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Abstract—Over 90% of all goods in the world, at some point in
their life, are carried on a vessel at sea. Currently, the maritime
industry relies on the Automatic Identification System (AIS) for
collision avoidance, vessel tracking, and vessel awareness while
operating at sea. AIS is a plaintext, unencrypted, unauthenticated
protocol and, as such, is vulnerable to various types of attacks.
Malicious actors can alter the AIS location of a vessel by
spoofing a vessel or alter the channel the AIS receiver is using
to send nefarious information to a vessel privately. With the
advent of the Ocean of Things (OoT), vessels are sharing more
information than vessel location alone at sea. As this information
becomes critical for safe and efficient operation at sea, we in this
work present a novel approach of applying machine learning
to build behavior models for vessels at sea. These models allow
vessels to detect anomalous communication from vessels nearby,
thus enable vessels to determine the quality of the messages
shared between each other and, more critically, identify malicious
vessels’ behaviors.
Keywords—Automatic Identification System, machine learning,

behavioral model, anomaly detection, Ocean of Things

I. INTRODUCTION
The maritime industry is looking forward to the future Smart

Ocean to provide reduced operating costs while simultane-
ously increasing crew safety. The Smart Ocean will consist of
a large number of connected devices comprising the Ocean
of Things (OoT), a subcategory of the Internet of Things
(IoT) [1], [2] (Fig. 1). While IoT devices are always on and
connected to the internet, OoT devices operate both online and
offline on vessels at sea.
Vessels at sea operate in a peer to peer (p2p) manner and

broadcast directly with each other, with no intermediary by
which communication occurs. The primary maritime com-
munication protocol is the Automatic Identification System
(AIS), which allows vessels to share their location along with
many other bits of information in real-time. AIS distinguishes
between vessels, aids to navigation (ATON), base stations, and
search and rescue transmitter (SART). Each type of transmitter
has different privileges and priorities through a self-organizing
time division multiple access (SO-TDMA) system [3].
The 2002 International Maritime Organization (IMO) Safety

of Life at Sea (SOLAS) requires vessels over 300 gross
tonnages to be equipped with AIS [3]. It is estimated that there
are over 400,000 AIS installments and up to 1,000,000 once

Figure 1: Ocean of Things (OoT)

fully deployed globally. The SOLAS requirement accounts for
the widespread adoption of AIS in the maritime industry.
AIS is a plaintext protocol where vessels communicate

without encryption or message authentication. Any message
can be broadcast as if it is from any vessel. Within this type
of communication, one can not be certain of the validity of
any message nor the identity of the sender of any message.
A secure version of AIS exists but has not seen widespread

adoption [4], [5]. Some of the factors in the delay of adoption
are the need for an international consensus on the implemen-
tation and distribution of encryption keys globally, therefore,
there is a critical need to model the behavior of the vessels at
sea to add a layer of awareness in the system in which vessels
can be identified by their behavior, thus helps in identifying
malicious actors and behaviors.
To address the aforementioned strategy, we present an

anomaly detection scheme using machine learning to model
the vessel’s normal behavior. We design multiple use cases
to test our method using different machine learning modeling
techniques to select the highest performing method by analyz-
ing the results of each use case.
The reminder of our paper is organized as follows: We

present the related work in Section II, followed by our
motivations and contributions in Section III. We present the
behavioral model anomaly detection methodology in Section
IV, followed by our performance evaluation in Section V,
including the threat model, the experiment design, the analysis
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methodology and the numerical results. Finally, we conclude
the paper and discuss the future work in Section VI.

II. RELATED WORK
In this section, we present current work in the maritime

domain using machine learning in AIS as well as the current
state of AIS research as a protocol.

A. Machine Learning
Sidibe et al. [6] survey techniques to identify anomalous

behavior in the maritime domain using AIS. They categorize
the detection methods based on three categories: Statistical,
machine learning, and data mining. Within these categories
two types of data are examined; location based and data driven
approaches.
1) Location Based: Vessel location based approaches ex-

amine the vessels’ current location and movement or trajectory.
Liang et al. in [7] proposed a two-step Long Short-Term

