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Abstract
The 5G Phase-2 and beyond wireless systems 

will focus more on vertical applications such as 
autonomous driving and the Industrial Internet of 
Things, many of which are categorized as uRLLC. 
In this article, an alternative view of uRLLC is pre-
sented, information latency, measuring the distor-
tion of information resulting from time lag of its 
acquisition process, which is more relevant than 
conventional communication latency of uRLLC in 
wireless networked control systems. An AI-assist-
ed SMART is presented to address the informa-
tion latency optimization challenge. Case studies 
of typical applications (i.e., dense platooning and 
intersection management) in AD are demonstrat-
ed, which show that SMART can effectively opti-
mize information latency, and more importantly, 
information latency-optimized systems outperform 
conventional uRLLC-oriented systems significantly 
in terms of AD performance such as traffic efficien-
cy, thus pointing out a new research and system 
design paradigm.

Introduction
The focus of wireless communication systems has 
shifted from content communications, such as 
voice and video which are mainly human-based, 
to machine-based sensing/control information 
communications. For cellular systems, the 1G–4G 
systems have been mainly designed for deliv-
ering human-based contents, whereas 5G and 
beyond systems will find most of their revenue 
in machine-based vertical applications such as 
vehicle-to-everything (V2X) communications and 
wireless networked factory automation. This trend 
has generated enormous technology revolutions 
in wireless communications. In fact, two of the 
three main targets of 5G are set for machine-
type communications (MTC) — massive MTC and 
mission-critical MTC — also known as ultra-reli-
able low-latency communications (uRLLC) [1]. In 
essence, the unique technical challenges brought 
by MTC are due to the nature of machines: they 
can be in massive amounts or density (corre-
sponding to massive MTC), and their perceptions 
and reactions are much more time-sensitive than 
human (corresponding to uRLLC).

In particular, some novel applications have very 
stringent communication latency requirements. 
For example, high-level (level 4–5) autonomous 
driving usually requires status messages delivered 

within less than 10 ms to enable cooperative vehi-
cle maneuver, dense platooning, and so on. To 
replace wired connections (e.g., industrial Ethernet) 
in factory automation, the closed-loop communi-
cation latency, which consists of sensory data col-
lection, data processing at the programmable logic 
controller (PLC), and control information dissemi-
nation, should be less than 5 ms, together with very 
low delay jitter (within microseconds). The Tactile 
Internet even requires less than 1 ms latency to 
enable applications with immersive perceptions 
such as remote robotic surgery.

The currently standardized 5G system, some-
what surprisingly, has not yet tackled such uRLLC 
challenges. Despite the fact that some early eval-
uations report that Third Generation Partnership 
Project (3GPP) Release 15 has achieved user plane 
latency of 1 ms and control plane latency of less 
than 20 ms, and that wireless protocols designed 
specifically for factory automation, such as wireless 
interface for sensors and actuators (WISA), can 
achieve a closed-loop latency less than 10 ms, it 
should be noted that these results are obtained in 
highly idealized scenarios. For example, the system 
is lightly loaded for 5G tests, and dedicated time/
frequency resources are allocated to terminals in 
WISA assuming no system dynamics. In practice, as 
widely recognized, there is no mystery in realizing 
uRLLC over air interface, but it involves trade pre-
cious time/frequency/spatial resources for low-la-
tency and reliability. Together with mobile edge 
computing (MEC) and network slicing technolo-
gies, which lower application functionalities in the 
protocol stack to avoid core network delay, such 
an approach may provide uRLLC in certain sce-
narios, but sometimes with unaffordable resources. 
Therefore, the system scalability to a large amount 
of terminals with dynamic traffic remains a severe 
issue. It is fair to say that great difficulties exist for 
wireless networks to support scalable, robust, and 
more stringent uRLLC with limited resources in the 
future.

