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Quantum Private Set Intersection
Cardinality Protocol With Application to

Privacy-Preserving Condition Query
Run-Hua Shi and Yi-Fei Li

Abstract— Private Set Intersection Cardinality (PSI-CA) is one
of the most concerned issues with the protection of privacy,
in which two parties jointly compute the intersection cardi-
nality without revealing their respective private sets. There are
important applications of PSI-CA in real society, e.g., strongly
privacy-preserving data statistics in contact tracing for health
authorities to fight the outbreaks of highly contagious diseases.
In this paper, we present a novel quantum PSI-CA protocol,
in which we adopt oblivious quantum key distribution, secure
quantum summation and quantum counting algorithm. The
proposed PSI-CA protocol not only ensures the approximatively
perfect security but also achieves the linear communication
complexity, i.e., O(N). Furthermore, we define a new privacy pro-
tection problem, i.e., Privacy-preserving Condition Query (PCQ),
and provide an efficient solution to the PCQ problem based on
the proposed quantum PSI-CA protocol. Finally, we verify the
correctness and the feasibility of the proposed quantum PSI-CA
protocol by circuit simulations in IBM Qiskit.

Index Terms— Quantum computing, quantum key distribution,
secure multiparty computation, circuit simulations.

I. INTRODUCTION

NOWADAYS, privacy protection becomes a focus of
attention in the cryptography community. Accordingly,

a variety of privacy-preserving issues emerge, among which
Private Set Intersection (PSI) [1] is a well-known primitive
protocol that enables two parties to jointly compute the inter-
section of their respective private sets without revealing any
private information.

There are lots of practical applications of PSI, especially
in both privacy-preserving and data-sharing settings [2]–[5].
For example, PSI can allow a person to determine if the
data they gathered in contact tracing matches the dataset of
diagnosed patients without revealing their private information.
Please note that contact tracing is a powerful countermeasure
that can be utilized to control the spread of infection during a
global pandemic of the novel coronavirus.
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However, for specific security settings with higher privacy
requirements (e.g., strongly privacy-preserving data statistics),
PSI reveals information excessively. Furthermore, Private Set
Intersection Cardinality (PSI-CA) is relatively advantageous
as it meets higher security requirements, which outputs only
the cardinality of the intersection, rather than any element.

In 2004, Freedman et al. [1] first considered the problem
of computing the intersection of two-party private sets and its
variants. Accordingly, they presented several PSI and PSI-CA
protocols by using homomorphic encryption and oblivious
polynomial evaluation. Due to its importance, subsequently,
there appeared many PSI-CA protocols [6]–[14]. Among these
PSI-CA protocols, especially, Cristofaro et al. [7] presented a
PSI-CA protocol with linear computation and communication
complexity. They employed Diffie-Hellman key exchange to
blind the private information and built an efficient PSI-CA
protocol based on the difficulty assumptions of the discrete
logarithm problem, which achieves linear complexities in the
size of two sets. Recently, Pinkas, et al. [15] proposed novel
circuit-based protocols for computing variants of PSI with an
almost linear number of comparisons via Cuckoo Hashing.
In 2019, they further presented the first circuit-based PSI
protocol with a true linear complexity [16], which is also
concretely more efficient than all previous circuit-based PSI
protocols.

However, the security of most existing PSI-CA protocols
is based on the difficulty assumptions (e.g., the difficulty of
factoring and finding a discrete logarithm), which are vulner-
able to the attacks by quantum computers or fast quantum
algorithms [17]–[19]. As a consequence, the designing of
quantum-resistant PSI-CA becomes one of the hot research
topics in classical cryptography. On the other hand, quantum
cryptography [20]–[23] has emerged as an important comple-
ment to classical cryptography, whose security mainly depends
on the fundamental laws of quantum mechanics so that it can
guarantee unconditional security in theory.

In this paper, we present a quantum approach to solve the
PSI-CA problem, which can be roughly divided into three
stages. Firstly, the client and the server generate two auxiliary
datasets associated with their respective original sets by adopt-
ing oblivious quantum key distribution. Secondly, two parties
securely compute the summations of two auxiliary datasets
by the help of quantum random access memory. Finally, the
client rightly outputs the cardinality of their intersection by
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executing quantum counting algorithm. The proposed quantum
PSI-CA protocol indeed achieves the linear communication
complexity, i.e., O(N) qubits instead of O(N) quantum mes-
sages, so it is more suitable for big data applications. The
security of the proposed protocol is based on the physical
principles of quantum mechanics, instead of the difficulty
assumptions, and hence it has the advantage of higher security
compared to classical related protocols. What’s more, we focus
on PSI-CA’s applications. Especially, we consider a new
but interesting query problem, later called Privacy-preserving
Condition Query (PCQ). For example, there is a statistics
table of all students’ test scores, which is kept by a dean
in secret. Though each student knows his/her score, he/she
further wants to learn how many students’ scores are higher
or less than his/her score, but he/she does not like to reveal
his/her identity (i.e., name) and other privacy (e.g., score).
Besides, each query should not reveal others’ privacy yet.
Moreover, e.g., an employer privately keeps a form, which
records all employees’ salaries. Similarly, an employee wants
to know his/her salary level by privately querying how many
employees’ salaries are within a region near to his/her salary.
Finally, based on the proposed quantum PSI-CA protocol,
we construct a novel quantum solution to the PCQ problem.

Our contributions in this paper are summarized below.
(1) We design an efficient encoding method based on obliv-

ious quantum key distribution and further compute Private
Set Intersection Cardinality by classical and quantum hybrid
technologies, e.g., classical one-time pad, quantum summing
and quantum counting.

(2) We present a secure and efficient quantum protocol to
privately compute the summations of two datasets.

(3) We first define an interesting privacy query, i.e., Privacy-
preserving Condition Query, and present its corresponding
solutions based on quantum protocols proposed above.

(4) Finally, we design the simulated quantum circuits and
verify the correctness and the feasibility of the proposed
quantum protocols by circuit simulations in IBM Qiskit.