Memory (LSTM) supervised learning method to reconstruct a
vessel’s trajectory when AIS location data is lost. AIS allots
4,500-time slots per minute in a highly congested region.
An AIS transceiver can become starved for resources due
to a lack of available time slots to transmit on. When this
occurs, missing AIS data creates a gap in information for
the location of a vessel. Missing AIS data can also happen
in inclement weather. As the signal drops, the information is
lost after transmission. This allows those monitoring a vessel’s
movement to project more accurately the ship’s prior location
to better understand the ship’s previous and future movements.
Anneken et al. in [8] used Gaussian Mixture Model (GMM)

and Kernel Density Estimator (KDE) to predict anomalies in-
curred a high rate of false alarms. Gaussian Process and Active
Learning were used, but at the cost of high computational
complexity in training models. Bayesian Networks have been
trained to account for AIS data combined with real-world data
such as weather and time with vessel interactions.
Another work by Pallotta et al. in [9] used Point-based

anomalous behavior and Trajectory-Based anomalous behavior
detection approaches. These two methods focus on the location
of the vessel’s travel: either where the vessel is currently
located or the trajectory of the vessel’s location.
Sidibe et al. in [6] noted that anomalous vessel behavior

detection causes a high rate of false-positive anomalies de-
tection. Data Mining methods seek to improve upon the high
false-positive rates of trajectory and point-based methods.
2) Data Driven: Are created using a two-phase method.

First, a vessel’s normal behavior is modeled based on historical
data. Second, the learned model is applied to current vessel
movement data with any differentiation considered anomalous
behavior.
Osekowska et al. proposed one such approach in [10]

by developing and modeling traffic as a potential field for
the geographic tracks that a vessel moves through at sea.
The field is stronger with greater amounts of vessel traffic
and weaker with less traffic. The field has three properties:
strength, decay, and distribution. The field strength increases
with greater traffic. As fewer vessels traverse a path, the
path decays, and the strength value decreases. Distribution is
the distance between two points and is described by a two-
dimensional Gaussian smoothing, using Euclidean distance

between two points. In this system, a vessel whose current
position is detected outside the local potential field is marked
as anomalous.
Soleimani et al. in [11] proposed a geometrical method

based on the vessel trajectory for the vessel’s near-optimal
path. A near-optimal path is generated using a graph search
algorithm. If a vessel departs from the near-optimal path, then
the movement generates an abnormality score.
Roy et al. in [12] generated alerts based on rules in ports of

known port parameters, such as the maximum speed allowed
in a port and marked restricted areas within a port. If the
parameters are broken, then a vessel is marked as anomalous.

B. AIS Attacks

Balduzzi et al. in [13] detailed the various type of
AIS attacks and categorized them into two categories: first,
implementation-specific in software; second, protocol-specific
in the AIS radio transponders. At the software layer, one
could spoof another vessel’s Maritime Mobile Service Identity
(MMSI) and pose as another vessel. Spoofing would make the
vessel broadcasting appear to be another vessel along with
spoofing the location of the vessel one is broadcasting as.
Spoofing as another vessel could also allow one to program a
malicious route so that a vessel appears to have taken a false
route. Software attacks occur when attacking the application
layer based on the applications used by various systems that
log AIS messages. An example of this is a port authority. If a
port authority logs messages from AIS in a SQL database, one
could craft a message to enter into the SQL database executing
arbitrary code through AIS.
For radio attacks, one can alter the message broadcast by

a physical vessel. This allows one to modify the location in
real-time of vessels in transit. A type of attack is a man-in-
water spoofing. This is an S.O.S that, once received by nearby
vessels, compels them by regulation to attempt a rescue.
Simulating an S.O.S would allow an attacker to lure a victim
vessel to a hostile location. Closest Point of Approach (CPA)
triggers a collision warning alert encouraging a vessel to alter
course to avoid a collision. One can spoof a vessel’s location so
that it appears close to a vessel and that the direction indicates
that a collision will occur. This will trigger an alarm on the
victim’s vessel that a collision is imminent.
Frequency Hopping (DoS++) can occur by an attacker

spoofing as a port authority. This forces the vessel’s transpon-
der to a non-default frequency and masks the transponder
to other vessels operating nearby. This would render a ship
invisible to other vessels nearby on AIS.
Slot Starvation (DoS++) occurs when a base station, such

as a port authority, exhausts all available slots for message
broadcasting. A base station has a high priority compared to
vessels. Spoofing, as a base station, one can book the next 100
milliseconds and then another 100 milliseconds continuously,
so that all slots are continuously taken, barring any legitimate
vessel’s messages from being broadcast.
Timing Attack (DoS++) instructs an AIS transponder to

delay its transmission for a period in time. One can broadcast
continuously, causing an AIS transponder to delay transmis-
sion, essentially disabling the transponder continuously. One
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can also change the transponder to transmit more often and
flood all messages for a given region.
Hardware Panic (DoS) attacks saturate the channel’s elec-

tromagnetic spectrum with copious quantities of noise. Based
on the hardware, malfunctions can occur at the recipient’s
memory or processor, which could be overloaded.