In this article, an alternative perspective for 
uRLLC to enable real-time control is proposed, that 
is, an information latency perspective instead of 
communication latency. Based on this view, bet-
ter application-based performance under limited 
wireless resources is achieved thanks to higher 
resource utilization efficiency. In what follows, this 
article first gives the definition of the information 
latency metric and then shows that the metric is 
more directly related to control performance in 
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real-world systems; thus, optimizing it makes 
more sense for machine-based communications. 
The optimization of information latency essential-
ly requires situational awareness of terminals and 
hence calls for the aid of artifi cial intelligence (AI) 
to dynamically comprehend and recognize the sit-
uations (system states). Finally, we provide con-
crete evaluation results of our framework, applied 
in high-level autonomous driving — one of the most 
intriguing and practical use cases for uRLLC.

WIreLess netWorked controL systems: 
InformAtIon LAtency vs.
communIcAtIon LAtency

As shown in Fig. 1, many applications of MTC 
can be abstracted as wireless networked control 
(WNC) systems, in which one or several con-
trol centers collect status information from dis-
tributed terminals through a wireless network, 
and then disseminate control signals, which are 
based on the collected status information and a 
specifi c control scheme, to actuators that would 
carry out the actions subsequently. Note that 
information flow and network topology may 
be diversified in practice, whereas this section 
focuses on a one-hop, single-control-unit sce-
nario for ease of illustration. Typical applications 
include wireless networked factory automa-
tion, wherein sensors and actuators are wire-
lessly controlled by a PLC; and platooning in 
autonomous driving, wherein the lead vehicle 
carries out the control decisions and sends to 
the following vehicles. In WNC systems, con-
trol is based on perceived information about 
the physical world at the control unit, and the 
perceived information is obtained by wireless 
status update. The overall perceived status on 
which the control relies is usually referred to as 
the virtual world, and it is clear that the control 
performance is highly related to the distortion 
between the virtual and physical worlds. The dis-

tortion stems from several aspects: limited sens-
ing, communication,; and control capabilities, as 
well as imperfect modeling of the physical world. 
Limited sensing and communication capabilities 
are due to imperfect perception of the physi-
cal world by the devices and communication 
latency (e.g., physical layer latency and schedul-
ing latency), as well as packet loss, respectively. 
When the controller receives a data packet con-
taining an update about the physical world, the 
status has already become stale, possibly with 
sensing errors. Imperfect control also results 
in distortion between the two worlds, because 
the control eff ects of real-world objects are not 
always what we have expected or modeled; for 
example, the real acceleration is different with 
the controlled value passed from the upper con-
troller to the lower controller of a vehicle due to 
gear shifting and air drag.

Precisely modeling and analyzing distortion is 
extremely challenging, whereas from a communi-
cation perspective, a feasible approach is to implic-
itly refl ect the distortion by a latency metric that is 
intrinsically different from the conventional com-
munication latency metric. Defi ne the information 
latency between the virtual and physical worlds as 
some rational measure (e.g., average or risk-sen-
sitive measure such as the probability of exceed-
ing a certain bound) of the time periods elapsed 
since the last true statuses of the physical world are 
observed and input to the virtual world accurately. 
Note that by this defi nition, the distortion intuitively 
increases with the information latency since the 
physical world is constantly changing. When the 
information latency is zero, that is, when the phys-
ical world is completely synchronized with the sta-
tuses of the virtual world, the virtual world equals 
the physical world.

Since information latency is directly related to 
the information timeliness observed at the con-
trol decision maker, it is more reasonable for a 
wireless network to optimize information laten-
cy than communication latency if its end goal is 
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FIGURE 1. A wireless control system employing virtual world abstractions of the physical world, wherein 
information latency plays a central role.
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optimizing the performance of a WNC system. 
Note that the concept of age of information (AoI), 
which has been gaining momentum in the litera-
ture, can be included in the information latency 
definition. In particular, this definition is similar to 
the nonlinear AoI [2] (or value of information) 
definition, with the distinction that it is formulated 
under the physical-virtual world framework in this 
article. Unlike communication latency, informa-
tion latency accounts for not only the end-to-end 
latency, but also communication reliability (unsuc-
cessful updates cannot improve the information 
latency), sensing latency, information processing 
latency, and all aspects of the information acqui-
sition process that add to the end effect of infor-
mation latency. Therefore, it can summarize the 
interplay and impacts on control performance 
of several metrics that are intrinsically traded off 
between each other, for example, communication 
delay and reliability given limited radio resources, 
or sensing latency/frequency and network queuing 
latency. This essentially makes information latency 
a flow-level quality of service (QoS) metric, and 
wireless network design in the MTC era is indeed 
suitable for such a metric, because one distinctive 
feature of MTC is that packets transmitted by a 
specific radio over time are concerned with the 
same (or the same set of) information process. For 
example, a temperature sensor transmits packets 
about its sensed temperature over time; a vehicle 
in a platoon transmits its statuses, consisting of, for 
example, speed, acceleration, and spacing from 
the front vehicle to the control vehicle. In view of 
this, a flow-level metric is reasonable to be consid-
ered as the QoS metric for MTC applications with 
such specified radio interfaces.

