
Missing the Forest for the Trees: End-to-End AI
Application Performance in Edge Data Centers

Daniel Richins1, Dharmisha Doshi2, Matthew Blackmore2, Aswathy Thulaseedharan Nair2, Neha Pathapati2, Ankit Patel2,

Brainard Daguman2, Daniel Dobrijalowski2, Ramesh Illikkal2, Kevin Long2, David Zimmerman2, and Vijay Janapa Reddi1,3

1The University of Texas at Austin

2Intel

3Harvard University

ABSTRACT
Artificial intelligence and machine learning are experienc-
ing widespread adoption in the industry, academia, and even
public consciousness. This has been driven by the rapid ad-
vances in the applications and accuracy of AI through in-
creasingly complex algorithms and models; this, in turn, has
spurred research into developing specialized hardware AI
accelerators. The rapid pace of the advances makes it easy
to miss the forest for the trees: they are often developed and
evaluated in a vacuum without considering the full applica-
tion environment in which they must eventually operate.

In this paper, we deploy and characterize Face Recogni-
tion, an AI-centric edge video analytics application built us-
ing open source and widely adopted infrastructure and ML
tools. We evaluate its holistic, end-to-end behavior in a pro-
duction-size edge data center and reveal the “AI tax” for
all the processing that is involved. Even though the applica-
tion is built around state-of-the-art AI and ML algorithms, it
relies heavily on pre- and post-processing code which must
be executed on a general-purpose CPU. As AI-centric appli-
cations start to reap the acceleration promised by so many
accelerators, we find they impose stresses on the underly-
ing software infrastructure and the data center’s capabil-
ities: storage and network bandwidth become major bot-
tlenecks with increasing AI acceleration. By not having to
serve a wide variety of applications, we show that a purpose-
built edge data center can be designed to accommodate the
stresses of accelerated AI at 15% lower TCO than one de-
rived from homogeneous servers and infrastructure. We also
discuss how our conclusions generalize beyond Face Recog-
nition as many AI-centric applications at the edge rely upon
the same underlying software and hardware infrastructure.

1 Introduction
Artificial intelligence (AI), especially the field of machine
learning (ML), is transforming the marketplace. Sparked by
advances in computer system design, enterprises are lever-
aging AI in every possible manner to provide unprecedented
new services to their end users, ranging from recommenda-

tion-based online shopping to personalized social network
services, virtual personal assistants, and better health care.

To enable ML, there has been a flurry of work at two ex-
tremes. At one extreme is the effort that focuses on hardware
acceleration of ML kernels [1, 2, 3, 4, 5]. At the other ex-
treme is the effort that focuses on engineering the system
and its supporting infrastructure, such as the associated net-
working and storage. The former is essential for enabling
microprocessor advancements, while the latter is essential
for allowing cloud-scale deployment.

But in recent years, we are seeing a shift in the needs of
the industry. While much research has been dedicated to
maximizing and accelerating machine learning performance,
recent industry perspectives have urged for a more holistic
understanding of machine learning development and perfor-
mance. Facebook, for example, has discussed some of the
challenges it has faced running AI at scale and encouraged
research on mitigating those challenges [6]. Instead of fo-
cusing solely on the AI kernel computation time, there is a
need to look at the bigger picture. Enabling AI applications
involves several stages: ingesting the data, pre-processing
the data, offloading the data to an AI accelerator, waiting for
data, post-processing the result, etc., all of which affect the
requests’ end-to-end latency and total system throughput.

At the same time, the industry is witnessing AI services
migrate from warehouse-scale systems to smaller purpose-
built data centers located at the edge, closer to end-users [7].
These edge data centers complement existing cloud- or large-
scale services by being physically closer to the data source,
which enables faster responses to latency-sensitive or band-
width-hungry application services [8]. There are also data
sovereignty and regulatory compliance rules to safeguard
data privacy that are addressed with edge data centers [9].
Moreover, many mid-size organizations find it more eco-
nomical to invest in on-premise data centers that are pur-
pose-built for executing a particular type of task [10]. So, de-
spite the continued growth in public cloud solutions, spend-
ing for edge data centers is predicted to increase [11].

In this work, we study the intersection of user-facing AI

515

2020 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/20/$31.00 ©2020 IEEE
DOI 10.1109/HPCA47549.2020.00049

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

computing and smaller, edge data centers to reveal the often
overlooked “AI tax”: the additional compute cycles, infras-
tructure, and latency required to support the AI at the appli-
cation’s heart. In the context of a data center, execution of
a fully developed, deployment-ready AI-centric application
relies on more than just AI algorithms. End users’ requests
demand pre-processing to ready them for the pipeline; in-
termediate data must be communicated between stages, of-
ten over a network using custom protocols; the communica-
tion framework often has built-in data reliability safeguards
which impose overheads on data movement; and each stage
faces its own overhead for moving data. All of these compo-
nents put together add to the overhead of executing AI.