II. RELATED WORKS

A. Quantum PSI/PSI-CA Protocol

In 2016, Shi et al. [24] first presented a cheat-sensitive
quantum protocol for Private Set Intersection (PSI) using
phase-encoded private query. At the same time, they designed
a two-party quantum protocol for Private Set Intersection
Cardinality (PSI-CA) [2], which can output a good estimator
of the intersection cardinality with high probability and small
error. Compared with the classical relevant protocols, the pro-
posed quantum PSI-CA protocol has the higher security and
the lower communication complexity. Especially, it achieves
the communication complexity of O(1), which is fully inde-
pendent of the size of data sets. However, this protocol
requires some additional assumptions about the cardinalities
of the input sets [25], which may limit its wider applications.
In 2018, Shi successfully discarded these assumptions and pre-
sented a stronger quantum PSI-CA protocol without any limi-
tation using secret splitting, quantum multiplication and other
operators [25]. However, these protocols need the complicated

oracle operators. Subsequently, in order to enhance the realiz-
ability, Shi et al. introduced a non-colluding third party to help
two legitimate parties to compute the intersection cardinality
with single photons [26] or EPR pairs [27]. Recently, Liu et al.
presented an improved PSI-CA protocol with single photons
using Bloom filter in Ref. [28].

In addition, Li et al. [19], Zhang et al. [29], and
Wang et al. [30] extended two-party PSI-CA to multi-party
PSI-CA and presented the corresponding multi-party quantum
PSI-CA (PUI-CA) protocols.

Like quantum key distribution (QKD), the feasibility of
quantum PSI/PSI-CA protocols is the focus of research.
However, there are two intractable issues to implement these
existing quantum protocols: one is that it is difficult to imple-
ment the complicated oracle operators and measurements in
high-dimensional Hilbert space and the other is that it is hard
to find a fully trusted third party in the real world.

Therefore, it has always been our goal to design the practical
and feasible quantum PSI/PSI-CA protocols with the present
quantum technology.

B. Oblivious Quantum Key Distribution

In 2011, to ensure the better feasibility of quantum pri-
vate query, Jakobi et al. [31] proposed a practical quantum
key distribution protocol, hereafter called oblivious quantum
key distribution (OQKD), in which an oblivious key can be
distributed between two legitimate parties by using SARG04
QKD [32], where the sender knows the whole key while the
receiver only knows a few bits of the key. The main process
of OQKD can be briefly described as follows: The sender
randomly prepares a long sequence of photons which are in
one of four polarized states {|0〉, |1〉, |+x〉, |−x〉} and then
sends the photon sequence to the receiver in order, where each
photon carries a bit of classical information, e.g., |0〉 and |1〉
represent the bit 0, while |+x〉 and |−x〉 denote the bit 1.
After receiving each photon sent from the sender, the receiver
measures it randomly in {|0〉 , |1〉} basis or {|+x〉 , |−x〉} basis.
For each photon that the receiver has successfully measured,
the sender announces a pair of states: one that has been
sent actually and the other that is selected randomly from
the other basis. However, the receiver does not know which
one is true. For example, if |+x〉 has been sent, the sender
will announce {|1〉, |+x〉} or {|0〉, |+x〉} at random. This
process is the same as in the SARG04 QKD [32]. According
to the sender’s declaration and his measurement result, the
receiver can successfully identify the carried bit value with the
probability of 1/4. By this way, it asymmetrically distributes
a secret string between two parties, such that the string is
known entirely to the sender but in a quarter to the receiver.
Furthermore, in order to reduce the receiver’s information
on the string, two parties cut the raw string into multiple
substrings of length N , and add these strings bitwise to obtain
the final key with length N .

Later, Gao et al. generalized Jakobi’s protocol and
proposed a similar 4-state O-QKD protocol [33], which
uses four generalized states {|0〉, |1〉, |0′〉, |1′〉}, where
|0′〉 = cos θ |0〉 + sin θ |1〉 and |1′〉 = cos θ |0〉−sinθ |1〉}.

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:48:18 UTC from IEEE Xplore.  Restrictions apply. 



SHI AND LI: QUANTUM PSI-CA PROTOCOL WITH APPLICATION TO PCQ 2401

TABLE I

DEFINITIONS OF NOTATIONS

Gao’s protocol exhibits better database security than Jakobi’s
protocol. To further improve the performance, Yang et al. also
proposed a flexible B92-based O-QKD protocol [34].

III. PROPOSED QUANTUM PSI-CA PROTOCOL

A. Security Model

In the following protocols, we only consider the honest-but-
curious parties, like the semi-honesty model in the classical
settings, where adversaries may try to learn as much infor-
mation as possible from a given protocol execution but are
not able to deviate from the protocol steps [16]. Like most
classical/quantum secure multi-party protocols, we can use
classical/quantum bit commitment, zero-knowledge proof, and
other verifiable technologies to ensure that the parties honestly
execute the protocol.

Definition 1: Private Set Intersection Cardinality (PSI-CA)
protocol – There are two parties, a client with a private set C
and a server with a private set S. Suppose that |C| = n and
|S| = m, and n and m are public. After running a PSI-CA
protocol, the client outputs the cardinality of the intersection
of their respective private sets, i.e., |C ∩ S|, but the server
gets nothing. In addition, a perfect security PSI-CA protocol
should meet the following privacy requirements:

1) Server Privacy: The client learns no information about
the server’s set except |C ∩ S| and |S|.

2) Client Privacy: The server cannot get any private infor-
mation about the client’s set.

We first present a protocol (i.e., Protocol I) to distribute
a special oblivious key between two parties, conventionally
called Alice and Bob, such that Bob knows all bits of the
key, while Alice only knows the partial bits of the key, where
each known bit is just associated with a unique element of
her private set. For example, suppose that Alice has a private
set {a1, a2 · · · at }, where ai ∈ {0, 1, 2, . . . N − 1} and t < N .
Then, Alice only knows the a1th, a2th, . . ., and at th bits of

the key. Here, we assume that the position indexes of the key
bits start from 0 to N − 1.

Protocol I (The Special OQKD Protocol Associated With a
Private Set):

Step 1: Alice and Bob jointly call Jakobi et al.’s Oblivious
Quantum Key Distribution (OQKD) protocol [31] to share a
random (N + q)-bit key kB , where Bob knows the whole key
kB , and Alice only knows t + q bits of kB (Note. t is the
cardinality of Alice’s private set and q is a security parameter).

Step 2: Furthermore, among these t+q bits, Alice randomly
chooses q bits to check Bob’s honesty. That is, she requests
Bob to announce the values of these checked bits. If these
values published by Bob aren’t entirely consistent with those
she has deciphered, it will show that Bob is dishonest or there
is an outside eavesdropper. If Alice finds a cheat of Bob or
any outside eavesdropping, she will terminate this protocol,
otherwise, continue to the next step.

