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ABSTRACT This article extends the Radon transform, a classical image-processing tool for fast tomography
and denoising, to the quantum computing platform. A new kind of periodic discrete Radon transform
(PDRT), called the quantum periodic discrete Radon transform (QPRT), is proposed. The quantum imple-
mentation of QPRT based on the amplitude encoding method is exponentially faster than the classical PDRT.
We design an efficient quantum image denoising algorithm using QPRT. The simulation results show that
QPRT preserves good denoising capability as in the classical PDRT. Also, a quantum algorithm for IDRT
is proposed, which can be used for fast line detection. Both the quantum extension of IDRT and the line
detection algorithm can provide polynomial speedups over the classical counterparts in certain cases.

INDEX TERMS Quantum computing, radon transform.

I. INTRODUCTION
Radon transform, proposed by Radon in 1917 [1], is an im-
portant image processing tool with widespread applications
in computed tomography, geophysics, remote sensing, etc.
[2]. It changes a function f defined on the plane to a function
Rθ f (ρ) defined on the space of lines in the plane, whose
value on the line with intercept ρ and slope θ equals the
integral of function f along the line

Rθ f (ρ) :=
∫∫

R2
f (x, y)δ(ρ − x sin θ + y cos θ )dxdy (1)

where θ ∈ (0, π ], ρ ∈ R, and δ is the Dirac function. By
definition, Radon transform possesses the capability of de-
tecting singularities along straight lines and performs better
at denoising images with linear singularities than other image
processing tools [2], [3].
To implement Radon transform, discretization is neces-

sary. However, the different discretization methods will re-
sult in different discrete Radon transforms (DRTs) that have
different applications. In discretization, there are two meth-
ods to approximate the line integral in (1): the interpolation
method and the periodic discrete grid method.
The interpolation-based discrete Radon transform (IDRT)

method evaluates the integral along a straight line by

making interpolation among the adjacent points on the dis-
crete image grid of the line. The earlier DRTs are based on
this method [1]. In 1987, Beylkin [4] discovered an exact
inversion formula and proved that if the discrete version is
based on Radon’s original formula, then the reconstruction
can only be approximate. The IDRT can be used in line
detection, X-ray-computed tomography [5], etc. Performing
the IDRT on an N × N image often requires at least �(N3)
arithmetic operations [6].
The periodic discrete Radon transform (PDRT) method

calculates the integrals along a set of warped lines, and does
not have direct connection with the continuous Radon trans-
form [6]–[8]. Still themethod possesses some very nice prop-
erties, such as the exact reconstruction property, Fourier slice
property, etc. Matus and Flusser [9] first investigated PDRT
onZ2

p, where p is the prime. Then, Hsung et al. [10] extended
PDRT to Z2

pn . The PDRT has been used in image denoising
[3], tomographic reconstruction [11], image watermarking
and encryption [12], etc. To compute the PDRT of an N × N
image, �(N2logN) arithmetic operations are required [13].
With the emergence of quantum computing, for many im-

portant computational problems, it is found that quantum
algorithms can provide dramatic speedup [14], for exam-
ple, exponentially fast quantum algorithms, such as quantum
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Fourier algorithm, Shor’s factoring algorithm [15], polyno-
mially fast quantum algorithms, such as Grover’s search al-
gorithm [16], and so on [17].
To speed up image processing in the forthcoming quantum

computing age, quantum image processing (QIMP), whose
topics range from quantum image representations to image
processing, has drawn a lot of attention in the last decade
[18]–[20]. Early work on QIMP concentrated on the quan-
tum representation of images, e.g., [21]. Roughly speaking,
there are two typical representation methods: (1) amplitude
representation method, such as the Real Ket representation
[22], which utilizes the qubits’ amplitude and a computa-
tional basis state to encode the grayscale and the location of
a pixel, respectively; (2) basis representation method, such
as the novel enhanced quantum representation (NEQR) [23],
which utilizes a register’s computational basis state to encode
both the grayscale and the location of pixels.
Another focus in QIMP is to develop image processing

tools in the quantum computation framework [24], [25]; for
example, Yao [26] proposed an efficient quantum image edge
detection algorithm for Real Ket images. Image segmen-
tation, watermarking, scrambling, and some other image-
processing problems have also been investigated in QIMP
[27]–[29].
However, there is still no extension of Radon transform to

the field of QIMP. In this article, we make such extension.
The main difficulty in making the extension comes from

the fact that there is no preference of using unitary transforms
in designing classical algorithms; conversely, quantum algo-
rithms mostly use unitary operators. Particularly, to realize
the classical “nonunitary” PDRT with unitary transforma-
tions, we design a unitary quantum reversible multiplication,
and then utilize Fourier slice property of PDRT while replac-
ing the conventional multiplication with the new quantum
reversible multiplication. Finally, we obtain a transform that
is similar but distinct from any existing PDRT, which we call
the quantum periodic discrete Radon transform (QPRT).

A. CONTRIBUTIONS
We propose two fast quantum algorithms for DRTs. The first
one is an “exponentially fast” quantum algorithm for per-
forming QPRT on Real Ket images, which has the following
properties.

1) The QPRT on an N × N Real Ket image can be imple-
mented in time O(log3 N), which runs exponentially
faster than the classical PDRT on classical images,
which has runtime �(N2 logN).

2) The QPRT preserves many good properties as in the
classical PDRT, such as Fourier slice property (cf.,
Proposition 6) and good denoising capability (cf.,
Figs. 6 and 7).

The second one is a quantum algorithm for IDRT on Real Ket
images. Due to the particular techniques used for achieving
interpolation, the transformation result is naturally stored in
the computational basis state (i.e., encoded in NEQR form).

FIGURE 1. Example of a discrete line L11
1,3 = {(x, y)|x − 3y = 1 mod 11}

on lattice Z
2
11. The hollow circles indicate the lattice points over the

discrete line L11
1,3.

FIGURE 2. Denoising using DWT. There are three steps in total: 1) Apply
the DWT to the input noisy signal f , i.e., multiply f by the matrix form of
some wavelet (the one used here is Haar wavelet). The resulting
coefficients can be divided into two parts: the scaling coefficients c,
composed of the odd rows, and the wavelet coefficients d , composed of
even rows. 2) Apply hard-thresholding to wavelet coefficients d with
threshold T to obtain new wavelet coefficients d ′ . 3) Apply inverse DWT
to thresholded coefficients, where in this case the inverse of the Haar
wavelet matrix is itself.

Also, this algorithm requires multiple calls for image prepa-
ration oracles, and has a time dependence on the desired
precision ε. Specifically,

3) Performing IDRT on an N × N Real Ket image has
a time complexity O( Tin

ε
polylogN), where Tin is the

image preparation time, ε is the precision.

Our quantum algorithm for IDRT can achieve polynomial
speedups in certain cases. Also, we present a quantum line
detection algorithm using IDRT that provides a quadratic
speedup for the detection process (cf., Section VI-B). Fig. 9
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FIGURE 3. Quantum circuit realizing Mk+1 by Mk and Ak .

FIGURE 4. Toy example to show the different summation methods
adopted to compute the PDRT (left) of f and QPRT (right) of f , where f is
a function defined on Z

2
11. (a) Points used to compute r−3(1), as defined

in (3), i.e., summation along the discrete line x − 3y = 1 mod 11. (b)
Points used to compute QRf (1,−3 mod 2n).

shows the line detection capability of such IDRT that can
obtain the quantum speedup.
The representation we use for quantum images is the Real

Ket (amplitude encoding1) method. Since it is not easy to
perform interpolation operation in amplitudes of qubits, we
realize the IDRT with the output encoded in the computation
basis. Interestingly, the output stored in the computation ba-
sis can be more easily read out by quantum measurements,
making it easier to design linear detection algorithms.
Considering that the Real Ket method and NEQR method

are exchangeable (cf., Section II-C), the input and output for-
mats of our quantum Radon algorithms can actually become
more flexible; however, it is worth noting that the efficiency
of exchange depends on some parameters (e.g., condition
numbers) and may be inefficient in certain cases. While we
are still many years away from the practical application of
quantum computers for fast image processing, the develop-
ment of theoretical tools and techniques can serve as a basis
for developing concrete tools in due course.
The rest of this article is organized as follows. In Sec-

tion II, we introduce some background on Radon transform
and classical/QIMP. In Section III, we present a reversible
quantum multiplication. In Section IV, we introduce QPRT
and explore some basic properties of it. In Section V, we
extend the interpolation-based DRT to the quantum case.
In Section VI, we present two applications of our proposed

1The famous quantum Fourier transform [17] and HHL algorithm [30]
are both based on the amplitude-encoding method.

quantum transforms. Finally, Section VII concludes this ar-
ticle.