Remark 1: Note that the motivation to look at 
information latency relies on the assumption that 
supporting advanced, robust, and scalable uRLLC 
with limited resources is infeasible in some use 
cases. In other words, if the wireless network can 
provide such uRLLC for every packet, irrespective 
of the communicated status, terminal density, and 
packet frequency, the information latency require-
ment would be automatically satisfied. However, 
as mentioned before, this condition is impractical 
in many scenarios, thus necessitating the research 
of information latency.

Information Latency Optimization in  
Wireless Networks: Overview and Challenges

As discussed in the previous section, information 
latency is more related to WNC performance than 
conventional communication latency. Its optimiza-
tion is increasingly important in future wireless 
systems. As we show below, information latency 
optimization leads to better control performance 
in typical 5G vertical applications.

Toward this end, several recent works have 
been dedicated to information latency optimiza-
tions in wireless networks, mostly considering AoI 
and focusing on medium access control (MAC) 
layer operations, which have been summarized in 
Table 1. In a nutshell, it has been found that con-
ventional MAC protocols, such as carrier sense 
multiple access (CSMA) and ALOHA, which are 
used in both IEEE 802.11 series and the random 
access procedure in LTE and 5G New Radio (NR), 
are unsuitable for AoI optimizations, at least when 
implemented in their original forms. Much of the 
work has focused on the most common star topol-
ogy network, wherein a set of terminals commu-
nicate with a common destination. Depending on 
whether the scheduling operations are central-
ized or decentralized, researchers have proposed 
scheduled and uncoordinated access approaches 
that are suitable for the wireless downlink (cen-
tralized) and uplink (decentralized), respectively. 
Specifically, [3, 4, 7] have adopted a Whittle’s 
index approach that calculates a scalar value (i.e., 
index) representing the transmission urgency for 
each terminal based on its dynamic situations (e.g., 
AoI), and lets the most urgent terminal transmit 
in each time slot. This index-based approach is 
shown to be near-optimal, supported by numer-
ous evaluation results although not theoretically 
proven. For theoretical optimality, it is shown by 
[6] that a round-robin scheduling scheme, which 
requires small signaling overhead, is asymptotically 
optimal with a large number of terminals under 
certain conditions such as no transmission failures. 
In [7–10], another important aspect regarding the 
uplink uncoordinated access design is investigated. 
Unlike scheduled access, terminals have to decide 
whether to transmit in each time slot autonomous-
ly and efficiently. Optimizations over the transmit 

TABLE 1. Summary of the state of the art in AoI optimization in wireless networks.

Ref. Network topology MAC protocol Packet arrivals PHY abstractions Optimization variables

[3]

Star network

Scheduled access

Active sources i.i.d. error

Scheduling
[4] Bernoulli Ideal

[5] Buffered sources Physical model

[6] Round-robin
Bernoulli Ideal

[7] Prioritized CSMA ptx,n(t) 

[8] ALOHA Active sources i.i.d. error
ptx,n

[9] CSMA and round-robin Bernoulli/active sources

Ideal[10] CSMA Poisson Backoff window 

[11]
General network ALOHA

Active/buffered sources ptx,n

[12] Active sources i.i.d. error ptx,n and packet arrival rates
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probability (i.e., ptx,n, where n is the terminal index), 
or equivalently the contention backoff window 
size, in CSMA/ALOHA are carried out in [8–10], 
considering terminals may have different channel 
conditions, service rates, and packet arrival rates, 
respectively; however, the transmission probability 
is constant over time once decided in these works. 
In [7], dynamic access probability over time (i.e., 
ptx,n(t)) according to the terminals’ states is pro-
posed, adopting the index approach to prioritize 
terminals.

