10)
7
The theoretical result of quantum minimum finding algorithm
is as follows.

Lemma 2 (Quantum Minimum Finding Algorithm, [49]):
The quantum minimum algorithm finds the index £* defined in
Eqn. (10) with the probability at least 1/2. The corresponding
runtime complexity is 22.5v/2d + 1.4 log3 (2d).

We follow Ref. [49] to explain the implementation details
of the quantum minimum finding algorithm, summarized in
Alg. 3, and refer the interested readers to Ref. [50] for
the detailed explanation. First, the input of the algorithm is
a quantum oracle O, ie., O|i) ® [0) = |i)|f(i)), where
f(i) refers to the i-th item of the unordered list {f(i)}?¢,,
denote by 7' the total runtime. When 77 < T, the algorithm
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Algorithm 3 Quantum Minimum Finding Algorithm (Diirr-Hgyer’s
Algorithm) Reformulated
1: Input: O;

2: Set T' = 22.5v/2d 4 1.41log3(2d), k ~ [2d], and T" = 0;
3: while 77 < T do

4
5

Initialize the state (W S ) R,) @1k R,
Use the comparator oracle Ocomp to mark every item ¢
for which f(i) < f(k) with runtime 77;

6:  Apply Grover search algorithm to increase the probability
of the marked items with runtime Tg, and then observe
the first reglster R1 and let £’ be the outcome;
T/<—T/+T1+T2,

o If f(K') < f(k), then set k — K,

9: end while

: Output: k

—_
=3

continuously employs the Grover search to obtain the index
k' and compare f(k) and f(k’). Once T’ > T, the quantum
minimum finding algorithm outputs % as the prediction of k*.

A central component of the quantum minimum finding
algorithm is the comparator oracle Oy, Which is employed
to mark every item with f(i) < f(k) for a given k. Mathe-
matically, Ocomyp is defined as

Ocomp 1) 17)10) = 13} 17) 19 (2, 7)) »

where ¢(i,j) = 1if f(i) < f(k); otherwise, ¢(7, j) = 0. Note
that Ocomp can be implemented efficiently by querying the
input oracle O twice.

We now leverage the result of the quantum minimum finding
algorithm in Alg. 3 and Lemma 2 to prove Corollary 1.

Recall Alg. 3 and Lemma 2. The runtime of the quantum
minimum finding algorithm, i.e., 22.5v2d + 1.4log3(2d),
is dominated by applying Grover search algorithms and prepar-
ing the initialized state, where the first part takes 22.5v/2d
(Line 6 of Alg. 3) and the second part takes 1.4log3(2d)
(Line 4 of Alg. 3), respectively [50]. However, such a runtime
cost is based on the assumption that, the input oracle can
be prepared in O(1) runtime. This is not the case for the
quantum Lasso. The construction of the input oracle O,
to load different entries of ¥ takes T, runtime. Therefore,
the total runtime of the quantum minimum finding algorithm
used in the quantum non-private Lasso becomes O(TxV/2d),
since the runtime to execute the Grover search algorithms is
O(Tv/2d) instead of O(v/2d).

Since the success probability of the quantum minimum
finding algorithm is 1/2, with repeatedly querying such an
algorithm c times, the probability that none of the ¢ outcomes
belong to the minimum result is 1/2¢. Therefore, with success
probability 1 — 1/2°, there exists at least one target result
among ¢ outcomes. O

In conjunction with Lemma 1 and Corollary 1, we attain a
main result of the quantum non-private Lasso estimator.

Theorem 3: Denote ¢ as the error parameter and Cy as the
curvature constant of the loss function £. Given access to Ox
and Oy formulated in Definition 1, with success probability
1 —o(1), the quantum Lasso as described in Alg. 2 after T'
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iterations outputs 8 with the utility bound R, < o(Cy/
T +¢) in O(T?V/Nd/s) runtime complexity.

Proof of Theorem 3: The proof of Theorem 3 utilizes a
technical result of the Frank-Wolfe algorithm. A crucial prop-
erty of the Frank-Wolfe algorithm is its robustness. Specifi-
cally, instead of calculating the exact solution e, as shown
in Eqn. (7), employing any approximated solution ez, € S
(e.g., obtained by a noisy solver), where €j,, is sampled from
a certain distribution P, to update the learning parameters 0"
can also promise the convergence of Frank-Wolfe algorithm,
as long as e;,, satisfies the following relation,

Y))| < min

e;eS

1
0, VL(O' (€5, VLOW))+59mCry,

(11
where C/ is the curvature constant formulated in Definition 3,
1 is the learning rate, and %ﬁutC’f refers to the additive
approximation quality in the step ¢ with ¥ > 0 being an
arbitrary fixed error parameter [45]. The following proposition
quantifies the convergence rate of Frank-Wolfe algorithm.
Proposition 1 (Theorem 1, [45]): Let  {éga),.-., €5}
be a sequence of vectors from S with oty —
(1 —11)0® + [t€j.r), such that for all ¢ € [T, Eqn. (11) is
satisfied. Then the result 87 satisfies

R, < 205
T+2
We emphasize that, although the original proof of Proposi-
tion 1 only takes account of the deterministic case, it can be
easily extended to the expectation setting given in Eqn. (11).
Proposition 1 implies that the only difference between the
exact (i.e., €, = €y, and ¥ = 0) and approximate scenarios
(i.e., €xt) # € and ¥ > 0) is that the utility bound of the
latter is slightly worse than the former. Moreover, under the
exact setting, Lasso achieves the utility bound O(C/T).
We are now ready to prove Theorem 3.
5) Error Analysis and Utility Bound: The error of quantum
Lasso comes from the two subroutines, Line 4 and Line
5 of Alg. 2, respectively. First, the state pregaration oracle

EE (1)NP <

(149) . (12)

only generates an approximated state |s) ‘&@ with success

probability 1 — 2b and b € [0, 1], as stated in the proof of
Lemma 1. Second, the quantum minimum finding algorithm
can only locate the index that corresponds to the minimum
entry of &' with success probability 1 — 1/2¢, as shown in
Corollary 1.