II. PRELIMINARIES
A. PERIODIC DISCRETE RADON TRANSFORM
Throughout this article, we use p to denote a prime number,
use n to denote a positive integer, and useN to denote a power
of 2. [n] is the subset of integers {0, 1, . . . , n− 1}. We use
I to denote the imaginary unit. The L2-norm of vector �a =
(a0, . . . , an−1) is ||�a||2 =

√∑
i∈[n] |ai|2.

We begin with a specific kind of discrete “line,” an exam-
ple of which is given in Fig. 1.
Discrete line Lnl,k: The discrete line on lattice Z2

n with
intercept l and slope k is

Lnl,k =
{ {(x, y) ∣∣x+ ky = l mod l, x, y ∈ [n]}, if k ∈ [n]

{(x, l) ∣∣x ∈ [n]}, if k = n.
(2)

The PDRT—sometimes called finite Radon transform—is
defined as summations of function values at points over these
discrete lines.
Definition 1 (Periodic Discrete Radon Transform [9]):

The PDRT of a function f defined on lattice Z2
n is

rk(l) = 1√
n

∑
(i, j)∈Lnl,k

f (i, j), l ∈ [n], k ∈ [n+ 1]. (3)

The following is an important property of PDRT.
Proposition 1 (Fourier Slice Property of PDRT [3]): Let

F1 and F2 be the 1-D and 2-D discrete Fourier transforms,
respectively. For a function f defined on Z2

n, let rk(l) be the
PDRT of f so that it is defined onZn. Then, for anyω, k ∈ [n]

F1{rk}(ω) = F2{ f }(ω, kω mod n) (4)

for k = n

F1{rn}(ω) = F2{ f }(0, ω). (5)

Proof: For any k ∈ [n], the discrete Fourier transform of
function rk(l) in variable l is

F1{rk}(ω) = 1

n

∑
l,y∈[n]

f (l − ky, y)e−2πI lωn

= 1

n

∑
l,y∈[n]

f (l − ky, y)e−2πI (l−ky)ω+ykω
n

= F2{ f }(ω, kω mod n). (6)

For k = n

F1{rn}(ω) = 1

n

∑
x,l∈[n]

f (x, l)e−2πI lωn = F2{ f }(0, ω). (7)

�
On the one hand, this Fourier slice property provides a

fast implementation of PDRT. For an n× n image f , each
value of its PDRT can be computed in time O(n), so the
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FIGURE 5. (Left) “Lena” image. (Middle) Classical Radon transform of “Lena.” (Right) QPRT of “Lena.”

FIGURE 6. Comparison of denoising half-plane truncated Gaussian function f (x1, x2) = 1{x1>x2}e(x1−128)2−(x2−128)2 . By (12), a higher signal-to-noise ratio
(SNR) indicates a better performance of denoising. So, QPRT, with a comparable performance to PDRT, is better than DWT at handling the image, which
is piecewise smooth with singularities along a straight line (here is the diagonal line).

whole PDRT can be obtained in time O(n3) if directly com-
puted by definition. On the other hand, the Fourier slice
property of PDRT allows one to compute the PDRT in time
O(n2logn): since the 1-D and 2-D (inverse) Fourier trans-
forms can be implemented in time O(nlogn) and O(n2logn)
[31], and the PDRT of f can be obtained by performing
1-D inverse Fourier transform on F2{ f } according to (4), the
computational complexity of the PDRT is, thus, reduced to
O(n2logn).
Besides designing fast algorithms, another important prac-

tical issue is to recover the original image from its Radon
transform. In [9], Matús̆ and Flusser proposed the following
reconstruction formula for PDRT on Z2

p.

Proposition 2 (Reconstruction Formula for PDRT onZ2
p):

Let rk(l) be the PDRT of a function f defined on Z2
p. Then,

for any i, j ∈ [p]

f (i, j) = 1√
p

∑
{(l,k)|(i, j)∈Lpl,k,
l∈[p], k∈[p+1]}

rk(l) − 1

p

∑
x,y∈[p]

f (x, y). (8)

Proof: The following geometric properties of discrete
lines are easy to verify.

1) Every discrete line Lpl,k contains p lattice points, and
two parallel discrete lines have no point of intersection.

3100416 VOLUME 3, 2022
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FIGURE 7. In the area marked by the red circles, it can be seen that the QPRT, similar to PDRT, enables to restore the straight edges of geometric solids
more clearly than DWT, even in a lower total denoising performance.

FIGURE 8. Denoise using QPRT + Haar wavelet with setting threshold
value ∞ (i.e., make all wavelet coefficients zeros). The original and noisy
images are shown in Fig. 6. By denoising, the SNR increases 2.674. The
ratio of (L2-norm of) wavelet coefficients to filter coefficients is 0.0422,
which means that the probability of success of the quantum denoising
algorithm on Section VI-A is higher than 95% for this example.

2) For any fixed slope k, the p parallel lines Lpl,k (where

l ∈ [p]) provide a complete cover of the lattice Z2
p.

3) Two discrete lines Lpl,k of different slopes will interact
in exactly one point.

For all the p+ 1 lines through a fixed point (i, j), by term
1, every two of them have only one point in common, which

is just (i, j). Since there are p(p+ 1) points on the lines,
and there are p+ 1 copies of point (i, j) on such lines, there
are all together p2 different points on these lines, which are
exactly the total number of points in lattice Z2

p∑
x,y∈[p]

f (x, y) + p f (i, j) = √
p

∑
{(l,k)|(i, j)∈Lpl,k,
l∈[p], k∈[p+1]}

rk(l). (9)

�
In general, the size of an image is not the square of a

prime number. There is a series of work to extend PDRT to
images of more general sizes [9], [10], [32]. For one exam-
ple, Kingston [33] extends PDRT to images of size pn × pn.
The reconstruction formula for such images are much more
complicated, e.g., [33], eq. (11).

B. CLASSICAL IMAGE DENOISING
Image denoising is to remove noise from a noisy image, so
as to restore the true image [34], [35]. Suppose we are given
a real-valued noisy signal

hi = fi + ei, i ∈ [n] (10)

where �f = ( f0, f1, . . . , fn−1) is the original signal, and ei
is the noise sampled independently from the normal distri-
bution V (0, σ 2), where 0 is the mean and σ 2 is the vari-
ance. After performing some denoising method on �h =

VOLUME 3, 2022 3100416
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FIGURE 9. Line detection using SIDRT. The upper is the detected image,
where a distinct straight line connecting (228,53) and (97,217) is of the
gradient approximately −1.251 and y-intercept ( 53

1.251 + 228
mod 256 ≈) 14.366. The bottom shows the SIDRT of the upper image.
The SIDRT reaches maximum at point (13,246), which implies there may
be a straight line of the y-intercept 13 and gradient

1
tan( 256−246

256 − 1
4 )π

≈ −1.284 in the upper image. This detection result is in

good agreement with the observation.

