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Abstract—The undeniable successes of deep learning (and 

more generally statistical learning) in bringing pattern matching 

to the market is still just the tip of the iceberg of AI. In this talk 

we will look at a very high level overview of AI as a whole and see 

how it can be interpreted at very different levels of abstraction. 

Each level of abstraction boasts its own vocabulary and is suited 

to understanding different aspects of the general problem of 

artificial intelligence. We will walk through four “levels of  

abstraction of AI” ranging from physical implementation all the 

way to semantic processing, and will investigate how memory 

technologies can play a vital role in their successful 

implementation. The aim is to show how innovation in the 

domain of memory tech can unlock the potential of AI to attack 

problems much more general than simple pattern matching and 

thus pave the way to the next wave of AI on the market. 
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I.  OVERVIEW OF TALK 

Currently AI is understood primarily as statistical learning, 
very frequently implemented in a connectionist style (using 
artificial neural networks – ANNs, e.g. deep learning [1], 
convolutional neural networks [2] etc.). The zoo of ANN 
topologies expands rapidly every year, but all share an 
important aspect: a voracious and ever increasing appetite for 
memory resources with modern networks such as VGG19 [3] 
using close to 100M weights. Simultaneously, hardware 
engineers strive to build microchips and larger systems that are 
tailor-made for the type of computational task required by 
statistical learning-based AI. As a result systems such as 
TrueNorth [4], BrainScaleS [5], SpiNNaker [6] and many more 
have emerged and are constantly being developed and 
upgraded. These architectures need to offer an answer to the 
problem of memory storage and access, which they all do in 
their own manner but all within the constraints and limits of 
traditional Complementary Metal-Oxide Silicon (CMOS) 
electronics. 

Against this backdrop of the state-of-art we make the 
argument that developing truly intelligent AI in an efficient 
hardware substrate will require moving well beyond machine 
learning specialists and traditional CMOS electronics 
engineers. In order to identify areas of interest we begin by 
reviewing the hierarchical structure of AI proposed in [7]. 
According to that work, a natural way to compartmentalise the 
area follows a 5-level structure: 

 Level 1: The physical layer. A layer of transistors, 
electrons, voltage and currents. This is where important 
concepts such as signals and memory are grounded in the 
physical world, as well as where the memristor community 
[8] is focussing efforts for building artificial, ultra-compact 
and low-power synapses made of all kinds of materials and 
featuring a swath of different properties [9]–[13]. 

 Level 2: The functional layer. A layer of logic gates, 
artificial neurons, activation function circuits, multipliers 
and (arithmetic) accumulators. This is where fundamental 
mathematical functions are constructed – the Lego blocks 
used for the next layer. Memory devices here can be used to 
instantiate full neurons [14] as well as the 
‘active/regenerative cabling’ required to emulate axonal 
signal transmission [15]. 

 Level 3: The computational layer. The layer of 
modular neural networks, ANN microcircuits (e.g. 
convolutional kernels) and in general, standard ANN 
topologies (Boltzmann machines, fully connected networks, 
reservoirs, etc.). This is where much of the machine 
learning community lives and breathes. Memory devices 
enter the scene here typically in the form of arrays, for 
example crossbars [16] (memristive or otherwise) that 
typically emulate the synaptic connectivity matrix of 
general purpose neural networks [17], [18]. Memory 
technologists have to solve a host of problems not visible at 
the individual device level in order to allow crossbars to 
work adequately well. These include the sneak path 
problem [19] and developing appropriate read-out 
techniques [20]. 

 Level 4: The semantic layer. A layer of symbols, 
concepts, and symbolic manipulation that provides insights 
in data that simple interpolation cannot match without 
increasing the data sample by orders of magnitude. Includes 
work on the mathematics of high-dimensional vectors and 
their implementation in hardware (e.g. [21]–[23] and many 
more). The memory technology aspect here is directly 
intertwined with the concepts of in-memory computation 
and the ‘arithmetic-logic memory’ [24], [25]. Specifically 
here we are interested in building a memory fabric capable 
of performing some of the fundamental operations of 
hyperdimensional computing directly in-memory [26]. 

 Level 5: The agency layer. A layer of stimuli, 
motivations, reactions, models (internal and of the outside 
world). This layer closer resembles psychology than 
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machine learning. It is yet unclear exactly how memory 
technology will exert influence at this level. 

Naturally, the boundaries of each level are blurry and any 
specialist in any layer will need a good working understanding 
of at least the layers adjoining it. However, the above 
breakdown illustrates how memory technology from 
fundamental physics to integrated memory systems design is a 
key component of physically embodied AI system, whose 
design exerts a profound impact on the performance of the 
overall system. 

On striking aspect of this overview that doesn’t become 
immediately clear is advance of volatile memory technologies 
into the domains previously considered the exclusive territory 
of ‘signal electronics’. For example, volatile synapses (level 1) 
and the memristors implementing the active cabling of the 
‘neurisor’ (level 2) encroach on territory that a majority of 
engineers would still consider the domain of monostable 
circuits and RCs. This equivalence and interchangeability 
between electronic conduction-based and ionic motion-based 
paradigms illustrates that the fundamental hardware principles 
underlying both memory and computation need not be treated 
as separate, but rather a more flexible outlook would be 
opportune. 

In conclusion, memory technology and mem-tech hardware 
developers and companies have a significant role to play in the 
ongoing AI revolution. Improvements across all levels of mem-
tech, from physics to system-level design, can be expected to 
dramatically impact the future evolution of AI. They will also 
play a substantial role in the next wave of AI, which is 
expected to be the rise of semantic-level computing. It is 
important to remember that whilst this seems like an algorithm-
level innovation the hardware community has still got a lot to 
contribute on the matter. 
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