Since the quantum minimum finding algorithm queries the
oracle O, at most v/2d times as illustrated in Alg. 3, the
probability that the state | ‘a(t)> can always be successfully

prepared in all v/2d queries is (1—2b)V24. Overall the success

probability to obtain &, is (1—1/2°)(1— 2b)V24_ where the
index k() is defined as
E® = arg min a( ) (13)

s€(2d]

Since there are in total 7' iterations in the quantum Lasso
algorithm, the success probability to collect {&j }7—; is
(a-1/290

- 2b)m)T = (1—2b)7(1 — 2b)V2IT | (14)
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where ¢ = [log,(1/2b)]. Eqn. (14) can be simplified as

(1—26)TOHV2D) > 1 1/ =1 —o(1), (15)

where we choose b = m x > 0. The inequality uses

(I+a2/n)™ > 1+a forn > 1 and |z| < n (z and n correspond
to —1/k and T'(v/2d + 1), respectively). In other words, with
success probability 1 — o(1), we can collect {€) }i_;.

We then analyze of the utility bound of quantum Lasso
when the collected basis vectors are {€j,;) }{—;. Followed from
Lemma 1 and the definition of k(") as formulated in Line 5 of
Alg. 2, we have

o <al to<al) ro<al) +2c, (6

k() k()

(®) &'

where the first inequality uses |ak(,) ;)

| <<, the second

inequality comes from the fact a;:m = mingepq & () <
a](;()t), and the last inequality employs |a§:()t> — agf()t>| < .
By expanding ag()t) and al(c(),) with their explicit forms,

we obtain the follow1ng relation, i.e.,

oy < oy + 26 (250, VL(O)) < min (e, VLOW) + 2.
(17)
In conjunction with Eqn. (11) and (17), we can choose ¢ =

Finally, Proposition 1 yields

ch
20y f
R < ——(1+4+9) < —=+4+4c=0(Cs/T +5), (18)
T+2
where the second inequality employs pu; = 2/(T + 2) and

— _4¢

6) %%time Analysis: We then analyze the runtime com-
plexity of each iteration, which can be efficiently obtained
from Lemma 1 and Corollary 1. As shown in Lemma 1, the
runtime of using the oracle O, to prepare the state }a(t)>
is To = O((T*V/N)/s). Note that we omit the influence
of b in the runtime analysis of quantum Lasso, since the
runtime to prepare O, only has a logarithmic dependence
in terms of b. Following the results in the error analysis,
at the t¢-th iteration, by repeatedly querying the quantum
minimum finding algorithm ¢ = [log,(1/2b)] times, the
target basis vectors €, that E® satisfies Eqn. (13) can be
collected with success probability 1 — o(1). Therefore, based
on the claim of Corollary 1, the runtime to find ez is
O(cToV/d). The runtime of quantum Lasso with 7T iterations
is therefore O(c¢T'Txv/d). By exploiting the explicit form of
Ta = O((T?*VN)/s) and ¢ = [log,(1/2b)], the runtime
complexity of quantum Lasso is then equal to

O(T*VNdJ/s) .

B. The Runtime Lower Bounds in Non-Private Settings

We end this section by proving the optimal (lower bound)
runtime complexity of classical and quantum non-private
Lasso estimators with the input model in Definition 1. The cen-
tral tool toward this goal is the equivalence between Lasso and
support vector machine (SVM) [51]. This equivalence enables
us to leverage the advanced results of the optimal (quantum)
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SVM [18], [20] to infer the runtime of the optimal (quantum)
non-private Lasso. The derived results allow us to evaluate
performance of the quantum non-private Lasso and the QDP
Lasso.

The runtime cost of the optimal classical Lasso is as follows.

Lemma 3: Given access to the input model in Definition 1,
the runtime complexity of the classical non-private Lasso is
lower bounded by Q(N + d).

Proof of Lemma 3: Let us first recall the result achieved
in [51]. In particular, the dual optimization problem of support
vector machine (SVM) and its variants (i.e., kernel SVM, soft-
margin SVM variants using [»-loss, and one-class SVMs) is
of the form

min || X0|? ,

ocA (19

where A is the unit simplex in R?. The key observation in
Sec. 3 of [51] is that the optimization problem in Eqn. (19)
is equivalent to Lasso as defined in Eqn. (1), i.e., mingec
| X0 —y||?. In particular, [51] states that any instance of Lasso
can be reformulated as a l2-loss soft-margin (or hard-margin)
SVM instance with the same optimal solutions. This result
guarantees the equivalence between SVM and Lasso even
though the relaxations are considered. To be more specific,
as addressed in Section 4.1 of [51], the SVM algorithm pro-
posed in [18] can be directly employed to design a sublinear
time algorithm for the Lasso.

Following the above observation, we now employ the result
obtained from SVM study to quantify the lower bound runtime
complexity of the classical Lasso estimator. In particular, the
study [18] proves that, given the input model formulated
in Definition 1, the optimal runtime for the support vector
machine (SVM) is Q(NN + d). Supported by the equivalence
between SVM and Lasso, the optimal runtime for Lasso is
lower bounded by Q(N + d). O

We further quantify the runtime complexity of the optimal
quantum non-private Lasso estimator.

Corollary 2: When the estimation error ¢ = O(1) is set as
a constant, the runtime complexity of the quantum non-private
Lasso is lower bounded by Q(v/N + V/d).

Proof of Corollary 2: The proof of this corollary follows
Lemma 3 closely. Given the input model formulated in Defini-
tion 1, the lower bound of quantum SVM is Q(\/N + \/E) [20].
In favor of the equivalence between Lasso and SVM [51], then
the runtime lower bound of the corresponding quantum Lasso
is also Q(v/N + Vd). O

We now use the above two results to assess the performance
of the quantum non-private Lasso, while the analysis of the
QDP Lasso will be deferred to the next section. In particular,
based on Lemma 3, the proposed quantum non-private Lasso
in Theorem 3 achieves a quadratical runtime speedup over the
optimal classical Lasso in terms of the feature dimension d.
Moreover, the runtime complexity of the quantum non-private
Lasso is near-optimal when N < d, supported by the results
of Corollary 2.

V. QUANTUM PRIVATE LASSO ESTIMATOR

To ease understanding, let us first review the general rule of
transforming non-private learning algorithms to DP algorithms
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before elaborating on the proposed QDP Lasso. Concretely,
there are three mainstream strategies to assign DP properties
to a classical learning algorithm, i.e., injecting randomness to
1) the input datasets; 2) the optimization information such
as gradients; and 3) the employed loss function [52]. For
example, the DP Lasso [15] attains the privacy promise by
adding noise sampled from Laplacian or Gaussian distributions
with certain variances to a(*) in Line 4 of Alg. 1.

Due to the fact that injecting noise into non-private algo-
rithm generally involves extra operations, almost all cur-
rent classical DP learning algorithms have a worse runtime
complexity than their non-private counterparts. However, the
probabilistic nature of quantum mechanics motivates us to
rethink:

Can we use such randomness to attain the DP property instead
of injecting handcrafted noise?