(h0, h1, . . . , hn−1) to prepare the proceed signal �h′, if the fol-
lowing noise level decreases (i.e., Risk(�h, �f ) > Risk(�h′, �f )):

Risk(�h, �f ) = 1

n
E(||�h− �f ||22) (11)

where E(·) is the expectation, then we say such denoising
method is effective.
Fig. 2 shows a general procedure for denoising signal

using discrete wavelet transform (DWT). We explain why
DWT denoising method is effective in the following. Let
�f = ( fi) be a pure signal, where fi ≡ 1, i ∈ [n]. Let�h = (hi)
be the noisy signal where hi = 1 + ei, ei ∼ V (0, σ 2). After
denoising �h using Haar wavelet and threshold T = ∞ (i.e.,

change all wavelet coefficients to 0), by Fig. 2, each element
of denoised signal is of the form h′

i = 1 + e′i, where

e′i ∼ 1

2
V (0, σ 2) + 1

2
V (0, σ 2) = V (0, σ 2/2).

Now that Risk(�h′, �f ) = σ 2

2 < σ 2

n = Risk(�h, �f ), the noise
level decreases, and thus the Haar denoising method works.
However, for general denoising algorithms, it is often hard

to make such a statistical analysis as the above-mentioned.
Experimentally, the following so-called signal-to-noise ratio
(SNR) is often taken to measure denoising performance:

SNR(�h, �f ) = 10 log10

(
||�h||22

||�h− �f ||22

)
(12)

where f and h are some specific test signals. In comparison
with the probability value in (11), SNR is more easily acces-
sible by numerical experiments. A denoising method is said
to be effective if SNR(�h′, �f ) > SNR(�h, �f ).
Now, we consider image denoising, i.e., 2-D signal denois-

ing. The simplest 2-D DWT denoising method is to apply
1-D denoising method to each row in the signal matrix, then
use 1-D denoising method to each column. However, image
possesses various geometric features. By the work of Do and
Vetterli [3], the following PDRT denoising method is more
effective than the general 2-DDWT in denoising images with
obvious singularities along straight lines, as shown in Fig. 6.

1) Apply the PDRT to the noisy image to obtain its PDRT
rk(l).

2) For each slope k, perform once 1-D DWT denoising
method on the PDRT rk(l) along the direction of inter-
cept l.

3) Perform inverse PDRT according to (9).

Do and Vetterli [3] explained why PDRT is better: by
PDRT, the typical linear singularities of pure image are rep-
resented by a few wavelet coefficients (in Step 2), while
randomly located noisy singularities are unlikely to produce
significant coefficients. This is unlike using the 2-D DWT
where both noisy pixels and image singularities can produce
significant wavelet coefficients. Therefore, one can remove
the noise with less damage to the original image by properly
thresholding wavelet coefficients.
A routine computation shows that the time complexity of-

denoising an n× n image using 2-DDWT is O(n2). The time
complexity of PDRT denoising method is O(n3), because
performing inverse PDRT has a time complexity O(n3) by
(9).

C. QUANTUM IMAGE REPRESENTATION AND
PREPARATION
Definition 2 (Real Ket Representation [22]): Let f be an

N × N image, where N = 2n, and f (i, j) ≥ 0 is the image

3100416 VOLUME 3, 2022
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intensity at point (i, j), then its Real Ket representation is

1√∑
i, j∈[N] | f (i, j)|2

∑
i, j∈[N]

f (i, j)|i〉| j〉. (13)

Definition 3 (Novel Enhanced Quantum Representation
[23]): The NEQR representation of image f is

1

N

∑
i, j∈[N]

| f (i, j)〉|i〉| j〉. (14)

In this article, we use the Real Ket representation of images
in the quantum computation framework. Unless otherwise
specified, the term “quantum image” refers to an image en-
coded with the Real Ket method.
To show the connection between the previous two rep-

resentation methods, we need an efficient operation called
conditional rotation [30], [36].
Proposition 3 (Conditional Rotation): Let a be the k-bit

finite precision representation of a positive number that is
smaller than 1. Then, the following mapping can be per-
formed in time O(k2.5):

|a〉|0〉 → |a〉
(
a|0〉 +

√
1 − a2|1〉

)
. (15)

Proof: Let a :=∑i∈[k] 2−i−1ai, where ai ∈ {0, 1}. Then,
|ai〉 is the (i+ 1)st qubit of |a〉 = |ak−1〉 · · · |a1〉|a0〉 counted
from right. For s > 0, define 1-qubit quantum gate

Rs =
[
cos s, − sin s
sin s, cos s

]
. (16)

Then it holds that∏
i∈[k]

Rαi
2−(i+1) =

∏
i∈[k]

R2−(i+1)αi
= Rα. (17)

By performing the following k successive 1-bit conditional
rotations: for each i ∈ [k], the corresponding rotation is
Rαi
2−(i+1) , where α j ∈ {0, 1} is the control bit, on the last qubit

of |a〉|0〉, one gets
|a〉|0〉 → |a〉(cos(a)|0〉 + sin(a)|1〉). (18)

By [37, Lemma 48], given |a〉 where a ∈ (0, 1), using
Taylor series approximation allows to prepare the state
| arccos(a)〉 in time O(k2.5), where arccos(a) ∈ [0, π

2 ). So
with the help of ancilla qubits and (18), the following se-
quence of mappings can be implemented in time O(k2.5):

|a〉|0〉|0〉 −→ |a〉| arccos(a)〉|0〉
−→ |a〉| arccos(a)〉(a|0〉 +

√
1 − a2|1〉)

−→ |a〉|0〉
(
a|0〉 +

√
1 − a2|1〉

)
.

�
By the following proposition, a Real Ket image can be

prepared from its NEQR version, and this preparation proce-

dure is efficient if the condition number κ := mini, j∈[N] | f (i, j)|
maxi, j∈[N] | f (i, j)|

is large enough.

Proposition 4: Let �a be a real vector realized by a unitary
operator U : |i〉|0〉 → |i〉|ai〉, i ∈ [N], where ai is the m-bit
finite precision representation of the vector entries, and U
can be performed in time O(TU ). Given amax = max j |a j|,
the state |�a〉 can be prepared in time O( TU+poly(m,logN ))

κ2
) by

the following mapping:

|0〉 → cos θ |�a〉|0〉 + sin θ |�a⊥〉|1〉 (19)

where

1) |�a〉 :=∑i∈[N]
ai

||�a||2 |i〉;
2) �a⊥ denotes the vector of entries a⊥

i :=
√
1 − | ai

amax
|2

for i ∈ [N];

3) the coefficient cos θ =
√

||�a||22
Na2max

≥ mini∈[N] |ai|
maxi∈[N] |ai| := κ ,

and κ is called the condition number of vector |a〉.
Proof: With the number amax and unitary operator U at

hand, we can implement the following transform [30]:

|i〉|ai〉 → |i〉
∣∣∣∣ ai
amax

〉
. (20)

We first perform the this transform on the input state∑
i∈[N]

1√
N
|i〉|ai〉 and then use the rotation conditioned on

| ai
amax

〉 (cf., Proposition 3)

|i〉
∣∣∣∣ ai
amax

〉
|0〉 → |i〉

∣∣∣∣ ai
amax

〉⎛⎝ ai
amax

|0〉 +
√
1 −

(
ai
amax

)2

|1〉
⎞⎠

(21)

and finally undo U to clear the second register. After the
previous operations, we measure the last qubit.
The running time of the previous procedure is O(TU +

poly(m, logN)). The expected result |0〉 bymeasurement has

probability
∑

i∈[N] a2i
Na2max

≥ a2min
a2max

= κ2, which indicates that we

have successfully prepared the state |�a〉 :=∑i∈[N]
ai

||�a||2 |i〉.�
Remark: It is also possible to convert a Real Ket image to

its NEQR version by applying phase estimations [17]. The
close connections between different image representations
give researchers more confidence in developing QIMP tools
based on a particular representation, as they are likely to
become universal once quantum techniques are sufficiently
developed.
Quantum image preparation, also known as quantum (ini-

tial) state preparation, has been extensively studied over
years, e.g., [36], [38], and [39]. Current techniques allow to
efficiently prepare the Real Ket (or NEQR) state of anN × N
image in time O(polylogN) if the prepared image has some
special structures2. The time required to prepare an arbitrary
quantum image is at most no more than the classical prepara-
tion time, up to a logarithmic factor. Specifically, a quantum
image of form (13) or (14) can be prepared by applying at

2Such as the corresponding quantum data structure [36] is given or the
quantum state to be prepared has a well condition number [40].
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most N2 conditional operations, each of which has a time
complexity polylog(N).
The following proposition will be used in Section V. It

states that the inner products of quantum states can be esti-
mated in parallel.
Proposition 5 (Parallel Swap Test [41]): Given 2N quan-

tum states |�u0〉, |�v0〉 . . . |�uN−1〉, |�vN−1〉, and two state prepara-
tion unitaries: |k〉|0〉 → |k〉|�uk〉 and |k〉|0〉 → |k〉|�vk〉 (where
k ∈ [N]) that can be implemented in time O(Tin). There is a
quantum algorithm with runtime O( Tin

ε
) to achieve |i〉|0〉 →

|i〉|si〉 for all i ∈ [N], where |si − 〈�ui|�vi〉| ≤ ε.
More details can be found in [41 Th. 1], or the Appendix

in this article.

