
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022 1505705

Quantum SVR for Chlorophyll Concentration
Estimation in Water With Remote Sensing

Edoardo Pasetto , Morris Riedel, Member, IEEE, Farid Melgani , Fellow, IEEE,

Kristel Michielsen, and Gabriele Cavallaro , Member, IEEE

Abstract— The increasing availability of quantum computers
motivates researching their potential capabilities in enhancing
the performance of data analysis algorithms. Similarly, as in
other research communities, also in remote sensing (RS), it is
not yet defined how its applications can benefit from the usage
of quantum computing (QC). This letter proposes a formulation
of the support vector regression (SVR) algorithm that can be
executed by D-Wave quantum computers. Specifically, the SVR
is mapped to a quadratic unconstrained binary optimization
(QUBO) problem that is solved with quantum annealing (QA).
The algorithm is tested on two different types of computing
environments offered by D-Wave: the advantage system, which
directly embeds the problem into the quantum processing unit
(QPU), and a hybrid solver that employs both classical and
QC resources. For the evaluation, we considered a biophysical
variable estimation problem with RS data. The experimental
results show that the proposed quantum SVR implementation
can achieve comparable or, in some cases, better results than the
classical implementation. This work is one of the first attempts to
provide insight into how QA could be exploited and integrated in
future RS workflows based on machine learning (ML) algorithms.

Index Terms— Quantum annealing (QA), quantum computing
(QC), quantum machine learning (QML), remote sensing (RS),
support vector regression (SVR).

I. INTRODUCTION

AREGRESSION analysis is a statistical process whose
objective is to find the relationship between a set of

independent variables {x} and a dependent variable y [1].
It holds an important role in many applications, such as
financial forecasting [2], geomagnetic data reconstruction [3],
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marketing, sociology, epidemiology, and risk analysis [4].
In the field of remote sensing (RS), the regression analysis
has been applied in different applications [5], [6].

In the context of quantum machine learning (QML) [7],
[8], [9], only few works have already addressed regression
analysis problems. For instance, a quantum version of a linear
regression algorithm and of a ridge regression algorithm have
been proposed [10], [11]. Among the different paradigms
of quantum computing (QC), quantum annealing (QA) has
recently provided promising results in diverse ML applications
[12], [13]. QA is a metaheuristic for solving combinatorial
optimization problems [14], [15]. QA is closely related to
adiabatic QC (AQC) [16], which was shown to be polyno-
mially equivalent to the universal gate-based model, which is
a different paradigm of QC [17]. However, QA can only solve
a specific class of problems, and therefore, the redefinition of
ML algorithms in a suitable format is one of the central design
challenges when working with QA-enhanced ML models [18].
This work presents an implementation of the support vector
regression (SVR) [19] algorithm that uses QA for solving
the optimization problem related to the training phase of
the SVR algorithm. Previous works tried to apply QA to
optimize the training procedure of a support vector machine
for classification tasks [13].

A similar implementation of QA-optimized SVR algorithm
was proposed for facial landmarks detection [20]. Specifically,
our implementation uses a similar workflow for constructing
the quadratic unconstrained binary optimization (QUBO), but
the mathematical formulation presents some differences in the
constraints enforcement procedure (Section II). In addition,
in this work, we propose six different methods to combine
the solutions returned by the annealer when running the
problem on the advantage system (Section II). Moreover,
our implementation was tested on both hybrid and direct
quantum processing unit (QPU) solvers, whereas [20] tested
the quantum SVR (QSVR) only on hybrid solvers. This work
focuses on biophysical parameter estimation related to chloro-
phyll concentration in water [21], [22], [23]. The proposed
implementation was tested on a synthetic and a real RS dataset
related to chlorophyll concentration in water. The quantum
system used in the experiments was provided by the company
D-Wave. Specifically, the experimental validation was con-
ducted on the D-Wave Advantage_system4.1 solver and the
hybrid_binary_quadratic_model_version2 hybrid solver. The
access to such computational resources was provided through
the D-Wave Leap cloud service. The purpose of this work
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is to investigate how QA could improve the existing ML
frameworks for RS applications.