The proposed QDP Lasso provides a positive affirmation
towards the above question. As summarized in Alg. 4, the QDP
Lasso adopts the following two simple procedures instead
of introducing extra cumbersome operations as classical DP
algorithms do to impose DP property on the quantum non-
private Lasso in Alg. 2. First, the quantum minimum finding
algorithm in Line 5 of Alg. 2 is abandoned in the QDP
Lasso. Second, the searched index E® of the QDP Lasso is
acquired by sampling from an engineered state }a(t)> denoted
by [W(a")).

In the rest of this section, we first introduce the quantum
subroutine W(a™”) in Line 7 of Alg. 4 that prepares the
state |W(a(t))>. We next analyze runtime and utility of the
proposed QDP Lasso. Last, we elaborate on the necessity of
the involved examination procedure Line 3-5 of Alg. 4.

Algorithm 4 (¢,6)-QDP Lasso Estimator

I: Input: Dataset D = {X € RV*4 y € RN} with the
quantum input oracles Ox and O, in Definition 1, the loss
L € R, and the constraint set C = {8 € R? : ||9]; < 1}
in Eqn. (1), the total number of iterations 7' € N, the
Lipschitz constant L; € R, the error threshold ¢ € R,
and the differential privacy parameters (e, J);

2: Calculate the the hyper-parameter A = /27 In(1/6) 3 €
R4 in Eqn. (21);

: Randomly choose 6" € C with one nonzero entry;

:if L1 /A > 1n(1/s) then
Break;

end if

cfort=1toT —1do

Prepare the state ‘W )> in Eqn. (20) by the quantum

subroutine W () in Lemma 4;

9:  Measure the index register |s) of |W(a(t))> conditioned

on seeing the last qubit as 0, and set the received index
E® € [2d] as K® = k®);

100 Y (1= 1)0Y + e, where iy =

11: end for

12: Output: o

2 .
t42°

The aim of the well-designed subroutine WW(a()) in Line 7
of Alg. 4 is to achieve the DP property. Mathematically,
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W(a'")) prepares a superposition state |W (")), ie.,

W) = Zr 9[al) (= 0 10,
20)

et +2L1\

where | L) = V1—e™ |1) refers to the garbage
state. Based on the explicit form of ‘W a(t))>, we obtain
the following two observations. On the one side, when the

index qubit |s) of the quantum state |W(a"))) is measured,

the index s € [2d] whose corresponding entry o §> is close

to a,(f*) = mine[aq) agt) will be chosen as K*) with high
probability. On the other side, due to the non-zero probability
amplitude, all indices s € [2d] could be selected as the output
K® . As shown in Theorem 4, these two properties ensure the
QDP Lasso to meet the requirements of differential privacy in
Definition 4.

Theorem 4 (Privacy Guarantee): Given the dataset D =
{X € RN¥*d y € RM} in Definition 1, the QDP Lasso,
as illustrated in Alg. 4, achieves (¢, d)-differential privacy after
T iterations, with setting

A= 2Tln(1/5)6% 1)

Proof of Theorem 4: A technical tool employed to prove
Theorem 4 is the strong composition property in differential
privacy.

Proposition 2 (Strong composition, Theorem 3.3, [53]):
For every ¢ > 0, 0,0’ > 0, and k € N, the class of (¢’,d')-
differentially private mechanism is (¢, k0’ + ¢)-differentially
private under k-fold adaptive composition, i.e.,

=+/2kIn(1/6)€' + ké'eo ,

where ¢y = e — 1.

We are now ready to prove Theorem 4.

Here we first quantify the differential privacy of the QDP
Lasso at the t-iteration and then employ the strong com-
position property as formulated in Proposition 2 to demon-
strate the privacy guarantee of the proposed QDP Lasso
estimator.

To ease notation, we refer Line 7-8 of Alg. 4 as the privacy
mechanism M. At the ¢-th iteration, when the input dataset

is D, denoted Z(*) = Ziilexp

kE® € [2d] will be accepted as the output K = k() with
probability

(22)

, the index

) ~[at?) +2L4]

Pr(M(D) = k®) = Z@ P y

(23)

When the same rule applies to the neighboring dataset
d o/ q2r
D', denoted Z'*) = Z§=1 exp <—%

index k will be accepted as the output K = k() with
probability

, the same

k()
A

_ ‘a'(t) n 2L1‘
Pr(M(D') = k) = L= 1

exp . (24

Z/(t)
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Based on the differential privacy formulated in Definition 4,
we now bound the ratio

A

Pr(M(D) = k")
Pr(M(D') = k1)
exp (= |afl, + 20| /A) 2'®
exp ( ‘akm + 2L1‘ /A) Z®)
| exp ( (f()t> + 20 /)\) Ziil exp (— ‘a/s(t) + 2L1‘ /)\)
( ;53 +2L4 /)\) Zzil exp (— ‘agt) + 2L1‘ //\)
ot +2m] ot 421
<exp

2 exp (— ‘agﬂ + 2L1‘ /A) exp (4/(AN))
) 2211 exp (— ‘agt) + 2L1‘ //\)

/(t
) + 201 - alf), — 2L A
exp N

)\
<eXp<jv> :

where the ﬁrst 1nequa11ty uses |a(f) as proved
| < L, for Vs € [2d], the second inequality
|b|| < |a—b|, and the last inequality employs

agaln In particular, the difference of a(t)

<exp
(25)

/(t)| < 4

below and |a
comes from ||a|—
|a(t) /(t | < 4

and o") for each entry s € [2d] is upper bounded by

o) -

N (t)
- —N;Xis(yiﬂxi,e ))

afs(t)|

+—ZX (wi— (X 9<t>)‘

7 X = (0, 00+ X0 [~ (0,0
SN|xks|<|yk|+\<xk,e“>>\>+ﬁ |xks|<|yz|+\< 109))
< IR+ X )+ X (14 1 )
== 6)

The first equality in Eqn. (26) comes from Eqn. (8). The first
inequality employs the triangle inequality and the fact that
only one example, said the k-th example, in D and D’ is
varied. The second inequality uses the triangle inequality. The
third inequality is guaranteed by the facts that |Xy,| < ||X||r,
(Xl < IXps fyil < Nyl < 1 Jyil < ly'] < 1, and
IX 1691 < X[l and [X;[16P] < [X'r (@ue to
6] < 1, see Eqn. (1)). The last inequality exploits the
results | X||p <1 and | X'||p < 1.
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Pr(M(D)=k®)