We focus on video analytics in edge data centers for our
studies of AI tax due to its rising importance. The global
market for video analytics is expected to hit US$25 billion
by 2026 due to rapid adoption of video technologies across
industries such as retail, manufacturing, and smart cities [12].
Video analytics uses AI to provide cost-efficient business
intelligence insights to its users. The domain is slated for
deployment in edge data centers, as opposed to traditional
cloud- or warehouse-scale systems due to latency constraints,
network bandwidth, and privacy regulations.

We study a full deployment of Face Recognition, an end-
to-end video analytics AI-centric application at the edge.
Our setup is an industry deployment of the Google Face-
Net [13] architecture in an edge data center. As an AI-centric
application, Face Recognition is a good choice as it employs
three distinct artificial intelligence algorithms, including two
neural networks and a classification algorithm. Furthermore,
it is representative of the reality of a considerable portion
of AI and ML applications: many AI applications exist as
streaming services, deployed in data centers, serving real-
time needs of consumers. Coordinating the many activities
required to transform raw data into useful, easily consum-
able conclusions requires the intricacies and nuances of any
distributed application: networking equipment, storage de-
vices, coordination, data durability, power distribution, cool-
ing, communication protocols, data compression, etc. [14].

We find that in today’s edge data centers, already the com-
munication framework can constitute over 33% on the la-
tency of the application. Face Recognition is built on top of
Apache Kafka [15], which is widely adopted both directly
and as a fabric upon which advanced streaming frameworks
are built [16, 17, 18, 19, 20, 21]. Kafka is also represen-
tative of alternative frameworks that utilize communication
hot spots. The simplicity and impressive performance of
Apache Kafka have established it as a common denomina-
tor for many industry-quality projects. Despite this, requests
can spend substantial time passing through the framework.

Moreover, we show that as accelerator technologies ad-
vance and integrate into production environments, the sup-
porting portions of the pipeline will soon supplant AI as
the primary determiner of performance. We measure the
implications of greater AI inference acceleration. Apache
Kafka becomes increasingly stressed to move the vastly in-
creased volume of data ingested by the application. Even
at relatively low acceleration factors, the added stress will
quickly overwhelm Kafka’s current capabilities. We demon-
strate that at a very modest 8× acceleration factor, Kafka

overwhelms the capabilities of its underlying storage.

These findings present a unique opportunity on the com-
pute research spectrum: rather than neglecting the execution
context of AI (missing the forest for the trees) and without
moving into the realm of cloud compute where resources
must be generic and homogeneous enough to handle all kinds
of workloads, we show a proof-of-concept for the economic
value of edge data centers. We demonstrate how a data cen-
ter that is custom-built for the needs of a streaming AI work-
load can accommodate the anticipated requirements of ac-
celerated AI without over-provisioning, thereby realizing an
overall decrease in the total cost of ownership (TCO) in ex-
cess of 15% over a homogeneous edge data center.

Although our deep-dive primarily focuses on edge video
analytics with Face Recognition (as the poster child appli-
cation), our analyses and conclusions are not specific to that
one application; we discuss how the underlying infrastruc-
ture of an end-to-end AI application will present mainly the
same bottlenecks regardless of the AI application.

In summary, our main contributions and insights are

1. Where much focus is devoted to tuning and accelerat-
ing AI inference to enable faster compute, we instead
evaluate the larger system-level implications of end-
to-end AI applications and expose the AI tax;

2. We show that the general-purpose CPU performance
remains a significant determiner of overall request
performance because processing an end-user request
requires more than just AI kernel computation;

3. The communication layer of an AI application im-
poses a large overhead on the latency of processing;

4. The increased throughput from AI acceleration will
overwhelm the communication substrate; and

5. A purpose-built data center can adapt to the up-
coming challenges of accelerated AI at a lower TCO
than a generic, homogeneous data center.

The remainder of this paper is structured as follows. In
Section 2, we introduce our application, the running envi-
ronment, and our experimental setup. In Section 3, we elu-
cidate the AI tax, characterizing the performance and lim-
itations of the end-to-end AI application. In Section 4, we
conduct a forward-looking analysis of our application un-
der accelerated AI compute and identify significant impedi-
ments to improving performance. In Section 5, we show that
an edge data center can be purpose-built to address the up-
coming challenges of AI while reducing TCO. In Section 6,
we discuss opportunities for future work. We distinguish our
work from prior art in Section 7 and conclude in Section 8.

2 AI in Edge Data Centers
The details of a typical edge application setup are generally
proprietary. Hence, we contribute how we develop and de-
ploy a user-facing video analytics pipeline, based on lead-
ing-edge AI algorithms, that runs in an edge data center. In
Section 2.1 we introduce our video analytics AI workload,
Face Recognition. We describe the implementation of Face
Recognition in the context of a data center in Section 2.2. In
Section 2.3, we present our edge data center hardware setup.
We discuss the generality of our study and similar applica-
tions we have developed in Section 2.4.