For more general network topology, [11, 12] 
show a stationary decentralized policy, that is, termi-
nals transmit with constant probabilities over time. 
The transmit probability, which is optimized based 
on terminals’ individual conditions, is optimal con-
sidering active sources and peak AoI. Furthermore, 
when considering the average AoI, it is within an 
order of 2-optimal. However, it is notable that these 
order bounds for average AoI are generally quite 
loose. Here, active sources mean that terminals 
transmit their instantaneous status whenever sched-
uled without considering the sensing latency; buff-
ered sources are those that store the arrival packets, 
which are useful when the whole history of status 
variation is of interest; in other cases, most works 
assume that the status packets arrive based on the 
Bernoulli (time-slotted systems) or Poisson (contin-
uous-time systems) distribution and only keep the 
most up-to-date packet in the queue. The abstrac-
tions of the PHY also differ in these works, mostly 
assuming ideal channels or i.i.d. channel error.

Miscellaneous: Optimizing the information 
latency instead of AoI is considered as a step for-
ward for status update. Reference [13] investigates 
the optimal sampling policy to minimize the distor-
tion with the communication part modeled as a 
memory-less service process, whereas [14] jointly 
considers sensing and communication scheduling, 
and a mean-field-based approach is hence pro-
posed to address the decentralized status update 
issue.

A key distinguishing factor for information 
latency optimization in wireless networks, com-
pared to communication latency, is that informa-
tion latency is an end metric that usually relates 
to many dynamic aspects of the system, such as 
channel conditions, packet arrival patterns, status 
variations of terminals, network congestion condi-
tions, and so on. Many of these features are not 
well modeled in the current literature, and often 
they have some time-domain structures, such as 
time correlation or Markovianity, which are hard 
to capture. These features are referred to as situ-
ations hereinafter. The analysis and optimization 
of information latency are considered much more 
challenging than communication latency consider-
ing such dynamic, semantic situations. Specifically, 
despite the research progress mentioned above, 
three distinct challenges still exist:
•	 Complex, high-dimensional system state and 

action space in realistic scenarios
•	 Self-optimized and robust design toward adap-

tivity to system dynamics and environment 
changes

•	 Scalability considering meta information and 
signaling exchange overhead
In the next section, we elaborate on the key 

challenges and then exploit state-of-the-art AI tech-
niques to address these issues.

AI-Assisted Situationally-Aware Wireless 
Networking

Modern AI techniques, especially deep learning, 
are tremendously successful mainly due to their 
powerful representation ability, which can be lev-
eraged in our framework to tackle the challenge 
of complicated state and action space. On the 
other hand, the remaining two challenges for low 
information latency wireless networking are more 
unique and call for novel solutions.

Self Optimized Network: Adaptive without a Supervisor
The concept of the self optimized network (SON) 
has been discussed for many years. However, it is 
not until recently with the emergence of AI that 
SON is promising to be truly realized. In the con-
text of information latency optimization, the net-
work has to be self-optimized toward situational 
awareness, that is, terminals in the network need 
to learn to comprehend the situation they are in 
given their own perceptions and make decisions 
about wireless transmissions accordingly, such 
as whether to transmit and how much time/fre-
quency/spatial resources to use. Meanwhile, it is 
important to note that this learning procedure, 
unlike widely adopted and greatly successful 
supervised learning, is necessary to be unsuper-
vised or based on indirect supervision such as 
reinforcements. This is because obtaining an opti-
mized dynamic solution to supervise the training 
of the network is difficult, since the situation and 
context information can be quite complex. On 
the other hand, online adaptivity and scalability to 
environment and network changes are mandatory 
because real-world scenarios are often time-vary-
ing and unpredictable — and similarly, these have 
to be achieved autonomously without a supervi-
sor.