Br(M(D=k®) is upper bounded by e,

To ensure the ratio
we have to bound

8 8
exp N <e =€ >W

Then, with employing the strong composition property given
in Proposition 2, the proposed quantum Lasso estimator
achieves (e, d)-privacy after 7' iterations, where

27)

ST In(1 /5)% (28)

In other words, with setting

A= \/2T1n(1/6)%,

the proposed quantum private Lasso with weighted sampling
mechanism achieves (e, §)-differential privacy. O

We remark that the devised privacy mechanism used in
the QDP Lasso, as our second main technical contribution,
amounts to sampling k(") from the state |[W(a"))) in Line 8
of Alg. 4. Mathematically, at the ¢-th iteration, the quantum
subroutine WW(a™®) as will be described below is employed
to prepare |W(a(t))> in Eqn. (20). This privacy mechanism is
a crucial element to dramatically reduce runtime of the QDP
Lasso to outperform both the optimal classical and quantum
non-private Lasso estimators, since it avoids involving extra
operations such as noise injection and removes the quantum
minimum finding algorithm, which dominates the runtime
complexity of the quantum non-private Lasso.

We next exhibit that the subroutine W(a(®) can be effi-
ciently implemented. This result is the precondition to assure
the efficacy of the proposed QDP Lasso. Based on Eqn. (20),
we observe that the state |W(a(t))> can be prepared by
applying the conditional rotation operation [27] to the state
|a(t)> accompanied with an ancillary qubit. In other words,
the subroutine W(a(*)) can be effectively constructed by
employing the oracle O, in Theorem 1 with extra O(1)
overhead. The following lemma summarizes the runtime cost
of implementing W(a®).

Lemma 4: Following notations used in Lemma 1, there
exists a quantum algorithm which with success probability
1—2band b € (0,1), prepares a quantum state

0)+| Ly >)

W(a®)) = S 1 S la®\ (e \a)z#m
- (29)

&V t21y
=1 Y e O(T2V/N/S) run-
time. Moreover, the prepared state ‘W a(f))> estimates the

state ‘W a(t))> in Eqn. (20) with |a9 gf)| <gq ¢< Ly,
and &V = — gd for any s € [2d].

Proof of Lemma 4: Let us first recall the construction of
the quantum subroutine W(a®)), as the backbone of Alg. 4.
Specifically, we first exploit the oracle O+, in Lemma 1 and
quantum arithmetic operations such as addition and multipli-
cation to prepare a uniform superposition state

‘ (a®) > \/_Z| ‘exp —|a —|—2L1|/>\)>. (30)

where ‘L > = 1—e"
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We then introduce an ancillary qubit to the state |¢(a(?))) and
rotate the state conditioned on exp(—|a® +2L,|/\)/Z® to
obtain the target state [W(a("))).

Here we first detail the implementation of the above two
steps and then analyze their runtime cost step by step.

The preparation of the state ‘go(a(t)» can be accomplished
with an extra O(1) runtime complexity if we have access to
the oracle O, defined in Eqn. (47). In particular, we first
append an ancillary qubit and apply H gate to create the state

J)

€19

D)+ 1s) |a

d
1
H & 040[0)®0)— —— S0y 1) |a
s'=1

Next, we use a CNOT gate to flip the sign of &, where the
control and target qubits are the first qubit and the specific
qubit that records the sign information of afj), i.e., the state
in Eqn. (31) transforms to

(t)>) .

fz(m )

Absorbing the first qubit into the index register |s), we obtain

;2 "
E;m@ )

Notably, even though there exists an error ¢ with &) —
agt)| < ¢ as discussed in Appendix , the above implementation
procedure guarantees

&) +1n1s) |-

(32)

(33)

alt) = s+d Vs e[d],

S

(34)

since a( ) +q 1s produced by flipping the sign qubit of a

This property will be employed in the utility bound analys1s
Once the state in Eqn. (33) is prepared, we apply a quantum

adder, multiplier, and exponential operation [54], [55] to
obtain the state
;2 -
=l |al0) £ Z| )|&l +2L1)
V2d

exp(-)
e

ep< gt)+2L1>>
X s T AL
)\ )

(35)

‘@(

where we omit the absolute value operation since dgt) +
2L, > 0 for Vs € [2d].

Last, we introduce an ancillary qubit and apply a controlled
rotation operation used in [27] to estimate the target state
|W(a(t))>, ie.,

2d ~
1 § |S> exp <_ agt) +2L1 ) > |0> conditional rotation
V2d A on the 2cd quantum register
s=1

‘W(a(t))> _ id: L ‘d(t)>
SV
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& 42r & 42r
A A

l—————M |,

c (36)

Ch

where C depends on A and L; as defined in Line 3-7 of
Alg. 4.

Under the above description, the runtime cost to prepare the
state in Eqn. (31) is O(T%v/N /<), supported by Lemma 1.
The subsequent steps from Eqn. (32) to Eqn. (35), which
aims to prepare the state ‘gp(a(t))>, only involve Hadamard
transformations and basic quantum arithmetic operations and
can be completed in O(log(d)) runtime. In the last step, the
conditional rotation operation as formulated in Eqn. (36) can
be achieved in O(1) runtime [27]. Overall, the runtime cost
to prepare the state ‘W t))(} is O(T*VN /s). O

The result of Lemma 4 and the optimization results of the
FW algorithm allow us to quantify the utility and runtime cost
of the QDP Lasso.

Theorem 5 (Utility and Runtime): Let Ly € R, be the
Lipschitz constant of the loss £ in Eqn. (1), 0 < ¢ < L; be the
error threshold, and C'y € R be the curvature constant of £ in
Definition 3. Given the dataset D = {X € RV*?, y € RN},
with success probability 1 — o(1), after T' = % itera-
tions, (¢,9)-QDP Lasso in Alg. 4 achieves the utility bound

- /3 C2N5/2.2
R, <O (W 4 ¢+ L1) in runtime O (fi) .

S

Proof of Theorem 5: We first analyze the Error and utility
bound of QDP and then derive its runtime complexity.

Error analysis and utility bound. We now analyze how
the selected basis ey as described in Alg. 4 affects the
error term 1) given in Proposition 1, when the imperfection of
the state preparation oracle O, is considered. Specifically,
supported by Lemma 1, with success probablllty 1 — 20, the
obtained result in Line 5 satisfies |ak(t) — ](:()t)| < ¢ for
VE® € [2d]. Consequently, the probability to accept k(") as the
output index shown in Line 6 is proportional to exp(—|a wo T
2L41]/)\). Under this estimated acceptance rate, we now discuss

the upper bound of E |:<6K(t),v£(0(t))>:|. Note that, the
symmetry property of a?) = [V£(0"), =V L(0")] implies
that its minimal entry, i.e., o, = ming, cs(es, VLO™M)),
is always less than zero.

