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ABSTRACT Quantum technologies have become powerful tools for a wide range of application disciplines,
which tend to range from chemistry to agriculture, natural language processing, and healthcare due to
exponentially growing computational power and advancement in machine learning algorithms. Furthermore,
the processing of classical data and machine learning algorithms in the quantum domain has given rise to
an emerging field like quantum machine learning. Recently, quantum machine learning has become quite a
challenging field in the case of healthcare applications. As a result, quantum machine learning has become
a common and effective technique for data processing and classification across a wide range of domains.
Consequently, quantum machine learning is the most commonly used application of quantum computing.
The main objective of this work is to present a brief overview of current state-of-the-art published articles
between 2013 and 2021 to identify, analyze, and classify the different QML algorithms and applications in the
biomedical field. Furthermore, the approach adheres to the requirements for conducting systematic literature
review techniques such as research questions and quality metrics of the articles. Initially, we discovered
3149 articles, excluded the 2847 papers, and read the 121 full papers. Therefore, this research compiled
30 articles that comply with the quantum machine learning models and quantum circuits using biomedical
data. Eventually, this article provides a broad overview of quantum machine learning limitations and future
prospects.

INDEX TERMS Quantum computing, quantum machine learning, biomedical and healthcare.

I. INTRODUCTION
In recent years, Quantum technologies have been growing at
a rapid pace. The Noisy intermediate-scale quantum (NISQ)
devices combine with quantum physics, and quantum infor-
mation [1]. Quantum computers (QC) are the next big leaps
in computing, and they may be just around the corner. Unlike
classical computers, which use bits represented by either
0 or 1, quantum computers use qubits that can simultane-
ously represent both values. Quantum information is data that
represents the state of a QC [2]. A QC employs quantum
mechanical properties such as superposition, entanglement,

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenbing Zhao .

and tunneling [1]. As a result, QC can swiftly solve issues
beyond the capabilities of conventional devices [3]. The state
of quantum systems and quantum information techniques
are employed in machine learning (ML), and the interaction
is referred to as Quantum Machine Learning (QML) [3],
[4]. The performance and speed revolution of QML algo-
rithms uses the Moore Law. A computational criterion based
on quantum mechanics laws is called ‘‘quantum computa-
tion.’’ Quantum information and artificial intelligence (AI)
are prominent subjects in the current age of informatics
development [3].

The QML is widely used in almost every field of sci-
ence, such as Chemistry, Industrial, healthcare, physics, and
biomedical. This work focuses on biomedical applications,
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FIGURE 1. Quantum machine learning application in different healthcare domains.

which support a diverse study field including several appli-
cations, i.e., medical specializations and related diseases [5].
Some of these diseases are well-known and mastered by
physicians, while others are not. Medical practitioner’s tech-
nical and scientific advancements with biomedical data have
become increasingly diverse, including a wide variety of clin-
ical analyses and metrics, biological parameters, and medical
imaging modalities. Biomedical data are generally asymmet-
rical [5]–[7], non-stationary [5], and classified by a high
degree of sophistication [6] due to the volume of data and
the completeness of some unusual conditions.

Extensive research in biomedical engineering has been
conducted. Various researchers benefit by employing the
QML techniques in the biomedical domain, such as med-
ical imaging [8], clinical diagnostics [9], e-Healthcare
Records [10], and associated diseases [11], as shown in
figure 1. Physicians are familiar with some of these med-
ical specialties and diseases. The complexity and severity
of the disease can be distinguished using a wide variety
of data [5]. In such an era, the QML represents a massive
opportunity to assist physicians, biologists, and health practi-
tioners in using and positively impacting extensive medical
data analysis to reduce the possibility of medical errors.
It also generates a better harmonization of diagnosis and
prognosis protocols. The healthcare data use the QML tools
for medical image analysis, classification, prediction, and
diagnosis. Researchers have employed different QML algo-
rithms in the healthcare domain in recent years. Including the
very famous Quantum Support Vector Machine [12], Quan-
tum inspired ML [13], Variational Quantum Classifier [14],
Quantum Neural Network [15], Quantum Random Access

Coding [16], Quantum Convolutional Neural Network [17],
Quantum Deep Neural Network [18], Quantum Boltzmann
Machine [19], Autonomous Perceptron Model [20], Hybrid
Quantum Feature Selection Algorithm [21], and Quantum
Nearest Mean Classifier [22] on publicly available UCI ML
healthcare datasets [23], and some of them employed on
private healthcare datasets. In this manuscript, we deep dive
into analyzing the applications of QML in the healthcare
sector, especially in the biomedical domain. We distributed
the biomedical section on the basis of its applications, such as
Omics, biomedical imaging, biosignals, and medical health-
care records.We also gave the descriptive depth of the papers.
We created the paper’s quality metric to analyze and evaluate
the considered articles and discuss the research questions in
the discussion section, which will be helpful for upcoming
QML researchers.

The remaining part of the paper is divided into 7 sections.
The material, methods, and systematic review procedure are
discussed in Section 2. Section 3 dives into quantum comput-
ing. Section 4 is on QuantumMachine Learning and its algo-
rithms. The biomedical applications of QML are discussed
in Section 5. Then, we discussed the research questions in
Section 6, and in the last section, we concluded the article in
the conclusion section.

II. MATERIAL & METHODS
Material and Methods for the current systematic review have
been obtained by exploring and evaluating the information
presented in the previously published work, which is dis-
cussed in state of art. The desired article has been studied
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FIGURE 2. Flow graph of paper selection.

and defined based on the techniques used and achieved per-
formance. This section is further divided into 3 subsections.

A. DATA COLLECTION
In this subsection, we discussed data collection techniques,
such as the Search databases, search terms, inclusion criteria,
and exclusion criteria.

1) SEARCH DATABASES
State of the art was explored and employed via various
resources, including theWeb of Science, SpringerLink, IEEE
Xplore, Science Direct, Wiley Online Library, ACM, and
PubMed, as shown in Figure 2.