III. MOTIVATION AND CONTRIBUTION

Recent records showed an increase in the capacity of vessels
at sea between the years 2005 and 2015 of 40% within a single
decade. This growth occurred, even during a global economic
downturn [5]. This increases the demand on the AIS as the
communication protocol, which has shown to be susceptible
to various attacks. From the literature review we observed that:
• Machine learning has been applied for trajectory and
location analysis, which can be expanded and used to
study the behavior of vessels at sea through on vessel’s
real-time anomaly detection.

• Currently, AIS suffers from lack of encryption and au-
thentication. A secure version of AIS exists but has not
seen widespread adoption.

In this work we are proposing the use of machine learning to
aid in identifying anomalous vessels behavior, which facilitates
the identification of suspicious activities.
Our contribution in this work can be summarized as follows:
• Develop a machine learning anomaly detection method
for vessels at sea.

• Analyze different machine learning methods to select the
best method.

• Design multiple use cases that challenge the behavioral
models built for vessels operating at sea.

From the literature review, vessels at sea are susceptible to
various attacks via AIS that machine learning can help mitigate
to provide a safer operating environment. Currently, ships do
not share sensor data, but as autonomous shipping and the
OoT increases in scope, vessels can and will be sharing more
information [1], [2].

IV. BEHAVIORAL MODEL ANOMALY DETECTION
METHODOLOGY

In this work, machine learning is applied to develop be-
havioral models aiming to aid AIS in identifying behavioral
anomalies that could affect communications and decision
making in such system. Our approach is carried through a
set of consecutive phases as depicted in Fig. 3. AIS reading
from vessels is collected to form a consensus about normal
vessel behavior, which is fed to our machine leaning methods
for model training purposes. Once a model is trained, it
is distributed to all vessels that request to use the model.
In modeling normal ranges, anomalies or modifications are
detected, which aids in identifying whether the vessel’s sensor
is sending false data.
Vessels commonly operate within shipping lanes along well-

used vessel routes. Marine Traffic, a company that logs vessel
movement via AIS, illustrates this fact with a heat map of
vessel AIS locations (Fig. 2). Areas in red are well-used routes
by vessels showing that ships share the same routes in the
same region. In some cases, vessels will operate outside of
conventional lanes for various reasons. This approach builds

Figure 2: Marine Traffic Density Map adopted from [14]

off the cases in which vessels are within the same area within
AIS range, and multiple vessels can communicate with each
other. While vessels are within range of each other, AIS
observations are recorded by each vessel. As each vessel
arrives at a port, they offload the observations to port for
consensus building. Figure 3 (top) is a microcosm of the larger
case to demonstrate the principles of vessel communication.
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Figure 3: Behavioral Model Anomaly Detection

We will use the illustration presented in Fig. 3 to present our
behavioral model anomaly detection approach. Our approach
starts with the model induction, where vessel A broadcasts
its reading using AIS to the surrounding vessels (1A). Upon
reception of new information, each vessel calculates the dif-
ference in temperature to determine how different the vessel
reporting is from itself (1B). Once a vessel arrives at shore
side, the vessel uploads its observations from while at sea
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to shore side(1C). Shoreside processing consists of forming a
consensus data set based on multiple vessel observations to
create a new dataset for model induction (1D). Using the new
consensus data set, a model is fit with the consensus set, and
a machine learning model is generated (1E).
Progressive Analysis is the process of an offline vessel

analyzing AIS readings in real-time. Once a model is trained
at shoreside, the shoreside station sends the fit model to each
vessel that requests a model (2A). Every vessel has a unique
mode fit to its observations. Once a vessel leaves the range
of the shore side station and is operating offline, vessels use
the model to analyze received readings to classify readings
as inliers or outliers (2B). If a message is an inlier then it is
assumed to be generated from the vessel that is claiming to
have generated that message and is accepted. If the message is
classified as an outlier, it is assumed to be created by another
device and rejected.
Model Re-Induction is the process of repeating the induction

phase after more observations are recorded. After some time
and more vessels encounter each vessel, those readings are
reported to shore side to create a stronger consensus.
Vessels collect AIS data to facilitate learning while at sea

and record the received values. Once alongshore or at the port,
the values are transferred to a shoreside server for processing.
With the addition of sharing sensor data, a model of the
operation of a vessel can be created to determine each vessel’s
sensors’ normal operating range. At shoreside, collections of
all reports on a vessel are weighted together to provide a single
truth of how a vessel historically operates. The more reports,
the stronger the truth is. Using the weighted vessel reports at
shoreside, a machine learning model is trained for each vessel.
While a vessel is at the port, the models are transferred to the
vessel for offline AIS operation.