Distributed Intelligence with a Common Objective
The other significant aspect for situational aware-
ness in the network concerns the meta informa-
tion (information facilitating transmit decisions) 
availability and hence scalability. In most scenar-
ios, it is unreasonable to assume that terminals 
have access to all necessary meta information of 
the whole network. For example, individual and 
distributed terminals are unaware of the situations 
of other terminals; moreover, exchanging this 
information among terminals entails prohibitive 
high signaling overhead. Therefore, distributed 
intelligence needs to be enabled. A key chal-
lenge here is that although the meta information 
is distributed and decentralized, terminals have 
to cooperate in some sense to achieve a com-
mon goal, whereas being selfish usually results 
in sub-optimal or even disastrous performance. 
One simple instance is wireless multiaccess net-
works wherein selfish terminals lead to congesting 
the channel all the time without any successful 
packet delivery. In this case, the distributed ter-
minals should be properly incentivized to sacri-
fice their own interests, but to contribute to the 
common objective (e.g., optimizing the average 
utility over all terminals). This should be achieved 
by carefully designing a protocol based on which 
credit assignment is carried out by a central con-
troller with minimal signaling overhead. And it 
brings about another major challenge of cred-
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it assignment — generally a big issue in multia-
gent reinforcement learning — which is how to 
appropriately assign credits to terminals based on 
their individual actions, and how to evaluate these 
actions.

SMART: Situationally Aware Multiagent Reinforcement 
Learning Framework for Wireless Networks

To realize self-optimized, adaptive, and distribut-
ed situational awareness for information latency 
optimization, we propose a SMART framework 
[15] based on multi-agent reinforcement learning, 
which is illustrated in Fig. 2. At each terminal in 
the network, a mapping function from the cur-
rent situation of the terminal, which is modeled 
as the Markov state, to the transmit decision is 
learned. Such a decision could be about trans-
mit power, resources, and so on, as long as it 
can be parameterized and hence represented. 
Similarly, the mapping function is also realized 
by parameterized approximations such as deep 
neural networks (DNNs), whose tremendous 
success stems from strong representation ability 
and efficient, gradient-based back propagation 
training algorithms. To address the issue of no 
supervisor, fortunately, the reinforcement learning 
framework can be leveraged. Thereby, instead of 
training the mapping function by a genie-aided 
and thus impractical optimal action, a reward is 
fed to the learning algorithm that reflects how 
good the set of actions is to date. Note that the 
reward may be delayed, and hence the history of 
actions affects the current reward. Then comes 
the question: Who should assign this reward over 
time so as to incentivize terminals toward achiev-
ing the common goal? In some wireless networks 
such as a wireless multiaccess network wherein 
terminals report to the same node, this problem is 
trivial since the central node can take this respon-
sibility, and the rewards (possibly different among 
terminals) can be broadcasted to all terminals. 
However, the selection of such a semi-supervisor 
is nontrivial in an ad hoc network by noting that 
feedback storm can easily occur if too many are 
selected to feed back the reward.

Distributed situational awareness requires ter-
minals be able to intelligently make transmit deci-
sions based on their local observations, which only 
makes sense when local observations can reflect 

the transmission urgency. This is true for informa-
tion latency optimization since local status chang-
es, channel variations are observable that affect 
the transmit decision. In contrast, the convention-
al communication latency optimization can be 
regarded as state-less, since packets are treated 
equally — one bit is one bit. The key challenges for 
distributed situational awareness with a common 
goal can be summarized as scalability and conver-
gence. It is well known that multiagent reinforce-
ment learning algorithms do not scale well with 
the number of terminals, and may converge to a 
possibly bad solution. The root reason is that the 
observations of terminals are incomplete, and thus 
unlike full-information-state reinforcement learn-
ing, which usually converges, partial information 
of terminals leads to learning toward a moving 
target. This is particularly troublesome when the 
number of terminals is large, wherein it is increas-
ingly difficult for terminals that learn their own strat-
egies regarding others as static environments to 
converge to an optimized solution. To address this 
issue, the SMART framework adopts a two-stage 
training process: a pre-training phase during which 
terminals in the network are pre-trained to compre-
hend their situations, regardless of online network 
variations, and an online training phase that adapts 
to specific network conditions, topology, and traf-
fic. The design of such a decoupling approach has 
theoretical support in the case of wireless multi-
access networks, where Whittle’s index approach 
indicates that pre-training the terminals given an 
auxiliary, scalar subsidy that adapts to the network 
conditions results in near-optimal performance

Case Studies
In this section, building on our existing works [6, 
14, 15], we present applications of the proposed 
SMART framework in high-level autonomous driv-
ing — one of the major use cases of 5G uRLLC. 
Two scenarios are demonstrated, dense platoon-
ing and intersection management, as shown in 
Fig. 3, which both require uRLLC to coordinate 
among vehicles efficiently. Meanwhile, both cases 
can be considered as real-time WNC systems, 
whose performance critically depends on informa-
tion latency.