II. QA-BASED IMPLEMENTATION OF SVR

A. Support Vector Regression

The mathematical formulation of the �-insentive SVR is
now briefly described. Let T = {(xn, yn), n = 0, . . . , N − 1}
be the dataset used for the training phase constituted by N
training samples. Each of such samples is formed by a feature
vector xn ∈ R

d , where d is the dimension of the feature
space, and a target value yn ∈ R. It can be shown, with some
mathematical manipulation, that the training phase amounts to
the solving of the following constrained optimization problem:

L(ααα, α̂αα) = 1

2

N−1�
n=0

N−1�
m=0

(αn − α̂n)(αm − α̂m)k(xn, xm) +

− �

N−1�
n=0

(αn + α̂n) +
N−1�
n=0

(αn − α̂n)yn (1)

where the constraints to be enforced are
N−1�
n=0

(αn − α̂n) = 0 (2a)

0 ≤ αn ≤ C (2b)

0 ≤ α̂n ≤ C. (2c)

In the optimization problem, the terms ααα = {αn : n =
0, . . . , N − 1} and α̂̂α̂α = {α̂n : n = 0, . . . , N − 1} are the
variables with respect to which the problem is optimized.
The terms C and � are parameters related to the SVR that
controls the overfitting and the error sensitivity, respectively.
After finding the values of ααα and α̂̂α̂α, the prediction function is
defined as

y(x) =
N�

n=1

(αn − α̂n)k(x, xn) + b. (3)

The value of b can be deducted from any data point for
which 0 < αn < C or 0 < α̂n < C using the formula

b = yn − � −
N�

m=1

(αm − α̂m)k(xn, xm). (4)

To obtain a more robust estimation of b, it is preferable,
however, to average the result from multiple data points [24].

The term k(xn, xm) indicates the kernel function; in our
experiments, a radial basis function (RBF) kernel, whose
formula is given by: e(−γ ||xn−xm ||2), has been employed.

B. QUBO Problem Formulation

To be processed by the quantum annealer, a problem must
be in the form of either a Ising spin problem [25] or a QUBO.
For our purposes, the original optimization problem related to
the SVR was turned into a QUBO problem. Such a problem
can be expressed according to the following formula:

E =
�
i≤ j

ai Qi, j a j . (5)

Terms ai ∈ {0, 1} are the binary variables of the QUBO
problem, and Q is an upper-diagonal matrix called QUBO
weight matrix that defines the problem. To turn the original
problem into a QUBO, it is first necessary to encode the
variables ααα and α̂̂α̂α in the binary variables ai . To do so, the
following encoding strategy is applied [13]:

αn =
K−1�
k=0

Bk−P aK n+k (6)

α̂n =
K−1�
k=0

Bk−P aK (N+n)+k. (7)

In (6) and (7), the value K corresponds to the number
of logical qubits used to encode each variable, whereas B
is the value of the base used for the encoding. From the
abovementioned equations, it is possible to note that the total
number of variables of the QUBO problem is 2K N , and that
the first K N variables are used to encode the ααα variables,
whereas the last K N ones are used to encode the variables α̂̂α̂α.
The parameter P ≥ 0 is used for enabling the usage of
negative exponents in the encoding procedure. To enforce
the constraint defined in (2a), a square penalty term whose
strength is regulated by the hyperparameter ξ is added to the
cost function. The constraints in (2b) and (2c) are implicitly
satisfied by the choice of the hyperparameter C: from the
equations, it is possible to see that the maximum value that
each variable can take is

C =
K−1�
k=0

Bk . (8)

Therefore, by choosing a value of C equal or higher than
this quantity, it is possible to guarantee the enforcing of
the constraints. The lower bound is always satisfied, because
each αn and α̂n are non-negative by definition. Moreover,
another penalty term, whose influence is controlled by the
hyperparameter β, is added to enforce that, for each value
of n, at least one of αn or α̂n is equal to 0, or equivalently:
αnα̂n = 0, n = 0, . . . , N − 1

β

�
N−1�

0

αnα̂n

�
. (9)

By adding the penalty terms to the cost functions and by
applying the encoding equations, it is possible to obtain the
final formulation of the QUBO problem

N−1�
n,m=0

K−1�
i, j=0

1�
s,t=0

aK (s N+n)+i

Q̃K (s N+n)+i,K (t N+m)+ j aK (t N+m)+ j . (10)

The term Q̃ is a 2K N × 2K N matrix that defines the
problem, whose elements are given by

Q̃K (s N+n)+i,K (t N+m)+ j

= (−1)(1−δst ) Bi+ j−2P

×
�

1

2
k(xn, xm) + ξ − (1 − s)tδnmβ

�
+ δnmδi j Bi−Pδst(� + (−1)(1−s)(1−t)tn) (11)
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with n, m ∈ {0, . . . , N − 1}, i, j ∈ {0, . . . , K − 1}, and s, t ∈
{0, 1}. Since the QUBO weight matrix Q is upper triangular,
it is obtained from Q̃ using the formula

Qi, j =

⎧⎪⎨
⎪⎩

Q̃i, j + Q̃ j,i , if i < j

Q̃i, j , if i = j

0, otherwise.