Denote Z = Ziil exp

51
—%) The upper bound

of E {<éw : vc(ew)ﬂ satisfies

E (e, vL©O©D))]
2d
= Z Pr(Accept|K<t) = s){eés, Vﬁ(e(t)»

s=1
S enp (-2l a0
B Z
d &P +2r

=q,) — dg} + -
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5 (t)
2 oxp <_|'17§2L|) &
<af) +c+Li+c+

2d
Zs:l eXp <

7
) s eS— exp <
~(t) 12, R
Sovess o (-252) asz

Z

=a\) + 20+ Ly +

~(t)
+2L1 ~(t
) &

+

B di’;}le )
(1)

exp ( X
<o) 426+ L, + > _
steS+ Z

<ol 426+ L+ X

(37)

The first and second inequalities employ the facts that, for
any s € [2d], |a(f) aM| < ¢ as shown in Lemma 1, and
agt)| < Ly, since every entry of a) belongs to {+V L}¢_,
and ||VL||2 < L. The third equality splits the summation into
two groups, where the first and second group only includes the
index that corresponds to the positive and negative entries of
the projected gradient, respectively, i.e, ST = {s+|& VS 0}
and S~ = {s~ |a(f) < 0}. The cardinality of these two groups
are equal such that |ST| = |S7| = d. Then, in the third
inequality, we exploits the following relation, i.e.,

a®por |\ 4
ES_ES_ exp (_hf> as_)
<0

~ (t) — ’
2d s’ +2L1
dem16Xp | ——

(38)

since a(t) < 0 and its coefficient is positive. The last
mequahty is derived as follows, i.e.,

®) L op
exp< |"‘+;21|)
a®

Z ~(t) €+
fes+ va2d Gs 21
STEST 3L exp < X

&) por, |,
6+>\ )0‘(;2

E +cs+ €Xp (

a™ yor,
Yotes+exp (- f) + s exp (- |7>\‘

< |a('>+2L |>
exp [EE
> )

—(t ot
[ 1
s
—es— OXP ( X )

_ 1 ()
- Z & ‘7 & t | (xs+
stest 257687 exp ( st — )
~(t)

<Y —

stest )

IN

stest )
S

sTEST j\
=), 39)
1

where the first inequality uses — < % when a,b > 0, and

o =
the last inequality utilizes the facts e* > 1 + x and
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t .
Ly > —a(,) > 0, which leads to
~ ~ (1) ~ (1)

s —la a5++2 Lqi|— a57+2 Ly
exp( |A ) > 1+ ’ |/\| >
a2 Li—@P+210) &l

X = Tx

The result of Eqn. (37) indicates that by choosing ¥ =
ufé‘ 2/6122)‘, the output of Alg. 4 satisfies Eqn. (11).
Therefore with success probability 1 — o(1), Proposition 1

yields

20 4 2L 2
Re< A (1+— L
T+2 peCy o wCy Gy

By replacing the parameter A\ with its explicit form given in
Line 6 of Alg. 4, the utility bound follows

). (40)

R < 20y 1+ 4¢ 2L, 16\/2T1n 1/5
L=
T+2 Gy uth e CreN
2C¢ 164/2T In(1/4)
= —— 44+ 21+ ————"F . 41
STy AT N “h
The tight upper bound of R, can be achieved by setting T' =
CY(Ne)?
-f e
n/3(1/5) > 7
(71/3
R£<0<Nﬂﬁﬁ+<+L>. 42)

The runtime complexity. We first quantify the required run-
time cost at the ¢-th iteration, and then generalize to the entire
T iterations. Recall Alg. 4. At the ¢-th iteration, the runtime
cost is dominated by the implementation of the weighted
sampling subroutine W (")) (Line 4). In particular, the state
|W(a(t)))> for all t € [T] requires O(T?v/N /<) runtime,
as proved in Lemma 4. Given access to ‘W(a(t))», when
Li/X > 1n(1/s), the probability that we always see ‘1’ during
whole M observations yields,

M
168 421, |
1—e" D)

M
< (1 o eiiln(f/q)) _ (1 o §4)]\l S 674M€4 ’ (43)

where the first inequality employs &gt) + 211 < 4L4, and
the second inequality employs 1 — z < e~ *. Let the rightest
term in the above equation is upper bounded by b, we obtain

At 1 1

e §b$M24g4lnb.

This result indicates that, when M is larger than a certain

constant, which is inversely proportional to ¢, with probability

1 —o(1), we can always observe the status ‘0’ at least once.

Consequently, the runtime complexity to accomplish the ¢-th
iteration is O(T%V/N/s).

By leveraging the runtime to complete each iteration and

the result of Eqn. (42) that the optimal iterations follows

(44)

2/3(]\7 )2/3 . .
T = W’ we conclude that the runtime complexity
of Alg. 4 is
C2 N5/2¢2
O(T-T>VN/s) = <f . (45)
O
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The simulation results. The label ‘Baseline’ and ‘CDP’ corresponds to the non-private Lasso in Alg. 1 and the proposal [15]. The

left panel and the right panel separately illustrate the reconstruction error for the datasets DW and D@,

Theorem 5 allows us to infer all results presented in Table I.
Specifically, in conjunction with Lemma 3 and Theorem 5,
an immediate observation is that the QDP Lasso is faster than
the optimal classical non-private Lasso when d > O(N®°/?).
Moreover, combining Lemma 2 with Theorem 5, the QDP
Lasso could be even faster than the optimal quantum non-
private Lasso when N > O(N?®). These results separate
quantum DP learning with its classical counterparts, where the
implementation of classical private Lasso estimators generally
require much more runtime than non-private cases. We note
that in the quantum domain, the DP requirement separates
the QDP Lasso with the quantum non-private Lasso to be
two different learning problems. The former concerns finding
a solution with the DP property and a good utility bound,
while the latter pursues the optimal solution in Eqn. (1).
These different aims enable that the proposed QDP Lasso may
achieve a lower runtime complexity than that of the quantum
non-private Lasso. Next, the utility bound of the QDP Lasso is
near-optimal, since the study [15] has proven that the optimal
utility of DP Lasso is Q(1/(N log N)?/?). Last, achieved near-
optimal utility bound and runtime speedups indicate that the
proposed QDP Lasso meets the two requirements of QDP
learning.