2) SEARCH TERMS
Different keywords and terminology were used to search
for articles on QC and QML in biomedical applica-
tions, and some were merged into the exact search. The
authors, for example, included the phrases ‘‘Quantum
Computing’’, ‘‘Machine Learning’’, ‘‘Biomedical’’, ‘‘Quan-
tum Machine Learning’’, ‘‘Quantum Neural Network’’,
‘‘Cancer’’, ‘‘Oncology’’, ‘‘Tumor’’, ‘‘Diabetes’’, ‘‘Pan-
creas’’, ‘‘cardiovascular disease’’, ‘‘Stroke’’, ‘‘Epilepsy’’,
‘‘Alzheimer’’, ‘‘Omics’’ and ‘‘Genomics’’, among others.

3) INCLUSION CRITERIA
The titles and abstracts served as the primary anthology
stage for understanding the papers and their fundamental

ifoundation, where duplicates articles were deleted. The cor-
responding papers were analyzed and retrieved using the
Mendeley application.

4) EXCLUSION CRITERIA
Those papers that did not cooperate, particularly with
QML methods and healthcare data, were excluded from the
manuscript.

B. DATA ANALYSIS
After selecting papers deemed appropriate for the review,
30 papers satisfied the requisite criteria, and the associated
full texts were examined. As a result, the following data were
extracted:
- Year and Country: As shown in figure 3, the review

article has attracted the attention of scholars in the previous
decade. As a result, knowing the year of the publication
and the different geographical locations has increased topic
interest. Figure 4 depicts the diffusion of QML in healthcare
research studies by countries like India that have made the
most contributions in this domain.
- The Type of the Publication: Figure 5 depicts the ratio

of articles merged in this manuscript. Type ‘‘J’’ includes
international journals, and Type ‘‘C’’ includes international
conferences and symposiums. Only 90% of the publications
evaluated journal articles, and the remaining 10% of articles
were conference papers.
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FIGURE 3. Published research articles in QML and healthcare domain.

FIGURE 4. Mapped the published article in quantum machine learning
and health-care domain as per country-wise.

FIGURE 5. Published journal and conference articles.

QC and ML have been widely used in related biomedical
applications. Research carried out in the field of QML in
the biomedical domain has been published exponentially,
as shown in figure 4.

There are three aspects to using machine learning in
biomedical applications. First, with the help of computer aid,

TABLE 1. Research questionnaire.

diagnosis assists the physician ineffective, early diagnosis
and less conflict. Second, one-on-one therapies overburden
medical patient’s care. Third, improve human well-being by
examining the scalation of diseases and social behaviors
associated with environmental factors [5].

C. METHODS
In this subsection, we have focused on finding a couple
of research questions from various articles considered. The
desired articles are deeply reviewed, analyzed, and evaluated
to form quality matrices. Research questions and paper qual-
ity metrics are given in Tables 1 and 2.

III. QUANTUM COMPUTING
The foundation of quantum computing (QC) explores the
difficulty of storing, processing, and analyzing data [24].
Quantummechanical systems are created by converting infor-
mation; the type of information is invariably referred to as
quantum information. Quantum information is data repre-
senting the state of a Quantum system [25].

The basic concept of quantum information is the state of
any quantum system with two degrees of freedom recog-
nizable by the participant; the logical values 0 and 1 are
called a Qubit [4]. A QC has the counter-intuition of quantum
physics phenomena like superposition, entanglement, and
tunneling [1], as shown in 6 (a,b) and 7. Therefore, a QC
can quickly solve problems beyond classical machines limits.
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TABLE 2. Designed point based quality metrics for evaluation of considered articles.

QC relies on the difference between binary digital computers
based on the transistor [7].

Quantum technology has three fields: QC, Quantum Infor-
mation, and Quantum Cryptography. The strength of QC
stems from the vast permutations that allow QC’s to have
twice the memory capacity and the addition of each qubit.
We require N bits of binary integers to define the classical
N-bit system. We know in quantum systems that the two
possible definite states are |0〉 and |1〉. The bipartite quantum
system’s general state can be represented as φ = α|00〉 +
β|01〉 + γ |10〉 + σ |11〉, as shown in figure 8. Four classical
bits of information can be easily generated by a two-qubit
quantum system (α, β, γ, σ ). Similarly, we can get 2N bits of
classical information from an N-qubit quantum system [26].

H|0〉 =
|0〉 + |1〉
√
2
; H|1〉 =

|0〉 − |1〉
√
2

(1)

QC are general-purpose of the Turing machine, a math-
ematical formula of computing that theoretically specifies
the characteristics of a machine and is essential to the per-
formance of symbols on a strip of tape using a detailed list
of norms. Quantum physics enables quantum state superpo-
sition, leading to quantum parallelism, which may be used
to perform stochastic processes faster than any conventional
method.

Such example the factorization of huge integers employing
Shor’s method [27]. Furthermore, if conventional and quan-
tum computers are used for the same objective, there may
be instances when quantum algorithms are shown to be even
more convenient. These techniques are classified as BQP
complexity (Bounded-error Quantum Polynomial time) [28].

Another complicated task in the traditional computation
framework is to solve Pell’s equation effectively using the
QC paradigm [28]. Furthermore, QC has made significant
advances in optimization and simulation. It entails deter-
mining partition module characteristics, approximation opti-
mization, and simulating various quantum systems. Quantum
simulations also have relevance in quantum optics and
condensed matter physics [29].

A. COMPARISON BETWEEN CLASSICAL AND QUANTUM
COMPUTING
There are several distinctions between conventional and QC.
The classical computer is known as amulti-targeted computer
on a broad scale. It is also dependent on the bit’s voltage or
charge. It only relates to two values: 0 and 1. Logic gates such
as AND, OR, NOT, NAND, and NOR are employed. It is
based on classical physics and employs the use of Boolean
algebra. It is used to describe discrete values. QC, on the other
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FIGURE 6. (a) Classical and quantum state (b) Quantum superposition and entanglement [8].