(12)

This problem formulation is used for the QPU of the
advantage system and the leap’s hybrid solver, as they both
input a binary quadratic problem. In the case of leap’s hybrid
solver, the problem is optimized using both classical and QC
resources. The allocation of such resources and the problem
decomposition is done automatically by the solver.

The final step for optimizing a problem with the QPU
is the minor embedding [26]. In this process, the QUBO
problem is embedded in the hardware architecture used for
annealing. Specifically, each logical variable ai is mapped to
a chain of qubits, i.e., a group of connected qubits used to
represent a specific logical variable of the QUBO problem.
The reason why chains are needed is that it is not always
possible to directly map the optimization problem directly into
the hardware topology. The values of the elements Qi, j of the
Q matrix, which represent the coefficients associated with
the terms ai a j of the cost function, are mapped to physical
connections of chains of qubits.

C. Solutions Combination Techniques

The advantage system outputs 10 000 reads (i.e., solutions)
with different levels of energy. In this work, we select the
40 solutions with the lowest energy, and we fuse them to
compute the final solution (the number 40 is chosen arbi-
trarily and other options can be considered). To combine
them, we propose six approaches based on different weighted
average formulas. The predictions of the 40 solutions are then
evaluated on the training dataset. To each of them is assigned
a score depending on the value of a specific loss function,
and such scores are then used to obtain the coefficients of
the weighted average. Specifically, the scores are calculated
by considering the multiplicative inverse of the value of a loss
function between the actual and the predicted value; therefore,
a lower value of the loss will be associated with a higher
score value. The loss functions considered are even and non-
negative. The combinations methods differ for the choice of
the loss function and how the scores are used to get the
coefficients. Every method ensures that each weight coefficient
is non-negative; its value is lower or equal than 1, and that
their sum is equal to 1. A brief description of the used methods
is now provided.

1) QSVR 1: It employs a mean-squared error (MSE) loss
function, and the weights coefficients are obtained by
dividing each scores by the sum of all of them.

2) QSVR 2: It uses an MSE loss function, and the coeffi-
cients are obtained by applying a softmax operation on
the scores.

3) QSVR 3: It uses a log-cosh loss function, and the
coefficients are obtained as in QSVR 1.

4) QSVR 4: It uses a log-cosh loss function, and the final
weights are obtained through the application of softmax
on the scores.

TABLE I

VALUES OF MSE OBTAINED BY THE CLASSICAL AND QUANTUM SVR
IMPLEMENTED ON THE HYBRID SOLVER ON BOTH THE

SYNTHETIC AND THE SeaBAM DATASET. VALUES IN

BOLD INDICATE THE RESULTS WHERE THE

QUANTUM IMPLEMENTATION
PERFORMED BETTER

5) QSVR 5: Only the best solution in terms of MSE is
considered, and this is done by setting the weights
associated with the best solution to 1 and all the others
to 0.

6) QSVR 6: To each solution is assigned the same weight;
therefore, a simple average is performed.

III. DATASET DESCRIPTION

In this section, a brief overview and description of the
dataset used for the experimental analysis are provided.

1) MERIS: The first dataset used is a synthetic dataset
whose aim is to simulate the concentration of chloro-
phyll concentration and its relation to optical measure-
ments. The wavelengths considered are the first eight
spectral bands of the Multispectral Medium Resolution
Imaging Spectrometer (MERIS) sensor (412.5, 442.5,
490, 510, 560, 620, 665, and 681.25 nm). The procedure
employed to generate the dataset is the one described
in [27].

2) SeaBAM: The dataset contains information about
919 measurements regarding chlorophyll—a water con-
centration performed in Europe and United States.
The value of concentration ranges between 0.019 and
32.787 mg/m3. The sensor used for the measurements
is the sea-viewing wide field of view sensor (SeaWIFS),
and the wavelengths considered in the experiments were
412, 443, 490, 510, and 555 nm.

In both cases, the feature vector is constructed by considering
the spectral measures at different wavelengths, whereas the
target value is the corresponding chlorophyll concentration.