Remark 1: We remark that the number of iterations of 7" in
Theorem 5 is a positive integer. In other words, when ¢ is small
and results in 7" < 1, we should keep 7' = 1. In this case,
the runtime complexity of the proposed QDP Lasso estimator
is O(vV/N/s) and its corresponding utility bound is Ry <
O(2C s+ N) (see proof of Theorem 5 for details). We next
explain the examination procedure in Line 3-5 of Alg. 4 in
the QDP Lasso. This step aims to ensure the legality of the
privacy mechanism. Specifically, when L;/\ > In(1/<), the
probability to sample the index s for all s € [2d] will be
near to zero, which renders the sampling process in Line 8 of
Alg. 4 to be ill-posed. Furthermore, when L;/A > In(1/s),
the error term ¢ caused by the state preparation oracle will
heavily affect the performance of the quantum private Lasso.

We further address the importance of examining the degree
of the required privacy, driven by the distinguished runtime
complexity between quantum private and non-private Lasso.
Recall the conclusions of Theorem 3 and Theorem 5. When

the privacy budget e is sufficiently small, the runtime cost for
quantum private Lasso is O(N%/2€2/c), while a large privacy
budget ¢ that is close to the non-private setting results in
the O(v/Nd) runtime. Without the examination in Line 3-5
of Alg. 4, it is difficult to explain when the runtime of
quantum Lasso should depend on the feature dimension d,
since the privacy budget can be continuously degraded from
the absolutely private case to the non-private case.

We last emphasize why the runtime of the quantum DP
Lasso may be less than that of the quantum non-private Lasso
when both of them employ the input/output quantum model
formulated in Dentition 1. The central reason is that these
two models focus on different aims, as stated in Introduction.
Namely, quantum DP Lasso pursues both a lower runtime over
its classical counterparts and a near-optimal utility bound for
the specified differential privacy parameters, while quantum
non-private machine learning algorithms only pursue low
runtime when [|07) — @*|| < <. These different aims lead
them to be two different learning problems. To elucidate
how this separation allows QDP Lasso to advance quantum
non-private Lasso, let us consider an extreme setting where
the second requirement of QDP (i.e., attain a near-optimal
utility bound) is discarded. In this scenario, the extreme QDP
Lasso targets to output all possible solutions 8 with non-zero
probability. This can be efficiently achieved by outputting the
index k(t) randomly sampled from a uniform quantum state

! s) for Vt € [T'], which takes O(1) runtime. Instead,
t(goal of quantum non-private Lasso is to find the optimal
result " in Eqn. (1). Therefore, according to Theorem 3, for
the same 7', the runtime complexity of this extreme QDP Lasso
is lower than the quantum non-private Lasso, i.e., O(T) Versus

O(T3V/Nd/s).

VI. NUMERICAL SIMULATIONS

In this section, we validate the performance of the QDP
Lasso using a synthetic dataset. We choose the reconstruction
error, i.e., ||” — 0%|]2/||0]]2 that 67 is the output of the
employed private Lasso estimator, as the metric to evaluate the
utility guarantee. To collect statistical information, all settings
are repeated with 10 times and then compute the average
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reconstruction error. The construction rule of the synthetic
dataset X € R™*? is as follows. Each entry of X is drawn
i.i.d. from a uniform distribution U(—1,1), and the s* non-
zero entries of the optimal parameters 6 is drawn i.i.d.
from U(0,1). Based on this construction rule, we build two
synthetic datasets D1 = (X(1) ¢(1)) ¢ (R400x1000 400)
and D(2) — (X(Q),y(Q)) c (R1000X5000,R1000) with s* =
10 to evaluate performance of the QDP Lasso. The value of
the privacy budget e is ranging from 0.1 to 1.

Figure 2 illustrates the simulation results. The reconstruction
error of the classical DP Lasso with the Laplacian privacy
mechanism [15] and the QDP Lasso is continuously decreasing
with respect to the increased privacy budget e for both D)
and D). This empirical results accord with the theoretical
results as shown in Theorem 5.

VII. APPLICATIONS

A recent study indicates that quantum system noise
enhances the threshold to attain quantum advantages [56].
Concretely, quadratic speedups will not enable quantum
advantages on early generations of fault-tolerant devices and
quartic speedups look significantly more practical. This result
denies the possibility to implement quantum kernel classi-
fier [20] or quantum kernel perceptron [2] on a modest fault-
tolerant quantum computer to attain quantum advantages.
Moreover, many quantum algorithms claiming exponential
speedups are dequantized by quantum-inspired classical algo-
rithms [21]. The proposed QDP Lasso, whose runtime is
independent with feature dimension, paves a new way to attain
advantages on early fault-tolerant quantum machines.

VIII. CONCLUSION

In this paper, we propose a QDP Lasso estimator to accom-
plish private sparse regression learning tasks. To the best
of our knowledge, this is the first quantum private learning
algorithm with runtime advantages and near-optimal utility.
Moreover, we exhibit that the runtime of the QDP Lasso can
be even lower than the optimal quantum non-private Lasso.
The achieved results open an avenue to apply NISQ devices
to attain runtime speedups. One of the interesting directions
for the future study is to design other QDP algorithms that
can provide both computational efficiency and utility improve-
ments.

APPENDIX

The organization of the Appendix is as follows. Specifically,
in Subsection A, we first demonstrate that the oracle Og ),
which prepares a quantum state that approximates the target
state Onm |$)10) = |s) ‘agt)> with an additive error, can
be effectively implemented. We then analyze the required
runtime complexity to implement O +) in Subsection B. Last,
we present the proof of Lemma 5 and Lemma 6, which are
employed to support the runtime analysis of implementing
Og4 1), in Subsection C and Subsection D, respectively.
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A. Implementation of the State Preparation Oracle
The state preparation oracle O ) in Alg. 2 aims to prepare
the quantum state O, |s) [0) = |s) ‘ag)>, where

ol i=(e,, VL(OW))
=V,L(6")

3 (L) T
i=1

for1l < s <d, and agt) = —agi)d for d < s < 2d. The above
equation implies that the oracle O, can be constructed with
an extra O(1) runtime complexity if we have access to

O |5)]0) = |s) ‘agt>> Vs e [d . @7)

To be concrete, when the query |s) satisfies d < s < 2d,
we first query Oy by the basis |s') with s = s — d
). We then flip the qubit that records

all).

the sign information of s to obtain |s’) —aS) . Based
on this fact, the implementation of the oracle Og) that
approximates to O, amounts to preparing an oracle that
approximates to O . With a slight abuse of notation, in the
following subsections, we use Og4+) to specify the oracle that
approximates to O . For elucidating, Table II summarizes
the definitions and intuitions of quantum oracles explored in
this section.