III. QUANTUM REVERSIBLE MULTIPLICATION
This section presents a reversible modular multiplication in
the quantum computation framework. Fix N = 2n. For fixed
0 ≤ i < 2n−1 andC = 2i, on the one hand, the multiplication
in ZN by C is irreversible, because the mapping a → aC
mod N maps both a = 0 and a = 2n−1 to 0. On the other
hand, for D = 2i+ 1, the multiplication in ZN by D is re-
versible, because if aD = bD mod N for some a, b ∈ [N] and
a �= b, then (a− b)D | 2n. Since D is odd, it must be that
a− b is a multiple of 2n; in particular, |a− b| ≥ 2n, which is
impossible for a, b ∈ [N].
We design a unitary realization of the multiplication in ZN

by any odd numberD ∈ [N] in the following. For 1 ≤ k ≤ n,

1) letMk be a to-be-realized unitary operator performing

|ak〉|bk〉 → |ak〉|akbk mod 2k〉∀ak, bk ∈ [2k]

and odd ak (22)

2) let Ak be the following controlled addition in Z2k :

|ak〉|bk〉|c〉 →
{ |ak〉|ak + bk mod 2k〉|c〉, if c = 1

|ak〉|bk〉|c〉, if c = 0

∀ak, bk ∈ [2k], c ∈ [2].

The time complexity for performing each k-qubit addition
is O(k2) [42], so is the time complexity of performing unitary
operator Ak (see [17, Sec. 4.2]).

For any 1 ≤ k ≤ n, for any ak ∈ [2k], let the binary repre-
sentation of integer ak be

Bik−1...i0 :=
∑
l∈[k]

2l il where il ∈ [2].

When k = 1, multiplication operator M1 is the identity

|1〉|b1〉 → |1〉|b1〉 ∀ b1 ∈ [2].

In the following, we realize multiplication operator Mk+1
by Al for 1 ≤ l ≤ k recursively.

For any ak+1, bk+1 ∈ [2k+1], where ak+1 is odd, let their
binary representations be Bik...i11 and Bjk... j1 j0 , respectively.
Then their modular multiplication is

(2kik + Bik−1...i11)(2Bjk... j1 + j0) mod 2k+1

=
(
2Bik−1...i11Bjk... j1 + Bik...i11

1 + (−1) j0−1

2

)
mod 2k+1

={2(Bik−1...i11Bjk... j1 mod 2k )+2δ1j0Bik...i1+ j0
}
mod 2k+1

(23)

where δ1j0
is the Kronecker symbol.

So themodularmultiplicationMk+1 of two integersBik...i11
and Bjk... j1 j0 ∈ [2k+1], each containing k + 1 binary digits,
can be decomposed into two operators: the modular multipli-
cation Mk of integers Bik−1...i11,Bjk... j1 ∈ [2k], which occurs
in the first k binary digits, followed by the controlledmodular
addition Ak of the previous modular multiplication result and
Bik...i1 , which also occurs in the first k binary digits, while
the control digit j0 ∈ [2] remains in the last binary digit.
The quantum circuit realizing this decomposition is shown
in Fig. 3.
In (23), the modular multiplication Mk can be further de-

composed into Mk−1 and Ak−1, and by doing so recursively,
Mk+1 is finally decomposed into a series of controlled modu-
lar additions: A1,A2, · · · ,Ak. Since performing Aj has time
complexity C j2 for fixed constant C > 0 and varying 1 ≤
j ≤ k, by 12 + 22 + · · · + k2 = O(k3), we get that the time
complexity of realizing Mk+1 (hence Mk) by (14) is O(k3).

IV. QUANTUM PERIODIC DISCRETE RADON
TRANSFORM
The classical PDRT in (3) can be viewed as a mapping
Rn2 → Rn(n+1) as follows:

( f (0, 0), f (1, 0), . . . , f (n− 1, n− 1))

PDRT−−−→ (r0(0), r0(1), . . . , rn(n− 1)) (24)

whose transformation matrix is not unitary.3 It is hard to
directly design a quantum algorithm for PDRT by (3). So we
consider utilizing the related Fourier slice property in (4).
By replacing the traditional multiplication in (4) with the

quantum reversible multiplication, we successfully design an
efficient quantum algorithm that can realize a novel trans-
form similar to PDRT. We name it the QPRT.
Definition 4 (Quantum Periodic Discrete Radon Trans-

form): Let f be a function defined on Z2
n, let �·� be the floor

function, and let f̃ defined on Z2
2n be related to f as

f̃ (x′, y′) := 1

2
(−1)�

x′
n �+� y′n �

× f (x′ mod n, y′ mod n), x′, y′ ∈ [2n]. (25)

Recall that L2nl,k represent discrete lines on the lattice Z2
2n

L2nl,k := {(x′, y′)|x′ + ky′ = l (mod 2n), x′, y′ ∈ [2n]}.

3The lines Ln0,0 and L
n
0,1 have intersection, so the rows of transformation

matrix corresponding to r0(0), r1(0) are not orthogonal.
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Then, the QPRT of f is a function defined on Z2
2n as

QR f (l, k) = 1√
2n

∑
(x′,y′ )∈L2nl,k

f̃ (x′, y′), l, k ∈ [2n]. (26)

The definition of QPRT is derived from the following Al-
gorithm 1 rather than a deliberate construction, and it may
seem a little complicated. Now, let us give a closer observa-
tion of f̃ in (25). For any x, y ∈ [n] l

f (x, y) = f̃ (x, y) = − f̃ (x+ n, y) = − f̃ (x, y+ n)

= f̃ (x+ n, y+ n). (27)

Graphically speaking, the QPRT of an image f can be viewed
as the classical PDRT that performs on the symmetrized
double-sized original image, Fig. 5. Fig. 4 shows the particu-
lar summation method adopted by the QPRT. Intuitively, the
alternating sums seems to tend to suppress the changes in the
Radon domain along the direction of intercept, resulting in a
lower sensitivity of QPRT to linear singularities. Even worse,
only a half of slopes (lines) could be detected by QPRT since
when slope k is even, by (27) it holds that

QR f (l, k) = 0. (28)

However, by experiments (see Figs. 6 and 7), it has been
found that QPRT preserves the good denoising capability
as in the classical PDRT, and it will be further discussed
in Section VI-A later. On the one hand, we hold the view
that the QPRT has a practical value comparable to that of the
classical PDRT. On the other hand, as an advantage, QPRT
is invertible, which is derived from the following invertible
QPRT algorithm. The most important advantage lies in that
the QPRT can be performed exponentially faster than the
classical PDRT by the following QPRT algorithm (see Al-
gorithm 1).

A. ANALYSIS OF ALGORITHM 1
The Step 1 of Algorithm 1 is adding two extra qubits ini-
tially in the state |1〉|1〉. In Step 2, the conditional phase
shifts can be implemented in time logarithmic in N, by a
method similar to the implementation of conditional rotation
(cf., Proposition 3). After applying Step 3, the resulting state
can be viewed as the quantum Fourier transform of some
(2N + 2)-qubit state

∑
x′,y′∈[2N] g′(x′, y′)|x′〉|y′〉, i.e.,⎧⎨⎩F2{g′}(2i+ 1, 2 j + 1) = F2{g}(i, j), i, j ∈ [N]

F2{g′}(i, j) = 0, i, j ∈ [2N] are not both odd.
(34)

The explicit expression of function g′ can be deduced by
inverse Fourier transform as follows:

g′(l′, t ′) = 1

2N

1

N

∑
x,y,i, j∈[N]

g(x, y)e−2πI ix+ jy
N e2πI

(2i+1)l′+(2 j+1)t′
2N

= 1

2
g
(
l′ mod N, t ′ mod N

)
e2π I

l′+t′
2N

= f̃ (l′, t ′)l′, t ′ ∈ [2N]

Algorithm 1: Quantum Periodic Discrete Radon Trans-
form.