FIGURE 7. Quantum tunneling [9].

hand, refers to high-speed parallel computing using quantum
devices. In QC, storage is based on quantum bits [qubits]
that rely on the spin electron. It can convert not only 0 and
1 readings but also more complex data and even negative
values.

QC is based on continuous number of possible states
or infinite numbers. It based on quantum logic according
to information processing parallel. Mostly, The quantum
results [30] are based on the probabilities and the meaningful
information because the overlapping and entanglement for
the varied possible results. Quantummechanics is the respon-
sible for circuit behavior versus the classical type based on
classical physics. In this type, there are several restrictions
on copying or measuring signals. The circuit [31] must use
microscopic technologies that are slow, fragile, and not yet
scalable, such as NMR (Nuclear magnetic resonance).

FIGURE 8. Basic quantum computing circuit.

FIGURE 9. Comparison between machine learning and quantum machine
learning.

IV. QUANTUM MACHINE LEARNING
Quantum Machine Learning (QML) [3], [4] is a new multi-
disciplinary research domain that combines quantum physics
with ML. In the current state of quantum systems, quantum

80468 VOLUME 10, 2022



D. Maheshwari et al.: Quantum Machine Learning Applications in the Biomedical Domain

FIGURE 10. Intersection of machine learning and quantum information
processing [4].

FIGURE 11. Quantum logic includes the quantum parts for the technology.

information techniques are employed in machine learn-
ing, and artificial intelligence [4]. The interaction between
ML and QC is known as Quantum Machine Learning [3],
shown in figure 10. The use of QML has resulted in a
significant improvement in the performance and computa-
tional speed [32]. The term ‘‘QC’’ refers to a computational
paradigm based on quantummechanics rules. Quantum infor-
mation technologies and intelligent learning applications
are hot topics and recently released informatics technolo-
gies [33]. Quantum algorithms need to encode and decode
conventional data into a QC to be used for quantum informa-
tion processing [34], as depicted in figure 11.

Quantum processing of data is frequently used for QC
outcomes. The conclusion is deduced via a quantum sys-
tem assessment [35]. For example, the outcome of a qubit
measurement may reveal the outcome of a binary classifi-
cation task. Some QML algorithms, on the other hand, have
been implemented on specialized quantum devices or NISQ
devices. The most important promise of QC is the contin-
ual utilization of many computer units based on processing
power.

Quantum data processing is consistent, and it may be
handled using QC to yield consistent outputs. However,
ML improves solutions rapidly on QC and analyzes data con-
siderably more quickly [4]. Recently, QC has emerged as a
popular field of study, particularly in creatingML algorithms.
This field of study, dubbed ‘‘QML,’’ is gaining traction

FIGURE 12. Matrix of classical and quantum system [35].

quickly. Current quantum algorithms (QA) researchers are
working on building blocks and ML approaches. However,
the problems highlight the mix of hardware and software
challenges. 1) QC executes ML algorithms to solve problems
apart from the capacity of classical computers, such as big
data quantum techniques, adiabatic optimization [36], and
Gibbs sampling [37]. 2) Quantum theory techniques, such
as tensor and Bayesian networks, can be used to improve
learning algorithms [37]. QML is considered one of the future
research areas like ML and deep learning (DL). The ML and
DL algorithms could be eased by being implemented in QC.
The DL has become a familiar ML technique that depends
on ANN. On the other hand, the QML and AI algorithms are
optimized with the help of QC.

QML algorithms speed up the quantum systems, like
Bayesian Interface Online [38]–[40], Perceptron Least
Square Fitting [41], Quantum BoltzmannMachine [32], [42],
Quantum PCA [43], Quantum Support Vector Machine [12],
[44], Quantum Reinforcement Learning [45], [46]. QML
focuses on the divergent methods of QC and data mining to
enhance both fields. As a result, it is feasible to differentiate
four perspectives on QML, each deriving from the behavior
of the dataset that conceals the research and computation
devices used, shown in Table 3 and figure 12.

There are four different approaches to Classical-Classical
(CC), Classical-Quantum (CQ), Quantum-Classical (QC),
and Quantum-Quantum (QQ). As shown in figure 12,
in classical-classical (CC), ML algorithms are motivated by
the conformity of quantum mechanics. Therefore, the dataset
includes algorithms that can run on classical systems [19],
[47]–[52]. The Classical-Quantum (CQ) algorithms depend
on quantum computation and can speed up conven-
tional ML techniques [53]–[59]. Quantum-Classical (QC.)
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TABLE 3. Speedup technique for quantum machine learning [3].

ML methods are implemented and evaluated on QC
[61]–[66], [90]. Finally, a Quantum-Quantum (QQ) study
was carried out on the quantum using algorithms and quantum
systems [2], [67], [68].

The advantages of using QML models are simplicity, high
calculation, fast application of algorithms, query complexity,
and facilities for several new algorithms.

A. THE USAGE OF QUANTUM MACHINE LEARNING
Quantum learning theory aims to improve classical learning
models and possible performance increases by employing
a mathematical examination of quantum applications. Any
proposed framework targets enhancing a classical computa-
tional learning theory that must include a quantum informa-
tion device and quantum information processing. Whether
using classical data or quantum data, it can also be used in
simulations and searches as discussed follows.

1) QUANTUM SIMULATION
Simulation is a new trend to support various research areas
such as nanotechnology. The simulation in the chemistry field
depends on meaningful quantum systems. Quantum simu-
lation is utilized efficiently to simulate atoms and particles
behaviors during exceptional events [24].

2) QUANTUM SEARCH
The search process with quantum systems can provide
discrete logarithms and QA. It will lead to a more significant
polynomial speed rate than traditional approaches’
algorithms. For different tasks and conditions [25], such as
encapsulating physical-chemical processes, quantum, and
solid-state physics, Jones polynomial parataxis [27], and
making a solution to Pell’s equation [27].