1) Implementation of Ogw: The implementation of the
oracle Oy, which leverages the reformulated expression of
a in Eqn. (46), is summarized in Algorithm 5. The detailed
explanation of each step is as follows.

The inputs of Alg. 5 are two oracles, i.e., Ox and Oy in
Definition 1, and the classical input 0@ fort e [T]. From Line
2 to Line 3 of Alg. 5, we employ Hadamard transformations
and an oracle O,, i.e.,

to obtain |s’)

1 Y 1 Y 0
O, —S i), — —S i) |2 > : 48
z /—N;| >r1 /Ngl >r1 1 o ( )
to load the vector z(*), where zgt) =y, — (X;,00) in

Eqn. (46) for any i € [N], into the quantum register r2. The
construction of O, requires O(TQ) runtime, whose proof is
given in Subsection C.

Lemma 5: Given access to oracles Ox and O, in Defini-
tion 1, and the classical input O(t), the oracle O, in Eqn. (48)
can be implemented in O(7?) runtime.

In Line 5 of Alg. 5, we aim to compute zgt)Xis and
record the result in the quantum register r4. Specifically,
we apply the oracle Ujyner to the quantum registers r; and 74
to compute agt) = ZZ zit Xs- The implementation of Ujpper
is summarized by the following lemma.

Lemma 6: Given the access to the oracle Ox and O,
there exists a quantum operation Uy, that estimates the inner
product (X[, 2®), Vs € [d] within the error threshold ¢ and
outputs the state formulated in Line 5 of Alg. 5 with success
probability 1 — 2b. Suppose that the runtime to implement
O, is T,, the runtime complexity to implement Ujyper i

O(TV'Nlog(1/b)/<).
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TABLE 1I
THE SUMMARY OF QUANTUM ORACLES. THE INTUITION AND DEFINITION OF QUANTUM ORACLES EXPLOITED IN ALGS. 1-5 ARE ILLUSTRATED.
THE DIMENSIONALITY OF QUANTUM STATE DEPENDS ON THE PRECISION TO STORE A REAL NUMBER. HERE WE SUPPOSE THAT ALL REAL

NO)

NUMBERS (I.E., X;j, ¥;, &5, Et)

, AND 0;”) ARE STORED BY THE SINGLE-PRECISION

FLOATING-POINT FORMAT, WHICH REQUESTS 32 QUBITS

Oracle | Intuition Definition
— gt o - 32Nd

Ox Load input data X € RN *? into the quantum state = V9l Zi,jeg l2,7) 1 Xiz) € (C ’

where G denotes a set of indexes to be queried.

/ . 32N

Oy Load input label y into the quantum state Oy(9) = VIGI Zzeg i) lyi) € C >

where G denotes a set of indexes to be queried.
Og () | Prepare the quantum state of &) in Eqn. (13) Ou : [8)10) = |s) ‘a(t)> € (644

- t

O A quantum subroutine to construct O 4 (1) O f Z | i) |0) — f E 2! )> € C32N
Og(t) | Load trainable parameters into the quantum state Og(ty : 10) — \/E Z?:l 15) j(_t)> € C32d

Algorithm 5 Quantum State Preparation Oracle Og )

1: Input: Input oracles Ox, Oy, and the classical input oW,
2: Initialize |s), [0), for quantum registers 7o and 71, and
apply Hadamard transformation to the r; register

1 X
o <\/—N;|Z>”> ;

3: Introduce the quantum register 5 and apply oracle O,
formulated in Lemma 5 to the register 7; and r», i.e., let

20—y, —(X,,01),

\/_ | o Z |
4: Introduce the quantum register r3 and employ Ox to
generate

Hadamard

157, 10)

"1 transformation

= 7 310,

> I,

i=1

1 (t) .
\/—N |S>r0 Z; >r2 |X7/5>r3 ’

5: Introduce the quantum register r4, and apply the quantum
operation Ujpper as formulated in Lemma 6 to the quantum
registers 7o and 73 to obtain the state

al’)
T4

6: Output: Output |s) ‘a.gt)>;

15)r,

The proof of Lemma 6 is given in Subsection D.

B. Runtime Complexity

Proof of Lemma 1: The runtime complexity of the imple-
mentation of Oy as presented in Alg. 5 can be effectively
obtained by combining the results of Lemma 5, 6, and 7.
Note that, the error and uncertainty is introduced by Line 5 of
Alg. 5. Due to the result of Lemma 6, the target state in Line 5
of Alg. 5 can only be approximately prepared in error ¢ with
success probability 1 — 2b. Therefore, the oracle constructed

in Alg. 5 refers to Oy instead of O, which prepares the
state |s) |&")) that satisfies |agt) —aM| < ¢ forany s € [2d],
with success probability 1 — 2b.

We now analyze the required runtime complexity Line by
Line. The computation cost of Line 2 is O(1), since only
Hadamard transformation is employed. In Line 3, we use the
oracle O, with the runtime complexity O(TQ), supported by
Lemma 5. In Line 4, we call the oracle Ox, which takes
O(1) runtime. Therefore, the runtime complexity from Line 2
to Line 4 is O(T?).

In Line 5, we employ Uiner to prepare the target state. Fol-
lowing the conclusion of Lemma 5, the oracle O, corresponds
to the unitary transformations used in Line 2-4, which requires
O(TQ) runtime complexity to implement it. Then, supported
by Lemma 6, with success probability 1 — 2b, the oracle Ujnper
prepares the target state with error ¢ in runtime O(T2v/N /s).

Overall, the runtime complexity of Alg. 5 is O(T2 VN /<),
which is dominated by Line 5. Since the oracle O, can
be efficiently implemented by using O4 ) with an extra O(1)
runtime as explained in Appendix A, the runtime complexity to
s) ‘dgt)> for Vs € [2d]

O

implement the oracle Og ) |s) |0) =

is also O(T%V/N/s).

C. Proof of Lemma 5

The proof of Lemma 5, or equivalently, the implementation
of oracle O, uses the following lemma.

Lemma 7: Denote the quantum oracle that prepares a state
corresponding to 0" as Ogv, i.e.,

ZU ‘0(t>> .

Given the classical input 0 € R? with ¢ € [T, the oracle
Ogey formulated in Eqn. (49) can be constructed in O(7)
runtime complexity.