Step 3: Bob discards q checked bits of the raw key kB and
further gets the intermediate key kb of the length N , such that
Alice only knows t bits of the key kb, while Bob still knows
all bits. Of course, Alice knows not only t-bit values: kb( j1),
kb( j2), . . . , kb( jt), but also their respective position indexes:
j1, j2, . . . , jt , where kb( ji) denotes the ji th bit of kb. However,
Bob does not know which bits Alice knows.

Step 4: Alice generates a random permutation π of an
N-element sequence by the position index set { j1, j2, . . . , jt}
and her private set a1, a2, · · · at , but which must meet the
following condition

{k ( j1) , k ( j2) , . . . , k ( jt)} = {k∗ (a1) , k∗ (a2) , . . . , k∗ (at )},
(1)

where k∗ is the new sequence after applying the permutation
π to the N-element sequence k, i.e., k∗ = π(k). Then Alice
declares the permutation π to Bob.

Step 5: Bob applies the permutation π to the key kb to get
the final oblivious key k∗

b = π(kb). Obviously, Alice knows its
partial bits: k∗

b(a1), k∗
b(a2), . . . , k∗

b(at ), where k∗
b(ai ) denotes

the ai th bit of the final key k∗
b for i = 1, 2, . . . , t . However,

Bob does not know any secret information about the set
a1, a2, · · · at without { j1, j2, . . . , jt}.

Here, we give a simple example to illustrate how to generate
an oblivious key between Alice and Bob, as shown in Figure 1.
In Figure 1, Alice has a private set {3,9,12} over Z16, and
thus finally she only knows k∗

b(3), k∗
b(9) and k∗

b(12), while
Bob knows all bits of k∗

b .
Furthermore, based on Protocol I, we present a novel

quantum PSI-CA protocol (i.e., Protocol II). Suppose that
the client’s private set C = {c1, c2, · · · , cn} and the server’s
private set S = {s1, s2, · · · sm}, and all elements of the sets C
and S lie in Z N , where Z N = {0, 1, 2, . . . , N −1}. In addition,
we assume that n and m are public and n,m < N . The
proposed protocol consists of 9 steps, which are described
in detail as follows.

Protocol II (The Quantum PSI-CA Protocol):
//The following protocols from Step 1 to Step 3 are to pri-

vately generate two ancillary sets {c (0) , c (1) , . . . , c (N − 1)}
and {s (0) , s (1) , . . . , s (N − 1)} based on Protocol I.

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:48:18 UTC from IEEE Xplore.  Restrictions apply. 



2402 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 69, NO. 6, JUNE 2022

Fig. 1. Illustration of generating the oblivious key. (a) How to reduce Alice’s
information on the key. (b) How to process the raw key kB to get the final
key k∗

b .

Step 1: The client with the private set {c1, c2, · · · , cn}
requests the server to jointly execute Protocol I to generate
a random N-bit key k∗

s , where the server knows the whole
key k∗

s , while the client only knows its n bits: k∗
s (c1),

k∗
s (c2), …, k∗

s (cn). Here k∗
s (ci ) denotes the ci -th bit of the key

k∗
s (please refer to the red digits in Figure 3). Furthermore,

based on these known bits, the client computes k∗
c_s(i)s for

i = 0, 1, . . . , N − 1, which are defined by,

k∗
c_s (i) =

{
k∗

s (i) , i f i ∈ {c1, c2, · · · , cn}
−2, i f i /∈ {c1, c2, · · · , cn} (2)

From Eq.(2), we can easily see that k∗
s (i) − k∗

c_s (i) = 0 if
i ∈ {c1, c2, · · · , cn} (i.e., i ∈ C); Otherwise k∗

s (i)− k∗
c_s (i) =

2 or 3 because k∗
s (i) ∈ {0, 1} and k∗

c_s (i) = −2 (i.e., i /∈ C).
Step 2: The server with the private set s1, s2, · · · sm asks

the client to jointly run Protocol I to generate another random
N-bit key k∗

c , where the client knows the whole key k∗
c , while

the server only knows m bits of the key k∗
c : k∗

c (s1), k∗
c (s2), …,

k∗
c (sm) (please see the red digits in Figure 3). Furthermore,

based on these known bits, the server computes k∗
s_c(i)s for

i = 0, 1, . . . , N − 1, which are defined by,

k∗
s_c (i) =

{
k∗

c (i) , i f i ∈ {s1, s2, · · · , sm}
−2, i f i /∈ {s1, s2, · · · , sm} (3)

From Eq. (3), we can easily see that k∗
c (i) − k∗

s_c (i) = 0 if
i ∈ S; Otherwise k∗

c (i) − k∗
s_c (i) = 2 or 3 because k∗

c (i) ∈
{0, 1} and k∗

s_c (i) = −2 (i.e., i /∈ S).
Step 3: Furthermore, the client and the server respectively

compute c(i)s and s(i)s for i = 0, 1, . . . , N − 1, which are

defined by the following equations:
c (i) = [k∗

c (i)− k∗
c_s (i)]mod N, for i = 0, 1, . . . , N − 1,

(4)

s (i) = [k∗
s (i)− k∗

s_c (i)]mod N, for i = 0, 1, . . . , N − 1.

(5)

Please note that c (i)+ s (i) = 0 if i ∈ C ∩ S, which will be
proven later in Theorem 1.

//The following protocols from Step 4 to Step 8 are to
compute the summations of the sequences c (i)s and s (i)s
for i = 0, 1, . . . , N − 1.

Step 4: The client prepares a quantum random access
memory (QRAM) [35] with N data registers, where the
address register of the QRAM contain a superposition state

1√
N

∑N
i=0 |i〉, and each data register stores a basis state |c (i)〉

in M dimension Hilbert space (for simplicity, later set M =
N). That is, the QRAM outputs the following state |ϕ〉,

|ϕ〉 = 1√
N

∑N−1

i=0
|i〉a|c (i)〉d . (6)

Step 5: The client randomly selects an integer r ∈
{0, 1, . . . , N −1} and further performs an Add operator Uadd_r

on the state |ϕ〉, which implements 1√
N

∑N−1
i=0 |i〉a|c (i)〉d →

1√
N

∑N−1
i=0 |i〉a|c (i)+ r〉d . Let c∗ (i) = c (i)+ r and

∣∣ϕ∗〉 = 1√
N

∑N−1

i=0
|i〉a|c∗ (i)〉d . (7)

Step 6: The client prepares another ancillary register A in
logN-qubit basis state |0〉A and further sends two registers |i〉a
and |0〉A through logN C N OT operators, where each qubit
of |i〉a is the control qubit and the corresponding qubit of
|0〉A is the target qubit. Then, the client will get the following
state |φ〉,

|φ〉 = C N OT ⊗logN [∣∣ϕ∗〉 ⊗ |0〉A]

= C N OT ⊗logN [ 1√
N

N−1∑
i=0

|i〉a |c∗ (i)〉d ⊗ |0〉A]

= 1√
N

∑N−1

i=0
|i〉a |c∗ (i)〉d |i〉A. (8)

Finally, the client holds the ancillary register A in secret, and
sends the remaining two registers a and d to the server through
the quantum channels.