B. QUANTUM DEEP LEARNING
The DL has drawn attention and streamed significant scien-
tific discoveries in the last decade. Quantum Deep Learn-
ing (QDL) is the combination of deep learning and quantum
computing. In recent years, positive development in the
field of QC. With the recent breakthroughs of variational
quantum circuits (VQC), QC, which has long been acknowl-
edged mainly for its promise, has opened up a new age of
vast potential. Furthermore, the astonishing aspects of the
different QA were demonstrated by addressing numerous

FIGURE 13. Schematic circuit of variational quantum circuit.

sequential optimization issues and the inherent energy prob-
lems of molecules, which were impossible to solve using
traditional methods. Future expansions are being studied
to create ML algorithms utilizing QC amongst all; QDL
domains are expanding at a rapid pace, absorbing the accom-
plishments of previous deep learning research [32]. As a
result, multiple significant accomplishments in QDL have
been reported, and recent research studies are given below.

1) VARIATIONAL QUANTUM CIRCUIT
A variational quantum circuit (VQC) [14] is a quantum
circuit that uses rotation function gates with random initial-
ization to carry out a variety of computational tasks like
approximation, optimization, and classification. An approach
that uses a variational quantum circuit is known as a vari-
ational quantum algorithm (VQA. A traditional computer
frequently conducts the VQCmodel parameters optimization
because of its universal parameterization characteristic. There
are several algorithms devised to address diverse numerical
problems.

This cycle resulted in various VQA applications inML and
replaced the present model’s artificial neural network (ANN)
with VQC. VQC is comparable to artificial neural networks
in that it closely resembles functions through parameter learn-
ing, but it differs owing to many QC properties. For example,
quantum circuits with multilayer topologies employ entan-
glement layers rather than activation functions because all
quantum gate operations are reversible linear operations [69],
as shown in figure 13. These VQCs are referred to as quantum
neural networks, and this research will classify them based on
their structure and characteristics.

2) QUANTUM NEURAL NETWORK
The neural network (NN) model is based on quantum
mechanics concepts [70]. Therefore, Quantum Neural Net-
work (QNN) [15] research is divided into two approaches:
one that significantly uses quantum processing to improve
neural network models and another that explores potential
quantum phenomena in the brain. Table 4 depicts the funda-
mental ideas of quantum physics and NN [70].

First, the input data is encoded into the appropriate number
of qubits equals qubits state. The qubit state is then converted
through several layers of parameterized rotation gates and
entangling gates, as depicted in figure 14. The transformed
qubit state is then quantified by calculating the anticipated
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TABLE 4. Main concepts of quantum mechanics and neural networks.

FIGURE 14. Schematic circuit of neural network quantum circuit.

outcome of a Hamiltonian operator, including Pauli gates.
Next, these measurements are decoded and converted into
usable expected output. Finally, an optimization technique,
such as Adam [71], COBYLA [72], or SPSA [73] optimizer,
is used to update the parameters. A neural network built in
that manner of a VQC fulfills the various tasks in several
contexts, which will be explored as quantum neural networks.

3) QUANTUM CONVOLUTIONAL NEURAL NETWORK
The quantum convolutional neural network (QCNN) [17] was
proposed in 2013, with the convolution layer and pooling
layer implemented on quantum circuits. On the basis of pre-
vious research findings, the QCNN [17] circuit computation
is carried out. Much like in any QNN architecture, the initial
step is to encode input data into a qubit state using rotation
operator gates. Next, the convolution layer filters the input
data into a feature map using the quasi-local unitary gates.
Using controlled rotation operations, the convolution layers
minimize the feature map. Repeating the following steps, the
adequately connected layer operates on the qubit state in the
same way traditional convolutional neural network (CNN)
models [74] do. Finally, the qubit state measurement is
decoded into the system output of the required dimensions,
and after each measurement, the circuit parameters are mod-
ified using a gradient descent-based optimizer as shown in
figure 15. However, it is also believed that relatively large
quantum operations are feasible in the forthcoming QC
ecosystem, and the QCNN will be able to obtain con-
siderable computational benefits over its conventional
counterparts [75].

C. QUANTUM MACHINE LEARNING ALGORITHMS
The combination of DL and ML methods refers to the suc-
cessful result and powerful quantum, but these results are
confusing and complex to use in different areas. Several types
of research try to improve ML works by quantum linear alge-
bra subroutines to make it faster. Quantum classifiers contain
SVM Support vector machine and KLS kernel least squares.
However, the implementation of QC [60] is cumbersome and

FIGURE 15. Schematic circuit of quantum convolutional neural network
circuit [75].

TABLE 5. Quantum machine learning algorithms.

complex. This process requires relying on different quantum
models. QC models are based on the items of decomposing
computation. Some essential quantum models are shown in
Table 5, which are essential in implementation, theoretically.

D. TOOLS USED IN QUANTUM MACHINE LEARNING
In the last decay, most researchers were working on different
NISQ devices, and every device is different from its com-
panion. Here are some advantages and challenges of QC in
Table 6.

1) QUANTUM ALGORITHMS
Quantum Algorithms (QA) [109], [110] are known as Algo-
rithms to execute on the practical Quantum computational
model. The most popular QAs are Shor’s Algorithm [26] and
Groover’s Algorithms [80]. Shor’s algorithm is helpful for
factorization, and Groover’s algorithm for the unstructured
database or scrambled data. Shor’s and Groover’s algorithms
are executed exponentially faster than the best-known clas-
sical algorithms for factorization and unstructured databases.
Some types of algorithms are shown in figure 16.

2) QUANTUM FOURIER TRANSFORM
It is defined by the quantum analog of discrete Fourier trans-
form that can be efficiently executed on a QC using only a
polynomial number of quantum gates. Figure 16 and Table 7
show some Quantum Fourier Transform algorithms.
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TABLE 6. Quantum computing tools.

FIGURE 16. Quantum algorithms flowchart [109].