Input: An N × N quantum image∑
x,y∈[N] f (x, y)|x〉|y〉.

Output:
∑

l, j′′∈[2N] QR f (l, j
′′)|l〉| j′′〉.

1: Prepare the state
∑

x,y∈[N] f (x, y)|x〉|1〉|y〉|1〉.
2: Apply phase shifts conditioned on |x〉, |y〉 to

prepare ∑
x,y∈[N]

g(x, y)|x〉|1〉|y〉|1〉 (29)

where g(x, y) = f (x, y)e−2πI x+y2N .
3: Perform quantum Fourier transforms on |x〉 and

|y〉, respectively, to get
∑
i, j∈[N]

⎛⎝ 1

N

∑
x,y∈[N]

g(x, y)e−2πI ix+ jy
N

⎞⎠ |i〉|1〉| j〉|1〉.

(30)

4: Perform inverse quantum reversible multiplication
on registers |i′〉 = |i, 1〉 and | j′〉 = | j, 1〉 to prepare
∑

i′, j′′∈[2N]

⎛⎝ 1

2N

∑
x′,y′∈[2N]

f̃ (x′, y′)e−2πI i
′x′+(i′� j′′ )y′

2N

⎞⎠|i′〉| j′′〉

(31)

where i′ � j′′ = j′, � is the quantum reversible
multiplication such that i′ � j′′ = i′ j′′ for odd
i′ ∈ [2N].

5: Apply inverse quantum Fourier transform to |i′〉 to
prepare

1√
2N

∑
l, j′′∈[2N]

⎛⎜⎝ 1

2N

∑
i′,t∈[2N]

∑
(x′,y′ )∈L2N

t, j′′

f̃ (x′, y′)

× e−2πI i
′t
2N e2πI

i′l
2N

⎞⎠ |l〉| j′′〉 (32)

=
∑

l, j′′∈[2N]
QR f (l, j

′′)|l〉| j′′〉. (33)

so that the resulting state in Step 3 can be rewritten as

∑
i′, j′∈[2N]

⎛⎝ 1

2N

∑
x′,y′∈[2N]

f̃ (x′, y′)e−2πI i
′x′+ j′y′

2N

⎞⎠ |i′〉| j′〉. (35)

After applying the inverse quantum reversible multiplication
to |i′〉| j′〉 of (35) in Step 4, by (22), the resulting state is as in
(31). Now, from the fact that for any j′′ ∈ [2N]{

i′ � j′′ = i′ j′′, if i′ is odd
F2{ f̃ }(i′, j′′) = 0, if i′ is even
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one gets

F2{ f̃ }(i′, i′ � j′′) = F2{ f̃ }(i′, i′ j′′), i, j ∈ [2N].

Then the resulting state in Step 4 can be rewritten as∑
i′, j′′∈[2N]

F2{ f̃ }(i′, i′ j′′)|i′〉| j′′〉.

The final result in Step 5 is by the following proposition.
Proposition 6 (Fourier Slice Property of QPRT): In the

notations of Algorithm 1, for any given slope j′′ ∈ [2N], the
1-D Fourier transform of QR f (l, j

′′) with respect to l is

F1{QR f (·, j′′)}(i′) = F2{ f̃ }(i′, i′ j′′), i′ ∈ [2N]. (36)

Proof: Let F−1
1 be the inverse transform of F1. Then

F−1
1 {F2{ f̃ }(·, · j′′)}(l)

= 1√
2N

∑
i′∈[2N]

⎛⎝ 1

2N

∑
x′,y′∈[2N]

f̃ (x′, y′)e−2πI i
′x′+i′ j′′y′

2N

⎞⎠ e2π I
i′l
2N

= 1√
2N

⎛⎜⎝ 1

2N

∑
i′,t∈[2N]

∑
(x′,y′ )∈L2N

t, j′′

f̃ (x′, y′)e−2πI i
′t
2N e2πI

i′l
2N

⎞⎟⎠

= 1√
2N

∑
i′,t∈[2N]

⎛⎜⎝ 1

2N

∑
(x′,y′ )∈L2N

t, j′′

f̃ (x′, y′)

⎞⎟⎠ e−2πI i
′t
2N e2π I

i′l
2N

= 1√
2N

∑
(x′,y′ )∈L2N

l, j′′

f̃ (x′, y′) = QR f (l, j
′′). (37)

�
The overall runtime of Algorithm 1 is the sum of O(logN)

time required to perform conditional phase shifts [43],
O(log2N) time required to perform quantum Fourier trans-
form and its inverse, and O(log3N) time required to perform
the inverse multiplication. Observe that all quantum gates
used inAlgorithm 1 are unitary and invertible. So, an efficient
inverse QPRT algorithm follows immediately by reversing
all circuits in Algorithm 1. In conclusion, we have the fol-
lowing theorem.
Theorem 1: Given an N × N quantum image state∑

x,y∈[N]
f (x, y)|x〉|y〉

then its (inverse) QPRT can be performed in time O(log3 N).

V. QUANTUM-MECHANICAL IMPLEMENTATION OF DRT
WITH THE INTERPOLATION METHOD
The discretization of Radon transform needs to approximate
the line integral. A simple solution is to sample and sum
along the integral line, where the interpolation method can
be employed to estimate the undefined values at noninteger
lattice sample points. Several kinds of sample and interpola-
tion methods are available for implementing IDRT [6], [44],

[45]. We define a simplest kind of IDRT (SIDRT), and give
its quantum algorithm, with the aim of showing a general
quantum approach to achieve this interpolation-based kind
of DRT in the following.
Definition 5: Let the set of slopes of the basically horizon-

tal lines and basically vertical lines be

S‖ :=
{
tan θ j|θ j = π j

N
,−N

4
≤ j <

N

4
and j ∈ Z

}
S⊥ :=

{
1

tan θ j
|θ j = π j

N
,−N

4
< j ≤ N

4
and j ∈ Z

}
(38)

respectively, where agree that 1
0 = ∞ and 1

∞ = 0. Let �ki

be the fractional part of ki. Then, the SIDRT of a function f
on Z2

N is

Pk(l) = 1√
N

∑
i∈[N]

[√
1 − |�ki|2 f (i, l + �ki� mod N)

+ �ki f (i, l + �ki� + 1 mod N)] , k ∈ S‖, l ∈ [N]
(39)

Pk(l) = 1√
N

∑
i∈[N]

[√
1 − |� i

k
|2 f
(
l + � i

k
� mod N, i

)

+ � i
k
f

(
l + � i

k
� + 1 mod N, i

)]
, k ∈ S⊥, l ∈ [N].

(40)

By definition, Pk(l) can be viewed as an approximate dis-
crete line integral along the line with intercept l and slope k.
The SIDRT is proposed for easily achieved in the quantum

case. Although it adopts a relatively simple interpolation
method, the SIDRT is so useful that enables to detect lines
in complicated image, as shown in Fig. 9; more details can
be found in Section VI-B.
Now, we turn to the quantum implementation of the

SIDRT. We first consider approximating the integrals along
basically horizontal lines, i.e., Pk(l) as defined in (39), where
l ∈ [N] and k ∈ S‖.
Let kθ := tan(πθ

N − π
4 ). For any i ∈ [N], θ ∈ [N2 ], we can

prepare a quantum state that contains the location informa-
tion of lattice points used to compute Pkθ (l) by the following
sequence of mappings:

|i〉|θ〉|0〉|0〉 −→ |i〉|θ〉|ikθ 〉|0〉

−→ |i〉|θ〉∣∣�ikθ�〉|�ikθ 〉
(√

1 − |�ikθ |2|0〉 + �ikθ |1〉
)

−→ |i〉|θ〉∣∣�ikθ�〉|0〉(√1 − |�ikθ |2|0〉 + �ikθ |1〉
)

.