IV. EXPERIMENTAL ANALYSIS

For each dataset, two experiments were conducted:
one using the D-Wave advantage QPU and the other
using the leap’s hybrid binary quadratic model (BQM) solver.
The implementation of the classical SVR was done using
the Python library sci-kit learn. In each setting, ten test
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TABLE II

VALUES OF MSE OBTAINED ON THE TEST SET FOR DIFFERENT COMBINATION METHODS AND RUNS ON THE SYNTHETIC DATASET OBTAINED BY THE
ADVANTAGE SYSTEM. VALUES IN BOLD INDICATE THE RESULTS WHERE THE QUANTUM IMPLEMENTATION PERFORMED BETTER

TABLE III

VALUES OF MSE OBTAINED ON THE TEST SET FOR DIFFERENT COMBINATION METHODS AND RUNS ON THE SeaBAM DATASET OBTAINED BY THE
ADVANTAGE SYSTEM. VALUES IN BOLD INDICATE THE RESULTS WHERE THE QUANTUM IMPLEMENTATION PERFORMED BETTER

runs were carried out; each one using different datasets for
training and testing that were randomly chosen from the initial
dataset. In each problem instance, the results were compared
with a traditional SVR on the same datasets. Moreover, the
hyperparameters for the quantum and the classical imple-
mentation of the SVR were the same for each test run. For
the experiments using the advantage solver, the number of
training samples was 30, whereas for the hybrid solver, the
number was 50. The reason for this is that the advantage
system could not always find an embedding with bigger
problem instances. This is likely due to the structure of
the problem itself that presents many interactions between
variables that makes difficult finding an embedding as the
number of variables increases [28]. In each test run, the
hyperparameter γ was validated classically using a validation
dataset and an SVR, and the validation dataset was divided
into two parts: the first one was used to train a classical SVR
with a given hyperparameter configuration values, while the
other was used for testing. The configuration that achieved
the best performances in terms of MSE was then used in
the test run. The values of γ were selected from the range
[0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 20, 50], whereas the value of
C was set to Cmin, with Cmin being the quantity defined
in (8), which is equal to the maximum value each αn and
α̂n can take. The values related to the problem encoding

were B = 4 and P = 1 for the synthetic dataset and
B = 5 and P = 0 for the Sea-viewing Bio-optical Algorithm
Mini-Workshop (SeaBAM), whereas the number of logical
qubits K used to encode the original problem variables was
equal to 2 in each test run. For the training phase with the
SeaBAM dataset, the values of both the feature vector and
the target value were converted to the logarithmic domain
as was done in [21], [22], and [23]. The reason for this is
that the distribution of the biophysical quantities is assumed
to be log-normally distributed [29]. Table I reports the result
in terms of MSE obtained by the hybrid solver on both the
synthetic and the seaBaM dataset, while the results obtained by
the advantage system for the synthetic and SeaBAM datasets
are reported in Tables II and III, respectively. When consid-
ering the experiments on the synthetic datasets, the quantum
SVR achieved similar results to its classical counterpart on
both the hybrid solver and the advantage system. In the
experiments on the SeaBAM dataset, the QSVR on average
performed better than the classical one on the hybrid solver,
whereas in the experiments using the advantage system, the
classical implementation performed slightly better, but the
quantum version managed to obtain good results nevertheless
and to perform better on some test runs. The different versions
of QSVR performed similarly in the synthetic dataset; while
on the SeaBAM dataset, there was more variation within the
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results, and this might indicate that the correct choice for
the solutions combination technique becomes more important,
as the data complexity increases. In the experiments with the
SeaBAM dataset, the QSVR 5 managed to obtain the best
results in average among the different QSVR implementations,
but in some specific problem instances, it performed worse
compared with the other solutions combination techniques.
The QSVR 2 obtained the second best average results among
the quantum implementations, but it was the implementation
that outperformed the classical one the most number of times,
five out of ten. The link to the repository associated with this
work can be found at.1

V. CONCLUSION

The main objective of this work was to investigate how QA
could enhance an SVR algorithm for an RS application. The
proposed algorithm was tested on both the D-Wave Advantage
system and on the hybrid solver. The results show that the
quantum implementation of SVR could achieve similar or,
in some cases, even better results than the classical SVR.
This is indicative of the potential of QA especially when
considering that the original problem was continuous and
unconstrained, and that it had to be modified and adapted
to be solved by the annealer. In general, the hybrid solver
provided better results than the Advantage system, and it
could also solve bigger problem instances. Therefore, in the
near future, practical applications will likely run on a hybrid
framework.
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