3) AMPLITUDE AMPLIFICATION
Numerous QAs for ML is founded on the principle of ampli-
tude encoding, which involves associating the amplitude and

frequency of a quantum state with the inputs and outputs of
computations. Several QML methods in this classification
are based on versions of the QA for linear systems of linear
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TABLE 7. Quantum Fourier algorithms.

equations in certain circumstances. The performance of an
inversion matrix incorporates physical resources that rise
only logarithmically in matrix dimensions. Quantum matrix
inversion is worthwhile in ML approaches when the training
is reduced to calculate a linear programming problem, such
as least-squares linear regression, the least-squares version
of support vector machines, and Gaussian processes. The
amplitude amplification algorithms are shown in figure 16
and Table 8.

4) QUANTUM WALKS
A quantum walks [119], [120] is defined by the analog of
quantum in the traditional random walk. It used probability
distribution in some cases. A quantum superposition can
describe a quantum walks [122] over states. Quantum walks

TABLE 8. Amplitude amplification algorithm.

TABLE 9. Quantum walks algorithms.

TABLE 10. BQP-complete algorithms.

provide exponential speedups results for several black-box
challenges. They rely on polynomial speedups in different
problems. In Table 9 and figure 16 introduces the quantum
walks algorithms.

5) BQP-COMPLETE
BQP–complete algorithms aim to simulate a topological
quantum field and simulation that needs an exponential
time [117]. Some of BQP- Complete algorithms are shown
in figure 16 and Table 10.

6) HYBRID
Hybrid QA that can integrate quantum situation preparation
and evaluation with conventional optimization. The target
is to detect ground state eigenvectors and eigenvalue of
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FIGURE 17. (a) Color code fields of Biotechnology and (b) different domains of Biomedical [5], [124].

TABLE 11. Hybrid algorithms.

Hermitian Operators. The hybrid algorithms are shown in
figure 16 and Table 11.

V. QML IN BIOMEDICAL DOMAIN
Biotechnology is the associative discipline of engineering,
physics, biology, and chemistry. Biotechnology was discov-
ered by the Hungarian engineer Karl Erkey in 1919 [124].
Biotechnology combines two different entities; the word bio
means life, techno means technical, and logy means study.
The Organization for Economic Co-operation and Devel-
opment (OECD) defines biotechnology as applications of
scientific and engineering principles to the processing of
materials by biological agents to provide goods and services;
new biotechnology involves cellular and molecular processes
to solve problems or make products’’ [125]. Biotechnol-
ogy is divided into four colors, Red, Blue, White, Green,
and other additional colors define the areas, as shown in
figure 17a. Our focus is on the red color [126], which is
Medical or biomedical engineering. Biomedical plays a vital
role in predicting and classifying diseases in healthcare.
Moreover, biomedical is divided into four major domains:
Omics, biomedical images, BioSignals, and medical health-
care records, as shown in figure 17b. Omics is concerned
with bioinformatics, biomedical imaging, which focuses on
human diagnostic images, BioSignals involved with human
signals, and medical healthcare records, which are concerned

with patient’s medical records. Using the QML algorithms in
biomedical data enhances the prediction and classification of
diseases to better future treatments.

A. OMICS
Beginning with genomic sequence, gene expression, and
going through protein structure prediction. The bridge
between protein and medicine, the early stage of biomedical
research, is concerned with all research. The prominent
research field where QML plays a crucial part in Omics
is rapidly increasing. The subject is commonly referred to
as ‘‘omics’’ in the current state of the art; the alternative
terms are used to call, such as bioinformatics [127] or
biomedicine [128]. The word ‘‘omics’’ refers to derived data
from genetics and (gene/epigene/ meta/ pharmacogen/ multi-
ple) omics [129], with the primary objective of research being
to anticipate and prevent disease by including patients in
the creation of effective and personalized treatments, such as
Gene interaction, protein-DNA interaction. Omics is further
broken into two fields: DNA [130] and protein [131]. The
most significant aspects of DNA are protein-DNA interac-
tions, gene expression prediction, and genomic sequencing.
The categorization of cancer-causing genes in order to iden-
tify Cancer early on is still a work in progress. Genomic
sequence, protein binding prediction, gene expression, and
genomic sequence are QML techniques used to predict phe-
notypes from the genome. Some of the recently published
research studies in the field of Omics and QML are given in
Table 12.

In Dabba et al. [86] discussed the novel swarm intelligence
algorithm was used for binary and multiclassification of
Omics (Colon, Leukemia1, Breast, Ovarian, Prostate Tumor,
Leukemia2, Small Round Blue Cell Tumors (SRBCT),
Brain Tumors1, Brain Tumors2, Lung cancer, 9 Tumors,
and 11 Tumors) datasets. The author used the quantum moth
fame optimization algorithm (QMFOA) to classify the small
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TABLE 12. Published articles in omics.

gene subsets. In addition, the pre-processing chose the fea-
ture selection, and cross-validation techniques were used
to classify the Cancer. Quantum-inspired Machine Learn-
ing (QiML) was used by Sergioli et al. [132] to categorize
clonogenic test assessments. The quantum-inspired Helstrom
Quantum classifier was employed in the biomedical imaging
context of clonogenic test assessment for cell colony seg-
mentation, and the author applied pre-processing techniques
such as feature extraction, normalization, and scaling. The
QMLapproachwas utilized for binary classification ofOmics
(cancer, genome, brain, lung, breast, liver, kidney, colon,
and rectum) datasets in Li et al. [67] discussed. The author
employed the Quantum Ising approach to categorize the tiny
gene subsets. On the DWave Quantum Ising system [106],
data pre-processing, normalization, random cut, and PCA for
features selection approaches were also employed in conjunc-
tion with the QSVM technique.

Furthermore, researchers are highly keen on employing
quantum approaches in the omics domain. In contrast, various
QML models are commonly used to predict and classify
omics data.