(41)

In (41), the first step is by trigonometric function [37] and
arithmetics [17] in computation basis. The second step is to
use the decimal part of ikθ to perform control rotations (cf.,
Proposition 3) on the last qubit. The third step is uncomput-
ing |�ikθ 〉.
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Combining (41) with the addition in the computational
basis gives the following lemma.
Lemma 2: The following “location state” can be prepared

in time O(polylogN):

|θ〉|0〉 V−→ |θ〉
∑
i∈[N]

1√
N

(√
1 − |�ikθ |2|i〉

∣∣�ikθ�〉|0〉
+ �ikθ |i〉

∣∣�ikθ� + 1
〉|1〉), θ ∈

[
N

2

]
. (42)

Remark: The state on the right-hand side of (42) is called
“location state,” since its first two quibts record the locations
of points used to compute Pk(0) for k ∈ S‖, according to (39).
Now, with the unitary capable of preparing a quantum

image f as follows:

|0〉−→
∑
i, j∈[N]

f (i, j)|i〉| j〉 (43)

one can approximate the SIDRT of f by the following theo-
rem.
Theorem 3: Given the unitary that can prepare a quan-

tum image
∑

i, j∈[N] f (i, j)|i〉| j〉 in time O(Tin), one can ap-
proximate Pk(l), the SIDRT of f , to precision O(ε) in time
O( Tin

ε
polylogN). Namely, there is a quantum algorithm runs

in time O( Tin
ε
polylogN) to achieve the mapping

|θ〉|l〉|0〉 → |θ〉|l〉|P̃kθ (l)〉 ∀l ∈ [N], θ ∈ [N] (44)

where |P̃kθ (l) − Pkθ (l)| ≤ ε, and kθ := tan(πθ
N − π

4 ) such
that kθ ∈ S‖ ∪ S⊥, as defined in (38).
Proof: We first consider the realization of (44) for θ ∈

[N2 ], i.e., the case where kθ ∈ S‖. Observe that the following
“image state” can be prepared in time O(TinpolylogN) by the
mapping

|θ〉|l〉|0〉 −→ |θ〉|l〉
∑
i, j∈[N]

f (i, j)|i〉| j〉
(

1√
2
|0〉 + 1√

2
|1〉
)

(45)

where θ ∈ [N2 ] and l ∈ [N]. Lemma 2 allows us to prepare
the “location state” by the mapping

|θ〉|l〉|0〉 −→ |θ〉|l〉
∑
i∈[N]

1√
N

(√
1 − |�ikθ |2|i〉

∣∣l + �ikθ�
〉|0〉

+ �ikθ |i〉
∣∣l + �ikθ� + 1

〉|1〉) (46)

in time O(polylogN), where θ ∈ [N2 ] and l ∈ [N].
Now, by parallel swap test (Proposition 5), one can ap-

proximate the N2

2 inner products of the “image state” in (45)
and the “location state” in (46) in parallel θ, l. Since the
result of each inner product is just 1√

2
Pkθ (l), one can perform

|θ〉|l〉|0〉 → |θ〉|l〉|pkθ (l)〉 ∀θ ∈
[
N

2

]
, l ∈ [N] (47)

in time O(
√
2Tin

ε
polylogN), where |pkθ (l) − 1√

2
Pkθ (l)| ≤

ε√
2
. The theorem holds by setting P̃kθ (l) = √

2pkθ (l). An

efficient implementation of multiplication by
√
2, a known

constant, in the computation basis can be found in [46]. The
realization of (44) for θ ∈ [N] \ [N2 ] is similar. �
Given a Real Ket quantum image f and its preparation uni-

tary as in (43), by Theorem 3, after performing the transform
of (44) on input state

∑
θ,l∈[N]

1
N |θ〉|l〉|0〉, one can prepare the

SIDRT of f in NEQR-encoded form. This NEQR-encoded
output already can be used for practical application, such
as line detection shown in Section VI-B later. Moreover, if
necessary, one can continue to transform the NEQR-encoded
output into its Real Ket version by Proposition 4, thus keep-
ing the input and output encoded in the same way.

A. EFFICIENCY ANALYSIS OF THEOREM 3
We discuss what is a reasonable choice of the precision ε in
Theorem 3.
Random image. The term “random image” refers to an

image whose each pixel value is sampled from the uniform
distribution U [0, 1] independently.
Proposition 7: Let f be an N × N random image, i.e.,

f (i, j) ∼ U [0, 1] for i, j ∈ [N]. Then, the expectation of the
minimal value of the SIDRT of normalized f is no less than√

3
2N0.5 .
Remark: The reason why we consider the normalized

rather than the original image here is that the quantum image
is a normalized state.
Proof: We begin with a probability inequality. Let a and b

be two discrete random variables whose density functions are
P(a = ai) = pi and P(b = bi) = qi, where i ∈ [N], respec-
tively. Then, by Cauchy-Schwarz inequality

E
(a
b

)
=

∑
i, j∈[N]

piq j
ai
b j

=
(∑

i, j piq jb j
) (∑

i, j piq j
ai
b j

)
E(b)

≥
(∑

i, j q j pi
√
ai
)2

E(b)
=
(∑

i pi
√
ai
)2

E(b)
= E2

(√
a
)

E(b)
.

(48)

Let U [0, 1] be the uniform distribution on [0,1], and let
random variables xk, yk ∼ U [0, 1] for k ∈ [N2]. Notice that
f (i, j) ∼ U [0, 1]. Let Pk0 (l0) be the SIDRT of f as in (39),
then for any k0, l0 ∈ [N], the expectation of the SIDRT of
normalized f at point (k0, l0) is

E

⎛⎝ Pk0 (l0)√∑
i, j∈[N] f 2(i, j)

⎞⎠

= E

⎛⎝ 1√
N

∑
k∈[N] �kxk +

√
1 − |�k|2xk√∑

k∈[N] x2k +∑k∈[N2−N] y2k

⎞⎠
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≥ E

⎛⎝ 1√
N

∑
k∈[N] xk√∑

k∈[N] 1 +∑k∈[N2−N] y2k

⎞⎠
(48)≥

E2
(√

1√
N

∑
k∈[N] xk

)
E
(√

N +∑k∈[N2−N] y2k
)

≥
E2
(√

1√
N

∑
k∈[N] xk

)
√
E
(
N +∑k∈[N2−N] y2k

) ≈
√
3

2N0.5
(N → ∞)

(49)

where the last inequality follows from that E2(ν) ≤ E(ν2)
for arbitrary random variable ν, and the last approximate
equality is by the central limit theorem [47], which states that
for any independent and identically distributed (IID) random
variables ν0, ν1, . . . , νn−1 with mean μ and variance σ 2, it

holds that E(
√

|∑ j∈[n] ν j|) ≈
√
nμ − σ 2

μ
(n → ∞), and so

E(
√∑

k∈[N] xk ) ≈
√

N
2 − 1

6 .

The previous proposition implies that a reasonable choice
of precision in Theorem 3 is ε = �( 1

N0.5 ), e.g., 1
100N0.5 ,

for producing a good approximation to SIDRT. In this
case, when compared with the classical SIDRT whose run-
ning time is �(N3), quantum SIDRT achieves a polyno-
mial speedup by Theorem 3, because the quantum image
preparation time Tin ≤ O(N2) in the worst case, thus Tin

ε
≤

O(N2.5) < N3.

VI. QUANTUM APPLICATION
We present two potential applications—quantum image de-
noising using QPRT and quantum line detection using
SIDRT.

A. DENOISING USING QPRT
We replicate the denoising experiments in [3], which are
specially designed for testing PDRT. The experiment results
shown in Figs. 6 and 7 suggest that our QPRT is of the good
denoising capability as in the classical PDRT. We give an
efficient quantum image denoising algorithm using QPRT in
the following.
Step 1: Apply the QPRT algorithm on the input N × N

quantum image f to perform∑
x,y∈[N]

f (x, y)|x〉|y〉 −→
∑

l,k∈[2N]
QR f (l, k)|l〉|k〉. (50)

Step 2: PerformHadamard gate (namely, 2 × 2Haar trans-
form, as shown in Fig. 2) on the least significant qubit (LSB)
of |l〉 in (50) to produce a state

1√
2

∑
l′∈[N],k∈[2N]

(QR f (2l
′, k)

+ QR f (2l
′ + 1, k))|l′0〉|k〉

+ (QR f (2l
′, k) − QR f (2l

′ + 1, k)
)|l′1〉|k〉. (51)

Step 3: Measure the LSB of the first register. If the out-
come is |0〉, then apply the inverse Hadamard gate to themea-
sured qubit, and then execute the inverse QPRT algorithm.
The resulting state is (up to a normalization factor) given as
follows:

QR−1

⎛⎜⎜⎝ ∑
l′∈[N],s∈[2]
k∈[2N]

1

2
(QR f (2l

′, k) + QR f (2l
′ + 1, k))|l′s〉|k〉

⎞⎟⎟⎠.