We implement the dense platooning and inter-
section management control schemes on simu-
lation of urban mobility (SUMO), as well as the 
wireless communication interface following the 
LTE V2X Release 14 Mode 4 standard. Mode 4 
adopts a semi-persistent scheduling scheme based 
on which vehicles autonomously choose the trans-
mission time/frequency resources. The carrier fre-
quency is set to 5.9 GHz, and the bandwidth is 20 
MHz. The Winner B1 channel model is adopted, 
with the shadow fading coefficient following the 
log-normal distribution with a standard variance of 
6 dB. The transmit power is 23 dBm. The modula-
tion and coding scheme is quadrature phase shift 
keying (QPSK) and turbo coding with 1/3 coding 
rate. The statuses are conveyed by messages with 
packet size of 300 bytes, each occupying 1 ms 
and 50 frequency resource blocks (10 MHz, cor-
responding to 2 sub-channels). A collision-based 
interference model is adopted in which two or 
more packets occupying the same time and fre-
quency sub-channel are assumed to incur a trans-
mission error.

FIGURE 2. High-level architecture of SMART, 
where the situation comprehension can be 
done offline to stabilize the online learning pro-
cess. The situation-transmission mapping learn-
ing should be online-adaptive.
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For ease of exposition, in this section, we fix 
the air interface latency to be 5 ms on average 
(including distributed resource selection in Mode 4 
and PHY latency), and study the trade-off  between 
the specifi c AD performance and transmission reli-
ability. Note that in Mode 4, similar to many other 
wireless communication schemes, the reliability 
and communication latency are a trade-off, and 
hence the results obtained by studying the impact 
of reliability given fi xed latency can be transferred 
to understand both.

dense pLAtoonIng
Platooning is a high-level autonomous driving 
technology that allows several vehicles to form a 
platoon, such that vehicles except the lead do not 
need a human driver. One distinct merit is fuel 
reduction, since the air drag of following vehicles 
is reduced, which depends on the fact that dense 
platooning is enabled when the inter-vehicle dis-
tance is reduced to less than, for example, 5 m. 
This becomes very challenging with high mobili-
ty, when communication-free solutions become 
unstable because they need constant head time 
for collision avoidance. Therefore, vehicle-to-ve-
hicle communications are crucial to enable con-
stant head distance dense platooning, such that 
the air drag is further reduced while guaranteeing 
safety. We simulate eight lanes on SUMO and six 
platoons, each consisting of eight vehicles. The 
lead vehicle of each platoon fi rst travels at a con-
stant speed of 22 m/s, then brakes with decelera-
tion of –2.94 m/s2, and then accelerates at 2 m/
s2. During this process, the following vehicles in 
each platoon are controlled by the lead vehicle 
while reporting their statuses (speed, distance to 
front vehicle, and acceleration) through the PC5 
interface (i.e., LTE V2X Mode 4). We consider a 
sensing refresh interval of 60 ms and an actuation 
delay of 10 ms, which denotes the actuation time 

lag of the lower controller (i.e., the time between 
receiving the control signal and actually carrying 
out the action). The simulation is run 100 times 
on SUMO. The minimum safe distance is defi ned 
as the minimum inter-vehicle distance that all vehi-
cles do not crush during the 100 runs. SMART is 
implemented based on minimizing the informa-
tion latency by adjusting the message update rate 
in a distributed manner. Figure 4 shows that, after 
convergence, SMART operates at the point where 
the packet transmission success rate is about 50 
percent, resulting in the minimum safe inter-ve-
hicle distance. However, vanilla uRLLC requires 
ultra-high packet transmission reliability, which 
is realized (due to the lack of better choices) by 
many repetitive packets. This paradigm is shown 
to be inefficient, since repeating the same stale 
packet is clearly sub-optimal — in fact, the result-
ing performance is disastrous.