B. BIOMEDICAL IMAGING
At the same time, QC researchers can overtake the com-
putational power of thousands of supercomputers in terms
of swiftly hastening and utilizing the pace of research in
medical imaging using QML. Biomedical images are referred
to as ‘‘medical images.’’ Which may be cytopathology
and histopathology [133], ultrasound [134], X-rays [135],

CT scans [136], MRIs [137], fNIR [138], and PET
images [139].

Human organs are evaluated and investigated in medical
imaging using different (medical/clinical/health) imaging
techniques. This elicits an accumulation of the examina-
tions expected to be executed. On the other hand, a com-
puter is working at quantum speed, intending to hasten the
complex study, which had been making confident progress
for the cancer study. The study of cells and tissue is
known as cytopathology and histopathology. Diagnosticians
often use cytopathology and histopathology for Cancer and
some infectious and inflammatory diseases. Cytopathol-
ogy and histopathology slides for the biopsies are exam-
ined under a microscope [87]. Biomedical imaging systems
such as CT, MRI, Ultrasound (US), Digital Positron Emis-
sion Tomography (PET), X-rays, and histopathology images
significantly enhance the classification and prediction of
diseases [91]–[93]. Biomedical imaging aims to accurately
diagnose the disease, which depends on image acquisition
and interpretation of the images. Image acquisition tech-
niques have improved exponentially due to the development
of technology lately. Doctors generally perform interpretation
of medical imaging, and there may be many differences
between interpreters and drowsiness.

In recent pandemics, various QML algorithms have been
used on the COVID-19 lungs X-rays images to classify the
disease are shown in Table 13. Sengupta and Srivastava [91]
presented the QML algorithm, and image processing tech-
niques tend to classify the COVID-19 disease accurately.
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TABLE 13. Published articles in biomedical imaging.

They implemented the QNN on COVID19 Indian patient
x-rays images. Acar and Yilmaz [92] elaborated on the
QML algorithm to classify and diagnose COVID 19 patients.
They employed the VQC algorithm on different QC such
as IBM Qiskit, Google Cirq, and Xanadu Pennylane sys-
tem, using the COVID 19 patient’s images. Amin et al. [93]
presented the QML algorithm and image processing tech-
niques to classify the COVID disease with high accuracy
and precision. This article implemented QNN (3 dense lay-
ers, 500 neurons, ReLU activation, and 02 neurons with
SoftMax for features mapping) with 4 qubits on Penny-
lane using COVID 19 Pakistani and Chinese patient’s lungs
CT images. El-Shafeiy et al. [81] presented the QML and
image processing techniques to predict the severity of the
COVID 19 patients. They employed the quick Reduction
Feature Selection (QRFS) method for essential features to
enhance the model performance. In addition, they imple-
mented CQNN on COVID 19 patients (1 to 15 days) lym-
phocytes and blood counts to predict the patient’s condition.
Finally, the proposed method outperformed its counterparts
in terms of effectiveness and high margin of accuracy. Iliyasu
and Fatichah et al. [140] illustrated quantum hybrid (QH),
quantum-behaved particle swarm optimisation (QPSO) tech-
niques for the detection and classification of Cervical Cancer.
The QPSO methodology has been used for feature selection
after combining the quantum hybrid Quantum-Fuzzy tech-
nique on cytopathology cervical Cancer. They concluded that
the coordination between QPSO, Fuzzy K-NN, and Q-Fuzzy

approaches enhances classification accuracy. The quantum
genetic method for edge detection and classification was
presented by Jamal et al. [87]. The author used the quan-
tum genetic algorithm and SVM on breast cancer pictures
to tackle this challenge. The researchers used the quantum
genetic algorithm to solve a multi-level thresholding concern
premised on Tsallis entropy. The SVM is used to train the
model with breast cancer images for edge detection.

In light of the aforementioned articles, it can be concluded
that QMLmodels are extensively used in biomedical imaging
for prediction and classification tasks. Various authors used
different QML techniques for bioimaging datasets, whereas
they have achieved outstanding quantum results compared to
classical models.

C. BIOSIGNALS
Biosignals play a significant role in the healthcare domain.
BioSignal is concerned with electrical signals produced by
brain neurons, tissues, and muscles and detected by biomed-
ical sensors [141]. A BioSignal interface is a combination of
hardware and software that allows brain activities to be con-
trolled by a computer [142]. The BioSignal system is divided
into four major categories: sensors, amplifiers, filters, and
control devices. Body interfaces encode, decode, and process
biosignals that originate from the body and are facilitated by
the machine. Human brain neurons generate signals based
on activities that are voluntary and reflex actions. Different
methods for signal accretion have lately evolved [5].
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TABLE 14. Published articles in BioSignals.

For biosignals, accretion methods are further divided into
invasive and non-invasive. Invasive methods include sensory
insertions into the human body, like Electrocorticography
ECOG. Non-invasive data collected from the epidermis
include electroencephalograms (EEG), magnetoencephalog-
raphy (MEG), and functions Near-Infrared Spectroscopy
(fNIRS). The non-invasive acquired signals from tissues,
such as an electrocardiogram ECG, an electrooculogram
EOG, and an electroencephalogram EEG. ECG measures
the heart’s electrical activity and diagnoses coronary artery
disease; EOG measures the cornea-retinal of the front and
back of the human eye and diagnoses ophthalmological diag-
nosis and eye movement; and EEG diagnosis of brain-related
diseases like Alzheimer’s, dementia, and so on. In the
study of the movements and ability of muscles, electromyo-
grams (EMG) measure the electrical activity of prosthetic
movement and the ability of skeletal muscles. For better
accuracy and to avert the disadvantage of each type of signal,
such methods are used with a combination of different body
signals [5]. Some of the recently published research studies in
the field of Biosignals andQML are given in Table 14. In such
context, Aishwarya et al. [75] explained different QML clas-
sifiers by considering the cognitive states of human behav-
ioral outcomes. This system utilized QML algorithms such as
VQC, hybrid quantum-classical neural networks, and Quan-
tum annealing Qboost on 14 channel EEG signals, including
the pipeline that combined the QML methods to predict
future cognitive responses. Gandhi et al. [82] elaborated the
QML algorithm on the brain-computer interface signals to
classify the nonstationary stochastic signal as time-dependent
wave packets. The author implemented QRNN on the EEG
signals using different noises and filtering methods. The
Savitzky–Golay filtered EEGhas been comparedwithQRNN
EEG filter signals, significantly improving brain-computer
interface performance.