V. PERFORMANCE EVALUATION

In analyzing the performance of our methodology against
the threat model, we designed use cases representative of each
type of threat for testing purposes.

A. Threat Model

Threat 1. Impersonation: AIS plain text messages are sus-
ceptible to various attacks [13]. Many of the attacks can be
limited by identifying spoofing attacks where an attacker poses
as another vessel; Slot Starvation by impersonating a base
station when the attacker is not a base station, Frequency Hop-
ping by impersonating as a port authority when the attacker
is not a port authority, and Closest Point of Approach from a
false collision being triggered by an attacker impersonating as
another vessel.
Threat 2. Selective Transmission: When a vessel turns AIS
off to conceal a vessel’s location for a period of time and then
turns it back on again when it is advantages [6]. This can be
dangerous as vessels are operating without broadcasting their
location to other vessels nearby.
Threat 3. Model Manipulation: A model becomes suscep-
tible to attack as nefarious actors attempt to manipulate
the model used to classify observations onboard a vessel.
Model manipulation attacks try to play the system and find
locations where classification could be weak, allowing invalid

information not to be classified correctly. One such type of
attack is breakout fraud, where an attacker maintains a good
behavior for a period of time and then starts injecting invalid
information [15].

B. Experiment Design
A python random weather generator was used to create

weather samples. The weather generator randomly generates
sample weather data for a given position by latitude and
longitude for a date and time. By using historical weather
measurements for these locations from Dark Sky API, a set
of synthetic samples are generated for a location, date, and
time. Weather samples of one week are generated, simulating
interactions for vessels over six days which, are then used for
training a model and one day used for model validation.
A range of dates, along with the number of requested

samples, is given for sample generation. Five sets of samples
are created for six days of 1000 samples for the two sets,
simulating five vessels; the difference between each sample at
each index is taken to create a single vessel behavior set. The
single vessel behavior set simulates the interaction between
two vessels with one set for the vessel receiving samples from
another vessel within operating range. Using multiple vessel
behavior data sets, three methods are used to determine a fit
for behavior modeling. Consensus is performed using three
methods; mean, median and max. Mean is the average of all
readings for a given time period from all samples collected to
create a new synthetic value from a mixture of all the readings.
Median selects the middle reading from all the readings for
a given time period. Max is taken from the absolute value
in max either negative or positive for the largest difference
recorded.

C. Model Analysis and Evaluation
Use cases are given chosen to demonstrate model fit and

attempts to falsify information. Attempts to falsify AIS occur
for many reasons, including spoofing a vessel, generating false
readings by error or to degrade another vessel’s rating. Once a
valid model is trained, an attacker might attempt to give false
readings. The cases below demonstrate the case if an attacker
attempts to send false readings at various time frames to
demonstrate how the machine learning models would classify
those readings.
We are considering the following set of factors as our

preforming evaluation metrics:
• True outliers: are observations where the model detects
behaviors as being an anomaly in the original data set.

• False outliers: are observations that the model identifies
as an outlier but are in the original data set.

• True inliers: are observations the model identifies as
inliers and that are in the original data set.

• False inliers: are observations the model identifies as
inliers and they are not in the original data set.

• Model accuracy: is calculated as the total number of cor-
rect identifications over the total number of observations.

D. Numerical Analysis
In this subsection, we present performance evaluations for

each model using a set of use cases. The results presented
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in this section are based on designed use cases, where each
use case is tested using 100 samples with various anomalies
inserted at different locations during each test. The temperature
readings are in Celsius and present the difference in readings
between the broadcasting vessel and the local vessel.
Four models were used through our evaluation; Isolation

Forest, Support Vector Machine, Local Outlier Factor, and
Robust Covariance Elliptic Envelop.
Use Case: Errors–Large Uniform: This checks whether
a model correctly classifies errors outside of the set and
the model does not determine those readings to be inlier
observations, even if those errors appear on a consistent regular
basis.