IntersectIon mAnAgement
Another important AD scenario from which V2X 
communications can benefit significantly is the 
intersection. Individual vehicle intelligence based 
on sensing is insufficient to handle the compli-
cated traffic conditions and high requirements 
of coordination among vehicles. We simulate a 
hybrid AD scenario, wherein human-driver vehi-
cles (HVs, 10 percent in the simulations) and fully 
autonomous vehicles (AVs, 90 percent) coexist. A 
four-way intersection (40 m  40 m) on SUMO is 
selected. HVs still follow the traffi  c lights, whereas 
AVs are controlled by the roadside unit (RSU) 
without following the traffic lights, but always 
give priority to HVs. All vehicles report their loca-
tions, speeds, and intentions to the RSU period-
ically. AVs go through the intersection based on 
time-spatial resource reservations coordinated by 
the RSU, that is, AVs send request of a certain 
trajectory and status report (speed to intersection 

FIGURE 3. Typical autonomous driving scenarios that are aided by V2X communications. Platooning and intersection management are 
shown in the fi gure, and messages are conveyed by LTE V2X Mode 4.

Platoon A

Lead vehicle

Following vehicle

Platoon C

Platoon B

123456

C-V2X Mode 4 MAC selection window

sub -channel

time

2

1

Half -duplex error

Collision

Confirm/Reject:
reservation id

Shadow fading

PHY

123456

123456

Penetration loss

Cancel: reservation id

Road Side Unit

Multipath effect

Pathloss

Manned vehicles

Unreserved 
automatic vehicles
Reserved 
automatic vehicles

Reserve : arrival lane,
arrival time, arrival speed

Confirm/Reject

state parameters

state parameterscontrol parameters

control parameters

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:33 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • February 2020114

and lane information) to the RSU before going 
into the intersection, and the RSU coordinates 
among vehicles and then feeds back the confirm 
or reject signals. We simulate 520 vehicles passing 
through in each run and 100 runs. The normalized 
average trip time of a vehicle is shown in Fig. 5. 
The y-axis is normalized by the average trip time 
controlled based on a traditional traffic light sys-
tem. It is observed that AD can definitely improve 
the traffic efficiency. Similar to platooning, conven-
tional uRLLC cannot provide optimal performance, 
while SMART achieves higher traffic efficiency, 
although the improvement is smaller compared 
to platooning. This is because information latency 
introduced by wireless communications (usually 
in the range of tens of milliseconds) is more criti-
cal for control-level AD (e.g., platooning wherein 
vehicles’ accelerations are controlled by the com-
municated signaling) than planning-level AD (e.g., 
commonly used intersection management where 
vehicles make reservations for the time-spatial 
resources before entering the intersection).

A common observation from both case studies 
is that when updating status information, individual 
packet delay and reliability are no longer import-
ant, but are critical for information update latency 
to be minimized. In some sense, it is better to be 
timely and unreliable — in which case any time the 
transmission is successful, the packet contains time-
ly information — than to be ultra-reliable but com-
promise the information freshness.

Conclusions and Outlook
This article demonstrates that information latency 
is more critical than conventional uRLLC metrics 
in typical 5G vertical applications. Toward this 
end, SMART is proposed for information latency 
optimizations in wireless networks with: 
•	 Self-optimization and online adaptivity
•	 Scalability with decentralized implementation

SMART is tested for typical applications 
in high-level AD such as dense platooning and 
intersection management. The results show that 
SMART can effectively minimize information 
latency, and more importantly, information laten-
cy optimized control is superior to conventional 
uRLLC-oriented systems in terms of the ultimate 
application performance, inspiring us to rethink 
the uRLLC design principle.

Many intriguing research directions exist. The 
scalability and convergence issue remains a key 

challenge for distributed learning in wireless systems, 
along with the credit assignment scheme to acceler-
ate learning in a multiagent setting. The semi-super-
visor election problem in an ad hoc network is also 
relevant considering stability. Last but not least, a 
novel network architecture that supports AI-assisted, 
situationally aware wireless systems is yet to come.
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