D. MEDICAL HEALTHCARE RECORDS
Medical Healthcare Records (MHRs) are developed to evalu-
ate enormous sizes of medical data in order to enhance health-
care benefits in the medical industry. Disease outbreaks, such
as epidemics and pandemics, are studied in connection to
human and ecological variables [143]. Clinical test results,
radiographic scans, BioSignal, drug history, and treatments
are all in MHRs, a viable patient records tool. In order to
make better healthcare outcomes, QML is a vital technique

to interpret clinical data in the temporal domain. Model-
ing lifestyle disorders like obesity regarding geographical
locations is also part of MHRs. Using social media, where
people’s lives and social interactions are publicly shared
online, it is now possible to track public health risks such
as contagious intestinal infections or territorial obesity [5],
[144]. Some of the recently published research studies in the
field of MHRs and QML are given in Table 15.

Examining such clinical data against temporal dimen-
sions presents an excellent opportunity for QML in health-
care decision-making and creating knowledge-distillation
approaches to classifying illnesses. In recently published
studies, various authors used different approaches to clas-
sify MHRs data. Maheshwari et al. [88] highlighted the dif-
ferent QML approaches for binary classification on the
diabetes dataset. The author used pre-processing, state prepa-
ration, and data encoding approaches on QSVM, VQC,
and AEVQC models to improve the model efficiency. They
concluded that the classical system exceeded the quan-
tum system by a little margin. With the PIMA diabetes
dataset, Gupta et al. [95] employed the exploratory data anal-
ysis (EDA) and pre-processing technique for data scaling
and applied it to the VQC, root mean square propaga-
tion (RMSprop), and DL models for classi?cation. They
used back-propagation and the VQC approach to assess
RMSprop in that research. Sierra-Sosa et al. [145] estab-
lished a pre-processing pipeline approach that employs fea-
ture scaling, feature selection, an ellipsoidal coordinate map,
and stroke parameters to assess if diabetes is linked to acute
illnesses using VQC. They used the two features and three
features of diabetic mellitus datasets to investigate the nor-
malized and zero standard deviation, ellipsoidal transform,
and Poincare sphere in the domain of VQC. Using the
Poincare sphere, they improved precision. The classical and
quantum algorithms were used by Maheshwari et al. [2] to
create a voting model to forecast diabetes with acute illnesses
using ensemble techniques and compute the computational
time using the DWave System’s QPU. In addition, the tradi-
tional voting model was compared to the hybrid New Model
voting approach in such a study. Both models had almost
the same accuracy; however, the new hybrid approach was
55 times faster than the conventional voting model.

To classify diseases, different authors explored the various
QML on the publicly available UCI ML repository (skin can-
cer, breast cancer, lung cancer, diabetes, and liver) datasets.
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TABLE 15. Published articles in Medical Healthcare Records.

They have adopted different pre-processing techniques to
enhance the performance and avoid the complexity of the
model. In the QML algorithms QSVM [89], VQC [16],

[90], [96], [146], QRAC [16], QCNN [94], QBM [98],
APM [20], QNN [83], [84], [147], HQFSA [21], HOP-
WKELM [148], and QNMC [49], pre-processing techniques
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include feature selection and normalization SDG and dis-
crete feature mapping, cross-validation, autoencoder, post-
processing, and quantum parallel amplitude estimation and
amplification are used. To summarize, QML, like traditional
ML, hasmade significant contributions in the realm of health-
care, particularly in disease segmentation, detection, and
healthcare regression issues.

VI. DISCUSSION
This part aims to complete the questionnaires in Table 1,
summarize all the data provided in this literature review, and
evaluate the possibilities for future medical applications and
QML approaches. Based on the statistical data presented in
the preceding section, it can be concluded that, based on the
number of articles published on a particular theme of the
topics. The comprehensive study can be considered the hot
topic that has primarily piqued and interest of the scientific
community since 2013. Following that, the questions posed
at the research commencement will be addressed to grasp the
issue and form an opinion correctly. Instantly, it is stated that
in the ensuing discussion, several papers will be identified as
samples of particular scenarios or criteria from those with the
optimum quality score and those that are more illustrative.
The general form and substance of the articles have been
evaluated and analyzed in Table 1. It stated the importance of
the paper quality and application in the healthcare domain
could be achieved by evaluating the performance and attain-
ing accuracies of the published articles are given in Table 16.

Q1: We evaluate the QML models which are implied
in the desired applications. The state-of-the-art methods of
general-purpose healthcare are examined and adapted to the
interests of the patients. This approach is coupled with other
technologies to play an essential role in a specific healthcare
field [2], [88], [145]. In QML, the results of other methods
are compared using well-knownmetrics [110] and taking into
consideration other features of the systems, such as speed or
real-time applicability in the form of accuracy. Benchmarks
that are freely accessible are compared with the counter-
part system’s performance. Furthermore, a dataset including
omics [9], MHRs [10], Biosignal’s [9], and images [8] of the
specific use case is developed and compared with other QML
systems, which is a perfect way to evaluate the developed
system. The paper’s positive aspect is its replicability; even
though a comparison of the produced approach and other
QML systems is presented, neither the code nor the datasets
are publicly available. Preserving the work privately is under-
standable because the developed system may have commer-
cial applications in the future. However, the consideration of
publicly available public datasets for evaluation could be an
interesting approach for the research community to contribute
to future aspects.