Step 7: After successfully receiving the two registers a
and d , the server performs another Add operator Uadd_S on
them, where the Add operator Uadd_S is defined by (see
Figure 2),

Uadd_S |i〉 ∣∣c∗(i)
〉 = |i〉 ∣∣c∗ (i)+ s(i)

〉
. (9)

That is,

Uadd_S |φ〉 = Us
1√
N

N−1∑
i=0

|i〉a|c∗ (i)〉d |i〉A

= 1√
N

∑N−1

i=0
|i〉a|c∗ (i)+ s(i)〉d |i〉A. (10)
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Fig. 2. Circuit diagrams of the main quantum process of Protocol II.

After finishing the Add operator Uadd_S , the server sends two
registers a and d back to the client through the quantum
channels.

Step 8: After successfully receiving the registers from the
server, the client carries out an honest test: he again performs
logN C N OT operators on two registers |i〉a and |i〉A to get
the following state,

C N OT ⊗logN [ 1√
N

N−1∑
i=0

|i〉a |c∗ (i)+ s(i)〉d |i〉A]

= 1√
N

∑N−1

i=0
|i〉a|c∗ (i)+ s(i)〉d |0A. (11)

Furthermore, the client measures the state of the ancillary
register A in the computational basis. If the measured result is
|0〉A, then he will continue to execute the next step; Otherwise,
he will believe that the server is dishonest or there is outside
eavesdropping and terminate this protocol. In the next step,
we will denote the state of the remaining system as |ψ〉, i.e.,

|ψ〉 = 1√
N

∑N−1

i=0
|i〉a |c∗ (i)+ s(i)〉d . (12)

Step 9: The client further counts the number of components
satisfying c∗ (i)+ s(i) = r (i.e., c (i)+ s(i) = 0) in the state
|ψ〉 by calling quantum counting algorithm [36], as the final
output of the client, i.e., the cardinality of the intersection,
| {c1, c2, · · · , cn} ∩ {s1, s2, · · · sm} |.

The corresponding circuits of the main quantum process of
Protocol II are shown in Figure. 2

IV. ANALYSIS

A. Correctness

Theorem 1: The proposed quantum PSI-CA protocol (i.e.,
Protocol II) is correct.

Proof: Let C = {c1, c2, · · · , cn} and S = {s1, s2, · · · sm}.
By Protocol II, we will get that,

i ∈ C ∩ S ⇐⇒ i ∈ C ∧ i ∈ S

⇐⇒ k∗
s (i)− k∗

c_s (i) = 0 ∧ k∗
c (i)− k∗

s_c (i) = 0

(by Eqs. (2) and (3))

⇐⇒ k∗
s (i)− k∗

c_s (i)+ k∗
c (i)− k∗

s_c (i) = 0

Fig. 3. An example of privately computing |C ∩ S|.

(by k∗
s (i)−k∗

c_s (i) , k∗
c (i)

−k∗
s_c (i) ∈ {0, 2, 3})

⇐⇒ k∗
s (i)− k∗

s_c (i)+ k∗
c (i)− k∗

c_s (i) = 0

⇐⇒ c (i)+ s(i) = 0 (by Eqs. (4) and (5))

⇐⇒ c∗ (i)+ s(i) = r (by c∗ (i) = c (i)+ r)

So, the number of c∗ (i)+ s(i) = r in all components of the
state |ψ〉 is equal to the cardinality of the intersection of their
respective private sets, i.e., |C ∩ S|. Therefore, the proposed
protocols are correct.

Furthermore, we take an example to clearly illustrate Pro-
tocol II, as shown in Figure 3. In our example, the client
and the server have a private set C = {1, 3, 7, 10, 13} and
S = {2, 3, 6, 8, 10, 14} over Z16, respectively. After calling
Protocol I, the client secretly gets k∗

c−s by his private set
C , where the position index set of the red digits in k∗

c−s is
just equal to his private set C . Similarly, the server secretly
gets k∗

s−c by his private set S, where the position index set of
the red digits in k∗

s−c is also just equal to his private set S.
From Figure 3, obviously, k∗

s (i)− k∗
c−s (i) = 0 if i ∈ C , and

k∗
c (i) − k∗

s−c (i) = 0 if i ∈ S (please see the red digits). So,
c (i)+s (i) = 0, if i ∈ C ∩S. Therefore, the number of zero in
the c (i)+ s(i) sequence is just equal to |C ∩ S|. We assume
r= 7. Then c (i) + s (i) = 0 implies c∗ (i) + s (i) = 7. That
is, the number of 7 in the c∗ (i) + s(i) sequence is equal to
|C ∩ S|. In our example, |C ∩ S| = 2, which is exactly equal
to the number of the red digits of the last sequence in Figure 3.

B. Security

Furthermore, we will analyze the security of proposed
quantum PSI-CA protocols, which mainly includes Server
Privacy and Client Privacy.
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1) Server Privacy: Theorem 2: Protocol I can ensure the
privacy of the set of the server. Specifically, in Protocol I,
if Bob is dishonest, i.e., he wants to eavesdrop on Alice’s
private set, then the probability that his dishonesty will be
detected later by Alice is at least 1− 1

2q , where q is the secure
parameter.

Proof: In Step 2 of Protocol II, the server asks the client
to call Protocol I to generate an oblivious key k∗

c , which is
associated with the private set of the server. Here, the server
and the client play the roles of Alice and Bob in Protocol I,
respectively. Furthermore, we will analyze that if Bob is
dishonest in Protocol I, the probability that his dishonesty will
be detected later by Alice is at least 1 − 1

2q , where q is the
secure parameter.