The above-mentioned is a quantum analogue of PDRT
denoising method introduced in Section II-B. Notice that the
Hadamard gate in Step 2 plays the role of Haar wavelet,
and measuring LSB to obtain |0〉 in Step 3 has the effect of
making all wavelet coefficients zero. So, this quantum QPRT
denoising method indeed simulates denoising using QPRT+
Haar wavelet and threshold ∞.
To evaluate the efficiency of this denoising method, we

consider the success probability (namely, the probability of
measuring |0〉 in Step 3). Since QR f (l

′, k) = 0 holds for any
even k ∈ [2N], the success probability is, thus, reduced to

1

2

∑
l′,k∈[N]

|QR f (2l
′, 2k + 1) + QR f (2l

′ + 1, 2k + 1)|2.

(52)

By the following theoretical analysis (cf., Proposition 8)
and numerical simulation (cf., Fig. 8), this probability of
success is quite high; particularly, it has no tendency to be
tiny as the image size N increases.
Proposition 8: Let f be an N × N random image, i.e.,

f (i, j) ∼ U [0, 1] for i, j ∈ [N]. Given the noisy image
h(i, j) = f (i, j) + εei j, i, j ∈ [N], where ei j is the noise
sampled from the normal distribution V (0, σ 2) indepen-
dently, and ε ∈ R is noise level, then the QPRT denoising
method can be implemented with an average probability of
success p > 1/2.
Proof: By Definition 4, for any fixed l, k ∈ [2N]

QRh(l, k) − QR f (l, k) = 1

2
√
2N

∑
(i, j)∈L2Nl,k

εei j. (53)

Notice that for two independent random variables
x ∼ V (u1, σ 2

1 ) and y ∼ V (u2, σ 2
2 ), it holds that x± y ∼

V (u1 ± u2, σ 2
1 + σ 2

2 ). So, the distribution of the right-hand
side of (53) is εV (0, σ 2/4). Let Ef ,e(QRh) denote the
expectation of QRh with respect to the random variables
f and e. Then, for any l, k ∈ [2N]

Ef ,e(|QRh(l, k) − QRh(l + 1, k)|2)
= Ef (|QR f (l, k) − QR f (l + 1, k)|2)

+ Ee

⎛⎜⎝
∣∣∣∣∣∣ ε

2
√
2N

∑
s∈[2N]

es −
∑
s∈[2N]

e′s

∣∣∣∣∣∣
2
⎞⎟⎠ (54)

= Ef (|QR f (l, k) − QR f (l + 1, k)|2) + ε2σ 2/2 (55)
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where es and e′s ∼ V (0, σ 2) are both the short hands of IID
noises ei j in (53). Equation (54) is by combining (53) and the
fact that the mean of random variables es, e′s is 0. Similarly

Ef ,e(|QRh(l, k) + QRh(l + 1, k)|2)
= Ef (|QR f (l, k) + QR f (l + 1, k)|2) + ε2σ 2/2. (56)

Now, we denote

�+ =∑l,k∈[N] |QRh(2l, 2k + 1) + QRh(2l + 1, 2k + 1)|2

�− =∑l,k∈[N] |QRh(2l, 2k + 1) − QRh(2l + 1, 2k + 1)|2

�′+ =∑l,k∈[N] |QR f (2l, 2k + 1) + QR f (2l + 1, 2k + 1)|2

�′− =∑l,k∈[N] |QR f (2l, 2k + 1) − QR f (2l + 1, 2k + 1)|2.
From (52), our aim is to lower bound the following kind of
average probability of success:

Psuccess = Ef ,e(�+)
Ef ,e(�+ + �−)

= (55), (56)
Ef (�′+) + N2ε2σ 2/2

Ef (2
∑

i, j∈[N] | f (i, j)|2) + N2ε2σ 2

(57)

where the denominator in (57) is by the following relations:∑
l,k∈[N]

�′
+ + �′

− =
∑

l,k∈[2N]
2|QR f (l, k)|2 = 2

∑
i, j∈[N]

| f (i, j)|2.

(58)

Notice that if k is even, then QR f (l, k) ≡ 0. We first
consider estimating Ef (|QR f (l, k) + QR f (l + 1, k)|2) and
Ef (|QR f (l, k) − QR f (l + 1, k)|2) for any odd k ∈ [2N]. De-
note intervals

P1 := [0,N) × [0,N)
⋃

[N, 2N) × [N, 2N)

P2 := [0,N) × [N, 2N)
⋃

[N, 2N) × [0,N) (59)

and denote the number of points in L2Nl,k
⋂
P1 and L2Nl,k

⋂
P2

by

C1(L
2N
l,k ) = card({(x, y) ∈ L2Nl,k |(x, y) ∈ P1})

C2(L
2N
l,k ) = card({(x, y) ∈ L2Nl,k |(x, y) ∈ P2}) (60)

respectively. By geometry, it can be verified that

C1(L
2N
l,k ) +C2(L

2N
l,k ) = 2N ∀l, k ∈ [2N] (61)

|C1(L
2N
l,k ) −C1(L

2N
l+1,k )| = 2 ∀ odd k ∈ [2N]. (62)

By (26), QR f (l, k) is a sum of values f̃ (i, j) over line
L2Nl,k on Z2

2N , where each f̃ (i, j) takes values from uniform
distribution on [0,1] for (i, j) ∈ P1, and each f̃ (i, j) takes
values from uniform distribution on [−1, 0] for (i, j) ∈ P2.
Combining (61) and (62) gives that for any odd k

E f

(∣∣QR f (l, k) − QR f (l + 1, k)
∣∣2)

= 1

8N
E

⎛⎜⎝
∣∣∣∣∣∣

∑
C1(l)+C2(l+1)

ν −
∑

C2(l)+C1(l+1)

ν

∣∣∣∣∣∣
2
⎞⎟⎠

= 1

8N
E

⎛⎝∣∣∣∣∣∑
2N+2

ν −
∑
2N−2

ν

∣∣∣∣∣
2
⎞⎠ (63)

where C1(l) is the short hand of C1(L2Nl,k ), and
∑

k ν de-
notes the summation of k numbers of independent ran-
dom variables ν ∼ U [0, 1]. Notice that for IID random
variables ν1, ν2 ∼ U [0, 1], we have E(|ν1|2) = |E(ν1)|2 +
D(ν1), where D is the variance, D(ν1 ± ν2) = 2D(ν1) and
E(ν1 ± ν2) = E(ν1) ± E(ν1). So

E

⎛⎝∣∣∣∣∣∑
2N+2

ν −
∑
2N−2

ν

∣∣∣∣∣
2
⎞⎠ = D

(∑
2N+2

ν −
∑
2N−2

ν

)

+ E

(∑
2N+2

ν −
∑
2N−2

ν

)
= N

3
+ 2. (64)

Combining (64) and (63) gives

Ef

⎛⎝ ∑
l∈[N],k∈[N]

|QR f (2l, 2k + 1) − QR f (2l + 1, 2k + 1)|2
⎞⎠

= N2 × 1

8N
×
(
N

3
+ 2

)
= N2

24
+ N

4
. (65)

Then by (57), (58), (64), and E(
∑

i, j∈[N] | f (i, j)|2) = N2

3 ,
the lower bound is achieved as follows:

Psuccess = E(2| f |2) − (N
2

24 + N
4 ) + N2 ε2σ 2

2

E(2| f |2) + N2ε2σ 2

= 1 −
1
24 + 1

4N + ε2σ 2

2
2
3 + ε2σ 2

> 1/2. (66)

�
Remark: For a real-world image, due to the smoothness of

images, the ratio of wavelet coefficients to filter coefficients
is likely to be very small, so that the probability of success of
quantum denoising method is likely to be high, such as 95%,
as shown in Fig. 8.
By treating the probability of success as a constant, we

conclude that the QPRT-based quantum image denoising
method has a time complexity O(log3 n), which is exponen-
tially faster than the classical PDRT denoising method.
Also, there are more quantum techniques that allow to

simulate denoising using other Daubechies wavelets [24] and
thresholds [36] in the quantum computation framework.