Q2: QML plays a vital role in healthcare, such as Can-
cer, COVID-19 detection and Omics, diabetes, heart and
liver diseases classifications [2], [49], [84], [86]–[88], [91],
[92], [140], [145]. The computers ‘‘understand’’ computa-
tional input and provide predictable outcomes by utilizing

fundamental algorithms. To set the door for a spectrum of
uses, including creating clinical care standards and clini-
cal decision assistance. Disease diagnosis and classification,
particularly for difficult-to-diagnose disorders, is one of the
primary uses of QML in healthcare. For instance, QML
can assist and detect the tumors and malignancies in
their early stages, as well as hereditary illnesses, in addi-
tion to established diagnostic approaches. Each successful
application is an essential step in the development of QC.
One of these applications lies in advancing Machine Learn-
ing (QML) techniques, a technology widely used in many
healthcare applications motivated by advances in different
diseases [151]. QC approaches are developing exponentially,
and several industries have significantly seen advancements.
However, QC implies and processes the advancement in every
point, but it must be evaluated in real-world problems. It could
enable QC and QML techniques in the healthcare system to
enhance and expedite the computation of the existing ML
model, which allows for novel methods to comprehend the
disease’s complex behavior [2], [145].

Q3: Reviewing and evaluating the articles, QML implies
using healthcare data to classify and detect different disease
patterns. Different authors used various QML algorithms
in different aspects of healthcare data. QML algorithms are
widely used in healthcare QSVM [88], [89], VQC [16], [88],
[90], [96], [145], [146], Qboost [2], [67], QNN [83], [84],
[147], QCNN [75], [91], [93], [94], Quantum hybrid models
[21], [148], QDNN [23], QBM [19], [98], and so on. Based
on application, the authors implied the different healthcare
data models. The most commonly used models are QSVM
and VQC. Most of the researchers employ earlier proposed
by various scholars as to the foundation of their methods,
transfer learning with public or private datasets, and then
apply techniques to increase the efficiency of such systems
in certain healthcare domains. From a technical perspective,
analysis is followed, and the data shown in Table 4 shows
that there is indeed diversity in terms of QML use in the
healthcare domain. On the other hand, various studies have
discovered that explicitly use general-purpose QML models
in a healthcare context, attempting to test the applicabil-
ity of such methods in those specific applications. Some
articles endeavor to revive current systems or frameworks
that have demonstrated exemplary performance and practi-
cal purpose applications by employing various methodolo-
gies aimed at overcoming particular challenges in specific
circumstances.

There is a particular adoption in this frame of refer-
ence: in QMLmodels, there are twomost important things are
state preparation techniques [71], [91] and feature map [88],
[89], [95], [96], [145], [146], different data encoding meth-
ods, such as feature extraction methods [81], [95], [98],
[140], [148], and data encoding methods, like basis encoding,
amplitude encoding [71], [88], and other encodings. The state
preparation method encodes classical data into the quantum
state, and the feature map is converted 2D to higher dimen-
sions using Hilbert space [88], [89], [95], [96], [145], [146].
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TABLE 16. Content of evaluated considered research articles based on merit points.

Q4: Yes, QML models are also tested on all types
of datasets, whether publicly available [20], [49], [84],
[94]–[96], [120], [146], [147] or private [67], [75], [82],

[86]–[88], [98], [120], [132], [145]. On the one hand, numer-
ous authors produced their own datasets for system develop-
ment and testing using manual annotations or other ground
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truth predication. Which certainly did not publish in the
public domain. Conversely, most researchers developed and
released datasets to benefit the scientific community. The
most common QC system used by the scientific commu-
nity, such as DWave systems quantum annealing [106], IBM
Qiskit [105], and Google Cirq adiabatic system [103] for the
QSVM, VQC, QNN, QDNN, RQN, QHM, and so on.

Q5: We have achieved the reliability and validity of
research work by analyzing the multiple states of the art using
different techniques. We considered 30 articles from different
sources of databases. The reliability of the work has been
obtained by analyzing these articles through quality matri-
ces, as shown in Table 2. The Quality metrics describe the
complete information of the previous state of the arts. i.e., the
paper’s content and additional quality measurement as shown
in Table 16. In the content of this article, we deeply evalu-
ated the manuscript’s key points, such as the comprehensive
overview of the background problem, literature review, eval-
uation of the system, execution of QML classifier, enhance
the system predication, impartial discussion, and limitation
of the study. In addition, we analyze the research dataset,
availability of code, and research novelty.

Furthermore, the reliability of work is obtained by cluster-
ing the different healthcare domains such as Omics, biomed-
ical imaging, Biosignal’s, and medical healthcare records.

VII. CONCLUSION
This manuscript elaborates on the systematic review to iden-
tify, evaluate, and analyze the quantum machine learning
algorithms in the healthcare domain: All of the articles in
this field of study were assessed impartially. As a result,
we discovered 3149 publications from 5 different databases
throughout the selection process of papers published between
2013 and 2021. By eliminating repetitions and using alterna-
tive criteria and quality evaluations, wewere able tominimize
the number of articles. 30 publications were chosen as the
most relevant for this study. During the literature review,
we find the different QML designs and implementations.
However, the primary trend of the QML algorithm was QNN,
which were VQC, QDNN, RQNN, and QHM, along with
different standardization of data encoding techniques for the
classification of images and UCI well-known datasets such
as Cancer, diabetes, liver, heart, and lungs. Several findings
might be drawn on various parts of the reviewed material
during the literature review. To begin with, as a definitive
consensus, there is a dearth of articles on the particular topic
of QML applied to the healthcare domain. Even though hun-
dreds of publications can be retrieved by utilizing relevant
search phrases, only several other attendant articles are avail-
able. The limits of noisy intermediate-scale quantum devices,
the restricted number of quantum bits, and the limited size of
sample data were all noted by the majority of writers in their
research papers.

Future approaches to QML algorithms open up endless
possibilities for researchers. A large number of quantum bits
and a vast amount of data will contribute to enhancing and

developing quantum technology. Explore diverse data encod-
ing methods in order to apply QML to human healthcare
problems.
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