Proof of Lemma 7: Recall the updating rule of 0"
described in Frank-Wolfe algorithm. The number of non-
zero entries of 0 at the ¢ step is no greater than t.
The sparsity of oW implies that the oracle Og) can be
efficiently implemented by using single-qubit and two-qubit

Oe(f) : (49)
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gates with O(T') complexity. The implementation of O, is
as follows, i.e.,

O(logd) H gates 1

7

M&

0)

17)10)

) |65

For each entry 0§t> with a constant precision, we need O(1)
multi-control (logd)-qubit gates to encode it into the state
A g®)
) |6
implemented by O(poly(logd)) Toffoli gates and each Tof-
foli gate can be implemented by constant single-qubit and
two-qubit gates [57], the required number of single-qubit and
two-qubit gates to implement the multi-control (log d)-qubit
gate is O(poly(logd)). The sparsity of ) implies that the
total number of multi-control (logd)-qubit gates is O(T).
Alternatively, the required number of single-qubit and two-
qubit gates to build Oy is O(poly(logd)T) = O(T). O

O(T) multi-control gates

(50)

H
N

<. Il
i M& -
I

>. Since the multi-control (log d)-qubit gate can be

Algorithm 6 Quantum Oracle O,
1: Input: Oracles Ox, Oy, and Oy).
2: Define the set J as the collection of indexes that corre-
sponds to the non-zero entries of o®
3: Prepare the uniform superposition state \/_ Zz 119
4: Introduce quantum registers 71, 72, and 73, and separately
apply Oy, Ox, and Oy to obtain
t)> .
)
T3

5: Apply quantum multiplier [54] to ro and 73, store the result
in quantum register r4, and then uncompute and delete
ro and 73, i.e.,

\/WZ| |yz 1 ZU |X’LJ

jedJ

Mz

iy [y, Y1) ‘X”0§f)> ;

N|J P jer

6: Apply the oracle O,, (see Eqn. (51)) to the register 4 and
) _ ) : :
record v, = Zj Xj Bj in quantum register rs, i.e.,

oY
(t)

7: Output: Apply quantum subtractor [54] to record z;
in the quantum register 7 conditionally controlled by
|i), and then uncompute and delete r and 75, ie.,

1 N . (t)
N >iz l9) ‘zz >re

1 N
\/_T|J| Z; i) [Y:),

We now employ the result of Lemma 7 to prove Lemma 5.
Proof of Lemma 5: We illustrate the implementation of

the oracle O, in Alg. 6 and analyze its runtime complexity
Line by Line. In particular, the runtime complexity of Line 3
is O(1) by applying Hadamard transformation. The runtime
complexity of Line 4 is O(T) since the runtime complexity
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to implement Ox and O,, is O(1) and the runtime complexity
to implement Og) is O(T). In Line 5 and Line 7, the runtime
complexity to conduct the multiplication and subtraction is
O(1), supported by [54].

In Line 6, the oracle O, is employed to compute v*) and
record the result in the quantum register r5. Note that, due to
the sparsity of 6", the result of 'uit) only relates to non-zero
entries of 8. Motivated by such a fact, instead of encoding
in total d entries, we only encode the entries whose indexes
belong to the set .J into quantum states. The implementation of
O, exploits the property that the cardinality |.J| is no greater
than 7' with T' ~ O(log(N)). In particular, given the quantum
state formulated in Line 5 of Alg. 6, the oracle O,, is composed
of the following unitary transformations, i.e.,

WZ‘ w0 2210 (X657

jeJ
1 & ()
. . . t
~ vy ;|z>|yi>;|y> [X:5657) 1000, 00,
1 & () ()
= ) X, 65 X; 1604
N|J‘ Z:ZI |yz j;]'] ‘ J > - ‘ ,J+1 ]+1>q2
(t)
[ Dag,ais X”‘leﬂ'—1>qm
1 ¢ ()
i N|J‘ ; |yz ];]lj ‘XZJO > ‘XZ ]+10]'+1>
(t)
| >q3 ..... a1 -1 17719171>qm ‘”1>r5
1 ¢ ()
- [4) 1y;) | v, (51)
VN ; ' >7“5

The first arrow in Eqn. (51) is introducing |J| — 1 quantum
registers. The second arrow indicates that, the result X;; 0;”
for the different j is recorded in |J| — 1 quantum regis-
ters separately, by repeatedly calling Line 4-5 of Alg. 6 to
{g2,...,q,;} in total |.J| — 1 queries. The last arrow shows
that we uncompute and delete all quantum registers |j), 74,
and {q:}},

An observation of Eqn. (51) is that the runtime complexity
to implement O, is dominated by the second arrow. Since
the runtime complexity of Line 4-5 is O(T), the runtime
complexity to implement O,, is O((|.J] — 1)T) < O(T?).

Overall, the runtime complexity of Alg. 6 is O(T), which
is dominated by implementing O,,. 0

D. Proof of Lemma 6

Lemma 6 is a direct consequence of the following propo-
sition [58], which computes the inner product of two vectors.

Proposition 3 (Modified from Lemma A.10, [58]):
Suppose that we have access to two quantum oracles
Oxr and O, with XT € R¥™¥ and z € RY,

Z ) X35
EN: ) 125)

Ox : ]i)|0) — (52)

ﬂ\

O::|0) — (53)

ﬂ\
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Denote the runtime complexity to implement Ox+ and O,
is at most O(Tax), and ||X;+ || = max; || X;]|, there exists a
quantum algorithm that with the probability at least 1 — 2b,
outputs the state

1 |XT,2)) (54)
where [(XT,2) — (X[, 2)| < ¢ in O(fealXulliosl/t))
runtime.

Proof of Lemma 6: The implementation of Uy, directly
employs the result of Proposition 3. Recall that, given the state

(55)

1 S ®
—= 1) D lid, [#7) X,
\/N ; T1 3 ro T3
the operation Uy, aims to estimate the inner production
(X[, 2®) for any s € [2d].

Following the above observation, we apply Proposition 3
to the quantum register 7o and 73 to estimate (X, z(®) in
superposition. The result is stored in the quantum register ry4.
We then uncompute the quantum registers 7y and 73, and
output the obtained state.

With success probability 1—2b, the quantum operation Ujpper

)

. 1 .
prepares the estimated state —— dosls) ‘a with error ¢

. . T4
1n runtime

0

T.V'Nlog(1/b)
g )
since Trax = T and || X;«]| < V'N with the assumption
X[l < 1. O
We remark that the core ingredients of Proposition 3 are the
amplitude amplification and phase estimation [59], [60]. Due
to a huge number of control qubits gates used in quantum
phase estimation, the computation-resource requirement may
be unfriendly to the near-term quantum devices. Toward this
issue, it is possible to attempt to employ a more advanced
subroutine instead of the original one such as [61].
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