The security of Step 1 of Protocol I is guaranteed by
Jakobi et al.’s OQKD protocol [31]. By the analysis of
Ref. [31], a dishonest Bob will introduce bit errors. That is,
if Bob gains information on the conclusiveness of Alice’s
bits, he will lose information on the bit values Alice has
recorded. In fact, it is impossible for Bob to have both
the correct bit value and the conclusiveness information of
Alice’s measurement [31] (i.e., the index of the correct basis).
Therefore, Bob cannot simultaneously obtain the bit value,
kb( j), which is the correct result deciphered by Alice, and its
corresponding index j .

Furthermore, in Step 2 of Protocol I, Alice randomly
compares q bits rightly deciphered by herself with the
corresponding bits announced by Bob to decide whether there
are bit errors introduced by Bob’s dishonesty. Please note
that Bob cannot know which bits in the raw key will be taken
as the checked bits before Alice declaring them. Moreover,
for each checked bit, if Bob does not honestly execute the
protocols and gets its position information beforehand by
some cheating, he will lead to an error probability of 1

2
later in the honest test, which is similar to the detection
technologies of decoy states. So, for a dishonest Bob, the
successful probability to completely pass the honest test
in Step 2 of Protocol I is not more than 1

2q . That is, the
probability that his dishonesty will be detected later by Alice
is at least 1 − 1

2q . In addition, by this honest test, Alice can
also easily find the attack that Bob prepares and sends all the
same quantum states (e.g., all |0〉s, or all |1〉s).

Finally, in Step 4 of Protocol I, Alice declares the per-
mutation π to Bob, which is defined by two sets { j1,
j2, . . . , jt} and {a1, a2, · · · at }. Then we will analyze the
conditional probability p ({ j1, j2, . . . , jt} , {a1, a2, · · · at } |π).
Here, the permutation π is randomly selected by Alice, but
it must satisfy the equation of Eq. (1). That is, Alice declares
a random permutation π with t fixed points, where fixed
points are private but the permutation are public. Accordingly,
the number of the permutations satisfying the condition is
t ! (N − t) !, instead of N !.

For simplicity, let J A denotes two sets { j1, j2, . . . , jt}
and {a1, a2, · · · at }. Then we can deduce the following results
(Note. p (|) and I (; ) denote the conditional probability and
the mutual information, respectively):

p (π) = 1

N ! (13)

p (π |J A) = 1

t !(N − t)! (14)

p (J A) = 1

Ct
N ·Ct

N
(15)

I (π; J A) = log
p (π | ja)

p (π)

= log
1

t !(N−t)!
1
N !

= log
N !

t !(N − t)! . (16)

I (J A) = − log p (J A) = − log
1

Ct
N ·Ct

N

= 2logCt
N = 2log

N !
t !(N − t)! . (17)

I (J A|π) = I (J A)− I (J A;π)
= 2 log

N !
t ! (N − t) !−log

N !
t ! (N − t) !

= log
N !

t ! (N − t)! . (18)

I (J A|π) = −logp(J A|π). (19)

p (J A|π) = 1
N !

t !(N−t)!
= 1

Ct
N
. (20)

That is, though it is not unconditionally secure, i.e.,
information-theoretically secure, the probability of success-
fully guessing two sets { j1, j2, . . . , jt } and {a1, a2, · · · at } by
the public permutation π is small enough, i.e., 1

Ct
N

, which is
negligible.

Furthermore, we know that p (A) = 1/Ct
N . So, p (J A|π) =

p (A). That is, the probability of successfully guessing two sets
{ j1, j2, . . . , jt } and {a1, a2, · · · at } with the public permutation
π is equal to that of directly guessing {a1, a2, · · · at } without
the permutation π . Please note that we have previously proved
that the set { j1, j2, . . . , jt} is private to Bob. So, it is not easier
for Bob to get the private set {a1, a2, · · · at} even if Alice opens
the permutation π .

In a word, error detection mechanisms (i.e., q checked bits)
guarantee the honesty of Bob and the probability of success-
fully guessing the private sets by the public permutation is
sufficiently small, i.e., 1/Ct

N . Therefore, Protocol I can ensure
the privacy of the set of the server well.

Theorem 3: A dishonest client in Protocol II can get at most
one s (i), but he also loses the chance to count the intersection
cardinality.

Proof: On the one hand, by calling Protocol I, the privacy
information of the set S is finally hidden in the dataset
{s(i)|i = 0, 1, . . . , N − 1}. Furthermore, in Step 7 of Pro-
tocol II, the server helps the client to compute the summation
of c∗ (i) + s(i) by applying the Add operator Uadd_S (see
Eqs. (9) and (10)). Accordingly, the client gets the state
|ψ〉 = 1√

N

∑N−1
i=0 |i〉a|c∗ (i)+ s(i)〉d after the honest test,

where the reduced density matrixes of subsystems stored in
two registers a and d are as follows:

ρa = tr d (ρad) = 1

N

∑N−1

i=0
|i〉〈i |, (21)

ρd = tr a (ρad) = 1

N

∑N−1

i=0
|c∗ (i)

+s(i)〉〈c∗ (i)+ s(i)|. (22)
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Though all s(i)s for i = 0, 1, . . . , N − 1 have been inserted
into the quantum state |ψ〉, the client can get at most one
s(i) by the physical laws of quantum mechanics, because the
maximum Von Neumann entropy of the logN qubits is equal to
logN , which is an upper bound on the accessible information
from the logN qubits. That is,

S(ρd ) ≤ S

(
I

N

)
= −

∑ 1

N
log

1

N
= logN. (23)

On the other hand, if the client wants to get one s(i) by
measuring the quantum state |ψ〉 in the computational basis,
obviously he will lose the chance to count the cardinality of
the intersection.

In addition, the client might perform a cheating strategy as
follows: To get private information about the set S, the client
makes all k∗

c (i) = 0 and c (i) = 0 for i = 0, 1, . . . , N − 1.
Accordingly, he can later get the number of s (i) = 0 (or 1)
after running Protocol II. That is, the client will finally output
|S|, not |C ∩ S|. However, |S| is public in PSI-CA protocol.
So, this cheating strategy is infeasible.

By the no-go theorem, unconditionally secure two-party
computations cannot be implemented theoretically without
rigorous space-time constraints. The proposed protocol still
complies with the no-go theorem. In short, a dishonest client
in Protocol II may get at most one s (i) and further decide
whether i belongs to the set S by the value of s (i), but he also
loses the chance to count the intersection cardinality. Besides,
the number of s (i)s is N in total, so the possible information
leakage rate is at most 1/N . When N is large enough, e.g.,
N ≈ 2160, 1/N is negligible. So, our proposed protocol is
more suitable for big datasets in Z N .