Table I: Errors: Large Uniform Summary
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 8 82 0 0.92
SVM 10 23 67 0 0.77
LOF 10 18 72 0 0.82
Elliptic Envelope 10 24 66 0 0.76

(a) Mean
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 3 87 0 0.97
SVM 10 22 68 0 0.78
LOF 10 10 80 0 0.9
Elliptic Envelope 10 23 67 0 0.77

(b) Median
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 0 90 0 1
SVM 10 35 55 0 0.65
LOF 0 1 89 10 0.89
Elliptic Envelope 10 3 87 0 0.97

(c) Max

For large uniform anomalies, Table I shows the mean,
median, and max consensus fit test results. It can be seen that
the highest attained true accuracy is from an isolation forest
using a max consensus at 100%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 10 8 82 0 0.92
Median 10 3 87 0 0.97
Max 10 0 90 0 1

Figure 4: Isolation Forest – Large Uniform

Figure 4 plots the large uniform case using an isolation
forest for mean, median, and max, along with the numerical
analysis of each case with the highest true accuracy attained
using the max consensus at 100%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 10 23 67 0 0.77
Median 10 22 68 0 0.78
Max 10 35 55 0 0.65

Figure 5: Support Vector Machine – Large Uniform

Figure 5 plots the large uniform case for a support vector

machine using mean, median, and max, along with the nu-
merical analysis of each case with the highest true accuracy
attained using the median consensus at 78%.
Figure 6 plots the large uniform case using the local outlier

factor using the mean, median, and max, along with the
numerical analysis of each case with the highest true accuracy
attained using the median consensus at 90%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 10 18 72 0 0.82
Median 10 10 80 0 0.9
Max 0 1 89 10 0.89

Figure 6: Local Outlier Factor – Large Uniform

Figure 7 plots the large uniform case using an robust
covariance elliptic envelope for mean, median, and max, along
with the numerical analysis of each case with the highest true
accuracy attained using the median consensus at 97%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 10 24 66 0 0.76
Median 10 23 67 0 0.77
Max 10 3 87 0 0.97

Figure 7: Robust Covariance Elliptic Envelope – Large Uni-
form

Use Case–Significant Errors: This case demonstrates the
model fit for large values outside of the training set to see
whether the model can accurately classify them as outliers.
This might be the case in an on-off attack where a vessel shuts
off its AIS. If a vessel does not receive a reading from another
vessel, then the difference would be significant compared to
previous readings. This would indicate that the vessel is not
sending accurate readings or potentially no readings at all.

Table II: Errors: Significant Errors Summary
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 11 5 82 2 0.93
SVM 11 19 68 2 0.79
LOF 11 16 71 2 0.82
Elliptic Envelope 11 21 66 2 0.77

(a) Mean
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 2 85 3 0.95
SVM 11 19 68 2 0.79
LOF 11 7 80 2 0.91
Elliptic Envelope 11 19 68 2 0.79

(b) Median
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 0 87 3 0.97
SVM 10 31 56 3 0.66
LOF 2 1 86 11 0.88
Elliptic Envelope 10 2 85 3 0.95

(c) Max

Table II presents the results of each machine learning model
fit to a mean, median, and max consensus set for data with
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significant errors, both positive and negative. In this case, the
highest performing model with the greatest true accuracy is
an isolation forest using the max consensus set at 97%.
Figure 8 shows model classification for significant positive

and negative anomalies using an isolation forest, along with
the numerical results of each test. The highest attained true
accuracy is through the max consensus fit at 97%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 11 5 82 2 0.93
Median 10 2 85 3 0.95
Max 10 0 87 3 0.97

Figure 8: Isolation Forest – Significant Errors

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 11 19 68 2 0.79
Median 11 19 68 2 0.79
Max 10 31 56 3 0.66

Figure 9: Support Vector Machine – Significant Errors

Figure 9 shows classification for significant positive and
negative anomalies using a support vector machine, along with
the results of each test. The highest attained true accuracy is
through the mean and median consensus fit at 79%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 11 16 71 2 0.82
Median 11 7 80 2 0.91
Max 2 1 86 11 0.88