B. LINE DETECTION USING SIDRT
The SIDRT enables one to detect possible line in images:
when the SIDRT Pk(l) of image f reaches maximum for
some pair l and k, there is likely to be a straight line with gra-
dient k and intercept l in the image. For example, suppose that
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f depicts a line composed of points with grayscale 1, while
the grayscales of all other points in the picture are 0. Then,
the SIDRT reaches maximum at the corresponding line, with
the coordinates of the maximum in the Radon domain giving
the slope and intercept of the line, respectively. Fig. 9 shows
a powerful line detection capability possessed by SIDRT.
In classical case, performing SIDRT has a running time

�(N3), and finding the maximum of SIDRT has a time com-
plexity O(N2). So, the total running time of classical SIDRT-
based line detection algorithm is �(N3); in contrast, there is
a quantum algorithm that can run in O(N1.5) time to execute
line detections (in the best case) by the following proposition.
Proposition 9: Let f be an N × N quantum image that

can be prepared in time O(Tin) by the unitaryU : |0〉 → |�f 〉.
There exist a quantum algorithm that can detect line in f

by using SIDRT in time O(N
1.5Tin
ε

polylog N), where ε is the
desired precision. This algorithm outputs a pair (θ0, l0) such
that P̃kθ0 (l0) ≥ (1 − 2√

3
ε)maxθ,l Pkθ (l).

Proof: Applying Theorem 3 to the input state∑
θ,l∈[N]

1
N |θ〉|l〉|0〉 with setting precision ε

N0.5 , one can

prepare the following state in time O(N
0.5Tinpolylog N

ε
):∑

θ,l∈[N]

1

N
|θ〉|l〉|P̃kθ (l)〉 (67)

where |P̃kθ (l) − Pkθ (l)| ≤ ε

N0.5 . Then, by the quantum algo-
rithm for finding the maximum among N terms with query
complexity O(

√
N ) [48], one can find (l0, θ0) such that

P̃kθ0 (l0) = maxθ,l∈[N] P̃kθ (l) in time O(N
1.5Tinpolylog N

ε
).

By Proposition 7, in the average case, it holds that

maxθ,l Pkθ (l) ≥
√
3

2N0.5 . Now that

|P̃kθ (l) − Pkθ (l)| ≤ ε

N0.5
≤ 2ε maxPkθ (l)√

3
(68)

it holds that

P̃kθ0 (l0) = max P̃kθ (l) ≥
(
1 − 2ε√

3

)
maxPkθ (l). (69)

VII. CONCLUSION
This article presents a novel DRT for efficient quantum im-
plementation. By theoretical analysis and numerical experi-
ments, it is shown that our new proposed QPRT has similar
functionality to the classical PDRT, and is more suitable for
quantum implementation than PDRT. In addition to its quan-
tum advantage, the QPRT has a classical application value
that it can be used as a “reversible PDRT.”
Also, a polynomially fast quantum implementation of an-

other interpolation-based kind of DRT is given. There are
two problems that deserve further investigation, which are
as follows.

1) Is it possible to provide exponential speedup for per-
forming interpolation-based DRTs or line detection?

2) Considering that the computational basis state of the
maximum amplitude is most likely to be observed by

quantum measurement, can this property be used to
design a better line detection algorithm?

APPENDIX
SKETCH PROOF OF PROPOSITION 5
Proposition 5 (see [41, Th. 1]) is a parallel version of the
following lemma, which allows one to estimate the inner
product of two quantum states, where a key quantum sub-
routine used is called phase estimation (cf., [17, Sec. 5.2]).
Lemma 4 (Swap Test [49]): Let |�x〉, |�y〉 be two quantum

states, which can be prepared in time O(Tin). There is a
quantum algorithmwith runtimeO( Tin

ε
) to achieve |0〉 → |s〉,

where |s− 〈�x|�y〉| ≤ ε.
Proof: First consider two arbitrary normalized quantum

states |�u〉, |�v〉. Suppose that the state
|�φ〉 = sin θ |0〉|�u〉 + cos θ |1〉|�v〉,where�θ ∈ (0,

π

2
] (70)

can be prepared in time O(T ) by the unitary U : |0〉 → |�φ〉.
Let G = U (2|0〉〈0| − I)U†(Z ⊗ I), where the matrix Z :=[
1

−1

]
acts on the first qubit, and I is the identity matrix.

Then, under the basis {|0〉|�u〉, |1〉|�v〉}, one can write

G =
(

cos 2θ sin 2θ

− sin 2θ cos 2θ

)
.

The eigenvalues of G are e±I2θ with the corresponding
eigenvectors |�w±〉 = 1√

2
(|0〉|�u〉 ± I|1〉|�v〉). By (70), |�φ〉 =

− I√
2
(eIθ |�w+〉 − e−Iθ |�w−〉). So, after performing the quan-

tum phase estimation associated with operator G and initial
state |0〉n|�φ〉 where n = �(log 1

ε
), the result is (an good ap-

proximation to) the following state:

−I√
2

[
eIθ |h〉|�w+〉 − e−Iθ | − h〉|�w−〉] (71)

where h ∈ [2n] satisfies |hπ/2n − θ | ≤ ε. The time complex-
ity for the previous procedure is O(T/ε). By adding ancilla
qubits, one can continue to compute abs(h), where abs(h) =
h is the absolutely function in [2n] (i.e., if h ∈ [2n−1], then
abs(h) = h; otherwise, abs(h) = 2n − h. It always holds that
abs(h) = abs(−h mod 2n)). It can be implemented in time
O(T/ε) that

|0〉 → |0〉n|φ〉|0〉n−1

→ −I√
2

[
eIθ |h〉|�w+〉 − e−Iθ | − h〉|�w−〉]|abs(h)〉

undo−→ |abs(h)〉 (72)

where abs(h) satisfies | sin(abs(h)π/2n) − sin θ | ≤ ε.
Now, we proof this lemma in the case where |�x〉 and |�y〉

are two real quantum states that can be prepared in time Tin
by unitaries: |0〉 → |�x〉 and |0〉 → |�y〉. The previous method,
indeed, provides a quantum algorithm to estimate the inner
product 〈�x|�y〉 to precision ε in time O( Tin

ε
). In fact, setting in
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(70) the following:

|�φ〉 = 1

2
(|0〉(|�x〉 + |�y〉) + |1〉(|�x〉 − |�y〉)) (73)

(normalized form of) |�u〉 = |�x〉 + |�y〉, (normalized form of)
|�v〉 = |�x〉 − |�y〉, then by calculation, sin θ = √(1 + 〈�x|�y〉)/2.
Using the unitary capable of preparing |x〉 and |y〉 in time
O(Tin), one can prepare the state of (73) in time O(Tin). Then
by applying (72) and trigonometric function “sin” [37], one
can realize in time O( Tin

ε
) the following mapping:

|0〉 → |s̃in θ〉 → |s〉
where |s̃in θ − sin θ | ≤ ε and |s− 〈�x|�y〉| ≤ ε.

For the case when |�x〉 and |�y〉 in (73) are complex vec-
tors, the corresponding sin θ = √(1 + (Re〈�x|�y〉)/2, so that
one can compute Re〈x|y〉 using the previous method. The
imaginary part of 〈�x|�y〉 can be obtained by computing
Re〈�x|I�y〉. �

In Proposition 5, one is given 2N quantum states |�u0〉,
|�v0〉... |�uN−1〉, |�vN−1〉, and the preparation unitaries as fol-
lows:

U =
{ |k〉|0〉 → |k〉|�uk〉, k ∈ [N]

|k〉|0〉 → |k〉|�vk−N〉, k ∈ [2N] \ [N].
To perform swap tests in parallel, consider the opera-

tor G′ = U (Ilog 2N×log 2N ⊗ (2|0〉〈0| − I))U−1. Proposition
5 follows by applying the phase estimation associated with
the operator G′(Z ⊗ I) and state 1√

2N

∑
j∈[2N] | j〉|0〉, where

Z acts on the most significant qubit in |k〉. More details can
be found in [41].
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