2) Client Privacy: Theorem 4: Protocol I can ensure the
privacy of the set of the client.

Similarly, Protocol I can ensure the privacy of the set of
the client when generating the oblivious key k∗

s in Step 1 of
Protocol II, where the server knows the whole key, while the
client only gets its partial bits. Here the proof is abbreviated
(see the proof of Theorem 2).

Theorem 5: After successfully executing Protocol I in Pro-
tocol II, the server cannot get any private information about
the client’s set. So, the privacy of the client in Protocol II is
guaranteed by Protocol I.

Proof: In Step 5, the client sends the server two registers a
and d , which contain two subsystems of the whole quantum
system |φ〉 = 1√

N

∑N−1
i=0 |i〉a |c∗ (i)〉d |i〉A. After receiving the

two registers a and d , the server can perform the following
two attacks:

The first attack is to directly measure the subsystem in
the register d to get some information about c∗ (i). Similarly,
in the general case, measurement of the state in the register d
would give the only c∗ (i) for a definite i , that is, the server
could get at most one c∗ (i) by the fundamental principles of
quantum mechanics.

The second attack is an entangle-measure attack [37] that
the server first prepares an ancillary quantum system and fur-
ther entangles his ancillary quantum system and the encoded
system sent from the client by a local unitary operator, and
afterwards, he can measure the ancillary quantum system to

get the partial information about the client’s private inputs. The
server’s dishonest action can be described by a local unitary
operator Ũ , which is defined by,

Ũ
∣∣c∗(i)

〉
d |0〉ã = √

ηi

∣∣c∗ (i)
〉
d |ξ(c∗(i))〉ã

+√
1 − ηi |V (c∗(i))〉dã, (24)

where the subscript of ã denotes the ancillary register prepared
by the server, and |V (c∗(i))〉dã is a vector orthogonal to
|c∗ (i)〉d |ξ(c∗(i))〉ã , i.e.,

d〈c∗(i)|ã〈ξ(c∗(i))|V (c∗(i))〉dã= 0. (25)

In order to completely pass the honest test (see Step 8),
we can easily deduce η j = 1. That is, the whole quantum
systems should be in the following state after performing the
operator Ũ :

Ũ
1√
N

N−1∑
i=0

|i〉a |c∗ (i)〉d |i〉A|0〉ã

= 1√
N

∑N−1

i=0
|i〉a

∣∣c∗ (i)
〉
d |i〉A |ξ(c∗(i))〉ã. (26)

Then the server performs his Add operator Uadd_S and sends
two registers a and d back to the client, while he keeps
|ξ(c∗(i)〉ã in his hands. After successfully passing the honest
test, the state of the remaining quantum systems becomes,

1√
N

∑N−1

i=0
|i〉a

∣∣c∗ (i)+ s(i)
〉
d |ξ(c∗(i))〉ã . (27)

To simplify the analysis, we omit the register a and only
consider the following state,

1√
N

∑N−1

i=0

∣∣c∗ (i)+ s(i)
〉
d |ξ(c∗(i))〉ã. (28)

By the above pure state, we can further get the reduced density
matrix of the register d and the corresponding Von Neumann
entropy,

ρd = 1

N

∑N−1

i=0

∣∣c∗ (i)+ s(i)
〉
d 〈c∗ (i)+ s(i)|, (29)

S (ρã) = S (ρd )≤ logN. (30)

That is, if the server measures his ancillary state |ξ(c∗(i))〉ã ,
he will not get more information about c∗(i) than he would if
he had measured the register d directly. What’s more, if the
server measures his ancillary state this moment, the quantum
state held by the client will become |i〉a |c∗ (i)+ s(i)〉d .
Of course, accordingly, the client will not right get the
cardinality of the intersection.

Furthermore, we assume that the client executes quantum
counting algorithm [36]. That is, he first prepares a register in
the initial state 1√

M

∑M−1
j=0 | j〉 and implements

1√
M

∑M−1

j=0
| j〉 ⊗ |φ〉 → 1√

M

∑M−1

j=0
| j〉G j |φ〉, (31)

where G is Grover iteration or Grover operator [36], [38],
and |φ〉 = 1√

N

∑N−1
i=0 |c∗ (i)+ s(i)〉d |ξ(c∗(i))〉ã . The client

further applies an inverse Quantum Fourier Transform to the
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first register. Then, the whole quantum system will be in the
following state [36]:

eiπω

√
2

|φ+〉 + e−iπω

√
2

|x̃−〉|φ−〉, (32)

where

|x̃+〉 =
∑M−1

x=0
{ 1

M

∑M−1

j=0
ei2π j (ω− x

M )}|x〉, (33)

|x̃−〉 =
∑M−1

x=0
{ 1

M

∑M−1

j=0
ei2π j [(1−ω)− x

M ]}|x〉, (34)

|φ+〉 = 1√
2
(|β〉 − i |α〉), (35)

|φ−〉 = 1√
2
(|β〉 + i |α〉), (36)

|α〉 = 1√
N

∑
i:c∗(i)+s(i)=r

∣∣c∗ (i)+ s(i)
〉
d |ξ(c∗(i))〉ã, (37)

|β〉 = 1√
N

∑
i:c∗(i)+s(i) �=r

∣∣c∗ (i)+ s(i)
〉
d |ξ(c∗(i))〉ã. (38)

Finally, the client measures the first register in the computa-
tional basis. The remaining quantum system will be collapsed
into |φ+〉 or |φ−〉. Then, we can also get that,

S (ρã) = S(ρd )≤ logN. (39)

So, if the server measures his ancillary state |ξ∗(c∗(i))〉ã this
moment, he will get less than logN bits of information.

By analyzing the above two attacks, we can see that the
server can get less than or equal to logN bits of private
information. In fact, we can deduce that the server can get
at most logN bits of private information (i.e., c∗ (i)) for
any possible attack. Since the whole system is in |φ〉 =

1√
N

∑N−1
i=0 |i〉a|c∗ (i)〉d |i〉A, where all private information of

the client is embedded in the register d , the reduced density
matrix of the register d and the corresponding Von Neumann
entropy satisfy

ρd = 1

N

∑N−1

i=0

∣∣c∗ (i)
〉
d 〈c∗ (i) |, (40)

S (ρd ) ≤ log N. (41)

Furthermore, the quantum subsystem in the register d can
be characterized by the quantum ensemble γ ≡ pi , ρd (i),
where pi = 1

N is the server’s probability of getting the
secret c∗ (i). So, whenever the server performs any attack,
he can get at most one c∗(i) by Holevo’s theorem. However,
c∗ (i) = c (i) + r , where r is random and private. It is
equivalent to one-time pad. So, the server cannot learn any
information about c (i) without knowing r . Therefore, after
successfully executing Protocol I in Protocol II, the server
cannot get any private information about the client’s set due
to the random number r . That is, the privacy of the client in
Protocol II is guaranteed by Protocol I, where the security of
Protocol I was previously analyzed in Theorem 2.