Figure 10: Local Outlier Factor – Significant Errors

Figure 10 shows model classification for significant positive
and negative anomalies using the local outlier factor, along
with the numerical results of each test. The highest attained
true accuracy is through the median consensus fit at 91%.
Figure 11 shows model classification for significant positive

and negative anomalies using a robust covariance elliptic
envelope, along with the numerical results of each test. The
highest attained true accuracy is through the max consensus
fit at 95%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 11 21 66 2 0.77
Median 11 19 68 2 0.79
Max 10 2 85 3 0.95

Figure 11: Robust Covariance Elliptic Envelope – Significant
Errors

Use Case: Errors–Breakout Fraud: This case tests the model
agaist the case where one might begin spoofing as a user within
the range of the original vessel reading but tries to push the
readings to a new normal outside of the vessel model.

Table III: Errors: Breakout Fraud Summary
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 12 5 74 9 0.86
SVM 17 17 62 4 0.79
LOF 14 16 63 7 0.77
Elliptic Envelope 17 18 61 4 0.78

(a) Mean
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 10 2 77 11 0.87
SVM 16 17 62 5 0.78
LOF 13 7 72 8 0.85
Elliptic Envelope 17 17 62 4 0.79

(b) Median
Model True Outlier False Outlier True Inlier False Inlier True Accuracy
Isolation Forest 7 0 79 14 0.86
SVM 10 30 49 11 0.59
LOF 1 1 78 20 0.79
Elliptic Envelope 11 2 77 10 0.88

(c) Max

Table III shows the highest attained true accuracy is through
an elliptic envelope using a max consensus model at 88%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 12 5 74 9 0.86
Median 10 2 77 11 0.87
Max 7 0 79 14 0.86

Figure 12: Isolation Forest – Breakout Fraud

Figure 12 illustrates breakout fraud model testing for the
mean, median, and max consensus methods using an isolation
forest, along with the numerical results of model analysis. The
highest attained is by using a median consensus at 87%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 17 17 62 4 0.79
Median 16 17 62 5 0.78
Max 10 30 49 11 0.59

Figure 13: Support Vector Machine – Breakout Fraud
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Figure 13 illustrates breakout fraud model testing for the
mean, median, and max consensus methods of a support vector
machine, along with the numerical results of model analysis.
The highest attained is by using a mean consensus at 79%.
Figure 14 illustrates breakout fraud model testing for the

mean, median, and max consensus methods using the local
outlier factor, along with the numerical results of model
analysis. The highest attained is by using a median consensus
at 85%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 14 16 63 7 0.77
Median 13 7 72 8 0.85
Max 1 1 78 20 0.79

Figure 14: Local Outlier Factor – Breakout Fraud

Figure 15 illustrates breakout fraud model testing for the
mean, median, and max consensus methods using the elliptic
envelope, along with the numerical results of model analysis.
The highest attained is by using a max consensus at 88%.

(a) Mean (b) Median (c) Max
Name True Outlier False Outlier True Inlier False Inlier True Accuracy
Mean 17 18 61 4 0.78
Median 17 17 62 4 0.79
Max 11 2 77 10 0.88

Figure 15: Robust Covariance Elliptic Envelope – Breakout
Fraud

VI. CONCLUSION AND FUTURE WORK

The current maritime vessel communication protocol (AIS)
lacks encryption and authentication leaving vessel commu-
nication susceptible to manipulation. Through the usage of
different machine learning models it is possible to model a
vessel’s normal behavior, thus when abnormal behavior is
detected the appropriate mitigation strategy can be applied.
Through the application of anomaly detection it is possible

to identify when a maritime vessel is not operating in a manner
that is consistent with previous observations. This allows for
additional threats to be identified in real-time. Due to the
widespread adoption of AIS, any vessel will benefit from
implementing behavior modeling even when communicating
with other vessels which lack the necessary equipment.
Temperature sensor data transmitted via AIS was used to

illustrate the principle of machine learning in order to model
vessel behavior in real-time. Future work would consist of
also adding additional sensors as features to add degrees of
information for the machine learning model. An example of
this type of data would be AIS reported position along with a
vessel’s local radar reading to determine the accuracy of each

vessel’s location information. Additional sensors could also
increase the accuracy and confidence of a vessel’s model.
Future work could also investigate using these machine

learning models to influence trust networks built to operate
in the maritime domain for vessel to vessel communication.
For an example of trust-building, a vessel which broadcasts
normally would have a maintained or increased trust rating,
while a vessel broadcasting abnormally would have its trust
rating decreased.
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