To sum up, private information of two sets is first hidden in
respective private sequences c (i)s and s(i)s by using Protocol
I, where the probabilities of not finding the dishonesty of the
party and successfully guessing private information by public
information are small enough and negligible. Furthermore, the
procedures of summing c∗ (i)+ s(i) in Protocol II can ensure

the perfect security (i.e., information-theoretical security) of
the client. In addition, the dishonest client may get at most
one s (i), but he also loses the chance to count the intersection
cardinality. So, to ensure that it finally outputs the correct
result, our proposed protocol achieves the approximatively
perfect security in the semi-honesty model.

C. Performance

In Protocol I, it takes 4-state polarized photons as quantum
resources. There is not any other quantum operator except the
projective measurements of single photons. Thus, it is easy to
implement this protocol due to its required quantum resources
and measurements.

In Protocol II, the most complicated quantum transformation
is to compute the summation of each component of two
states based on Quantum Random Access Memory. Besides,
it still needs other ordinary operators, e.g., CNOT opera-
tor, Grover operator and inverse Quantum Fourier Transform
(i.e., to implement quantum counting), where most of these
quantum operators have been implemented by the newest
reports [39]–[42]. Furthermore, we give detailed performance
comparisons of our proposed PSI-CA protocol with other
related protocols in terms of the main quantum resources, the
required operators and measurements, the transmitted qubits,
feasibility, and security features, respectively, which are listed
in Table II.

From Table II, we can see that two previously proposed
protocols in Refs. [2] and [25] has better communication
complexity, but they require complicated oracle operators.
At present, it is still difficult to implement these compli-
cated oracle operators. Furthermore, other related protocols
in Refs. [26]–[28] have better feasibility, but they ask a
trusted third party (TP) to help two parties to prepare quantum
resources and count the final cardinality. However, it is hard
to find a completely trusted third party in the real world.
Therefore, under consideration of both feasibility and security,
our protocol has better performance: On the one hand, our
proposed protocol does not need a trusted TP. On the other
hand, it is relatively feasible to implement our protocol (please
see the later simulation experiments).

In addition, quantum communication complexity of our
proposed PSI-CA protocol is O(N), which is independent of
the size of sets. As previously stated, the best classical method
needs the linear communication complexity. It implies that the
method needs to exchange O(n) classical messages or conduct
O(n) circuit-based comparisons [15], [16], and each classical
message is about O(logN) bits, where n is the size of the
set (n ≤ N) and each element of the set lies in Z N . So,
the communication complexity of these methods should be
O(nlogN) bits. However, our protocol needs to transmit O(N)
qubits, i.e., the communication complexity of our proposed
protocol is O(N) qubits. Therefore, our proposed PSI-CA
protocol is more suitable for sets with big sizes.

Finally, we simulate the proposed quantum PSI-CA protocol
in Qiskit of IBM (Qiskit-0.23.2; Python-3.8.6; OS-Linux). The
whole circuit diagram of this simulated experiment is shown
in Figure 4, mainly including the circuits of Input, QRAM,
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TABLE II

THE PERFORMANCE COMPARISONS

Fig. 4. Simulated Circuits of proposed PSI-CA.

Full-adder, Verify and quantum amplitude estimation (QAE),
respectively.

For simplicity, we assume that c(i), s(i) ∈ {0, 1, 2, 3, 4,
5, 6, 7} and i ∈ Z16 in our simulated experiments. Accord-
ingly, we represent c(i) and s(i) by using 3 qubits, respec-
tively. For example, in Figure 4, c(i) and s(i) are encoded
into {q4, q5, q6} and {q7, q8, q9}, respectively, while 4 qubits
of {q0, q1, q2, q3} denote the address index, i.e., i .

Figure 5 shows quantum circuits of an instance of QRAM
(i.e., to generate

∑ |i〉|d(i)〉), where {q0, q1, q2, q3} denote

the address index and {q4, q5, q6} stores all classical d(i)s,
e.g., [0,7,2,3,0,1,2,2,3,1,7,1,3,1,7,2].

Figure 6 denotes quantum circuits of Full-adder, which
computes the summation of two input bits, encoded into q0 and
q1. In addition, q2, q3 and q4 denote the qubits corresponding
to the carry bit of input, the final summation, and the carry bit
of output, respectively. Therefore, three Full-adders implement
c (i)+ s(i) by the bitwise summations in Figure 4.

After the bitwise summations, we combine “Verify” with
“quantum amplitude estimation” instead of quantum counting
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Fig. 5. Quantum circuits of an instance of QRAM.

Fig. 6. Quantum circuits of full-adder.

Fig. 7. Quantum circuits of verify.

to estimate the number of c (i) + s (i) = 000 (i.e., r= 0).
In Figure 7, “Verify” implements a map: |000〉 → |1〉, i.e.,
when q0q1q2 input |000〉, q3 will output |1〉, and |0〉 otherwise.
Accordingly, if c (i) + s (i) = 000 in Figure 4, then q16 will
output |1〉, i.e., |1〉q16

. Furthermore, we estimate the probability
of |1〉q16

by quantum amplitude estimation algorithm. Please
note that the qubit q5 in Figure 8 as workspace is correspond-
ing to the qubit q16 in Figure 4. In addition, we use 5 qubits
as counting space, i.e., {q0, q1, q2, q3, q4}.

Finally, we list estimated values of various instances in
Figure 9. Clearly, the average value approximates the true
value well by Figure 9. Therefore, our simulation experiments
verify the correctness and the feasibility of the proposed
quantum PSI-CA protocol.

V. APPLICATION

Here, we first give a definition of Privacy-preserving Con-
dition Query.

Definition 2: Privacy-preserving Condition Query (for short
PCQ). Suppose that there are two parties, a user (Alice) and a
data owner (Bob). Bob owns a private data set with many
repeated elements, which can be defined by a two-column
table: the first column records different elements of Bob’s
data set, and the second column shows the number of their
respective repetitions accordingly, e.g., a statistics table about
students’ test scores. Furthermore, Alice wants to privately
query the number of the element x in Bob’s data set, which
matches with a specific query condition, e.g., x ≥ a, x = a,
x < b or a ≤ x ≤ b. In addition, PCQ should meet the
following private requirements:

Alice’s Privacy: The query condition and the query result
are both private. That is, Bob cannot learn any private infor-
mation about the query condition and the query result.

Bob’s Privacy: Alice cannot get any private information
about Bob’s data set except the query result.

In the above definition, please note that Alice’s query result
is only the number of the elements matching with a specific
query condition, not any element of Bob’s private data set,

Authorized licensed use limited to: ULAKBIM UASL - DOKUZ EYLUL UNIVERSITESI. Downloaded on October 28,2022 at 12:48:18 UTC from IEEE Xplore.  Restrictions apply. 



SHI AND LI: QUANTUM PSI-CA PROTOCOL WITH APPLICATION TO PCQ 2409

Fig. 8. Quantum circuits of quantum amplitude estimation.

Fig. 9. The comparison results of various simulated instances.

and the query condition is diversified, not fixed (i.e., more
flexible). The traditional private query does not satisfy PCQ’s
higher privacy requirements, because the query result of the
traditional private query reveals too much information (i.e.,
at least one element of the data set). In addition, to protect
sensitive data from the cloud or the third party’s server,
the data owner could publish an encrypted version of the
original data. Later, the data owner wants to obtain all the data
matching with a query condition or within a query region (i.e.,
private range query), while keeping the query private to the
service provider. Similarly, these private queries on encrypted
databases cannot yet meet the purpose of PCQ because of
revealing too much information.

Furthermore, based on the quantum PSI-CA protocol pro-
posed above, we construct a novel scheme to solve the PCQ
problem. Suppose there are two parties, a user (Alice) and
a data owner (Bob), where Bob owns a private data set with
duplicate elements. Without loss of generality, we assume that
all elements of Bob’s data set belong to 0, 1, 2, . . . , N − 1}.

PCQ Scheme
Step 1: (Encoding). Bob encodes his private data set

(i.e., a private two-column table) over Z N into a private

TABLE III

BOB’S PRIVATE DATA SET

Fig. 10. How to split Bob’s private vector.

N-component vector: (d0, d1, . . . , dN−1), where di= 0 if i
does not belong to Bob’s data set (i.e., i is not in the first
column of his table), and otherwise di is equal to the number of
repetitions of i . For example, if Bob’s private data set over Z16
is listed as Table III, then the encoded 16-component vector
is (0, 0, 2, 0, 3, 1, 0, 0, 1, 3, 0, 0, 2, 0, 0, 1).

Step 2: (Splitting). Bob splits his encoded vector into m pri-
vate vectors by secret splitting ideas as follows: Bob randomly
generates m N-component vectors: (x j,0, x j,1, . . . , x j,N−1) for
j = 1, 2, . . . ,m, such that di = ∑m

j=1 x j,i for each i , where
x j,i ∈R {0, 1}. Please note that m ≥ di for any i , which is a
security parameter determined by Bob. For the above example,
how to further split Bob’s private vector, please see Figure 10.

Step 3: Alice generates an N-component vector:
(t0, t1, . . . , tN−1) by her query condition, where ti = 1 if
i satisfies the query condition, and ti = 0 otherwise. For
example, if Alice wants to query the number of the element
x in Bob’s private data set above, such that 4 ≤ x ≤ 9, then
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she will generate the following condition vector,

(0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0). (42)

Step 4: Alice asks Bob to run quantum PSI-CA protocol
to compute r j = ∣∣T ⋂

X j
∣∣ for j = 1, 2, . . . ,m, where

Alice serves as the client who inputs her private set, T , and
accordingly Bob acts as the server who inputs his private set,
X j . Here the sets, T and X j , are defined by their respective
private vectors as follows:

T = {i |ti = 1 ∧ i ∈ Z N },
X j = {i |x j,i = 1 ∧ i ∈ Z N }. (43)

Finally, Alice computes r = ∑m
j=1 r j as her query result, i.e.,

the number of the elements satisfying her query condition in
Bob’s private data set.

A. Correctness

By the encoding methods, we can easily see that r j is
just equal to the number of x j,i · t i = 1 (i.e., satisfying the
query condition) for i = 0, 1, . . . , N − 1. Furthermore, since
di = ∑m

j=1 x j,i for each i , we can get,

r =
N−1∑
i=0

di · ti =
N−1∑
i=0

(

m∑
j=1

x j,i · ti )

=
m∑

j=1

(
N−1∑
i=0

x j,i · ti

)
=

∑m

j=1
r j . (44)

Therefore, the proposed QCP scheme is correct.

B. Security

The security of the proposed QCP scheme is based on
the quantum PSI-CA protocol obviously since two parties
exchange messages only by the quantum PSI-CA protocol.
And yet, we have proved the security of the quantum PSI-CA
protocol. That is, the quantum PSI-CA protocol ensures the
security of the proposed QCP scheme.

C. Performance

The main complexity of the proposed QCP scheme is to exe-
cute m quantum PSI-CA protocols, while other computations
of encoding and secret splitting are lightweight and negligible.
According to the previous analysis, the communication com-
plexity of proposed quantum PSI-CA protocol achieves O(N)
qubits. Therefore, the communication complexity of proposed
QCP scheme is O(m N) qubits, which are mainly used for the
costs of transmitting single photons.

VI. CONCLUSION

In this paper, we presented a novel quantum PSI-CA proto-
col. Compared with classical related protocols, our proposed
quantum PSI-CA protocol obtains higher security and is more
suitable for big data applications. Furthermore, we defined
a new and flexible private query, i.e., Privacy-preserving
Condition Query (QCP). Based on the proposed quantum PSI-
CA protocol, we presented an efficient quantum scheme to

solve the QCP problem. Finally, we verify the correctness and
the feasibility of the proposed quantum protocols by circuit
simulations in IBM Qiskit. These proposed protocols have a
good application prospect, e.g., in privacy-preserving string
statistics and hamming weight calculation.

Our work further shows that quantum cryptography can
not only guarantee data security, but also ensure data privacy,
and it can also design sophisticated and flexible cryptographic
protocols based on quantum mechanics as mathematical cryp-
tography.
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