516

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

(a) Algorithmic flow of Face Recognition. A video stream enters in-
gestion for separation into individual frames. Face detection finds any
faces within a frame and produces a thumbnail for each. Feature ex-
traction generates identifying features for each face. Finally, classifi-
cation finds a nearest match to known faces to produce an identity.

(b) Data center deployment of Face Recognition. Algorithms run as
standalone processes in lightweight Docker containers deployed on
separate nodes throughout the data center. Ingestion and face detec-
tion both run in the ingest/detect container while feature extraction and
classification are combined in identify. Communication between steps
within a container happens internally while communication between
containers is coordinated through Apache Kafka brokers.

Figure 1: From the conceptual operation of Face Recognition to a deployment-ready implementation. Shaded blocks show AI stages. The straight-
forward application steps are wrapped in containers for deployment in a data center, requiring inputs, outputs, and communication coordination.

2.1 End-to-End Video Analytics Pipeline
Video analytics is the automatic analysis of video data. For
our analysis, we developed and deployed a video analyt-
ics application for edge usage called Face Recognition (Fig-
ure 1). Though it uses machine learning, this application is
strictly user-facing, i.e. it uses inference rather than training.

Our implementation of Face Recognition relies heavily on
artificial intelligence and machine learning algorithms im-
plemented in TensorFlow [22]. Given a number of input
video streams, the application parses the videos into indi-
vidual frames, locates faces within the frames, and identifies
each face as a certain individual. The video streams could
represent a surveillance system’s cameras [23], offline pro-
cessing of recorded videos, a transactionless shopping en-
vironment [24], or many other applications where multiple
streams are concurrently being fed into the system.

The Face Recognition application consists of four primary
processing stages (Figure 1a) and is built from MT-CNNs
(multi-task cascaded convolutional networks) [25] along with
Google’s FaceNet [13, 26]. Like many real-world use cases,
the application involves multiple inferences per query.

1. Ingestion is a pre-processing stage that ingests a video
stream and parses it into individual frames. This stage
is critical as FaceNet cannot operate directly on video.

2. Face detection (AI) relies on MT-CNNs to detect any
faces within a frame without making any effort to iden-
tify them. It determines bounding boxes for and pro-
duces a 160x160 thumbnail of each face in a frame.

3. Feature extraction (AI) is built using the Inception-
Resnet [27] architecture and produces a 128-byte vec-
tor of essential features that describe each face.

4. Classification (AI) compares the feature vector for a
face against a set of known face vectors to find the best
match by means of a support vector machine (SVM),
yielding an identification.

Face Detection is designed as a pipelined streaming appli-
cation—it ingests video streams at or near their native frame
rate, injects them into the pipeline, and yields facial iden-
tities for frames after some delay. Even though the over-
all latency may exceed the time between adjacent frames
in a video stream, because the application is pipelined, the
throughput is at or near the native frame rate.

2.2 Edge Data Center Deployment
Face Recognition is more than just FaceNet—it is an appli-
cation ready for deployment in an edge data center. Going
from the algorithm to the full workload requires algorithm
partitioning, containerization, work coordination, and com-
munication management. We describe how the logical flow
of Face Recognition is transformed into a functional stream-
ing data center application (Figure 1b).

Face Recognition separates its algorithmic steps into dis-
crete stages that coordinate with one another while running
independently on separate nodes to produce a legitimate data
center application. Separating the algorithm into multiple
coordinated steps allows different stages of the application
to adapt to the speed and requirements of other stages.

Face Recognition divides the algorithm into two stages
(Figure 1b): ingest/detect and identification. Each is imple-
mented as one or more processes running in a lightweight
Docker [28] container. Each of the containers can be instan-
tiated multiple times and deployed on one or more physical
nodes in the data center. We also utilize a third container, the
broker, that we discuss later.

Ingest/detect is a combination of ingestion and face de-
tection. It runs an ingestion process, which accepts a video
stream (we use a 1920x1080 video file for deterministic op-
eration) and parses the stream into frames. It resizes the
frames to 960x540 before passing them to the separate face
detection process through an internal queue. Face detec-
tion produces a thumbnail for each face in a frame, if any
(our video yields zero to five faces and averages 0.64 faces
per frame, with face thumbnails averaging 37 kB each). If
any faces are found, they must be transferred to the identifi-
cation container, which is logically and physically separate
from ingest/detect. Identification runs a single process, con-
sisting of feature extraction and classification described in
Section 2.1. It accepts faces from the ingest/detect container
and internally produces a feature vector for each face which
is compared against known faces to yield an identity.

In accordance with industry practice, we execute all infer-
ence directly on the CPU [6]. This yields the lowest latency
which is critical in a user-facing application.

Communication between containers running on separate
nodes within a data center requires intelligence and elegance.

517

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

We rely on Apache Kafka [15] to manage the communi-
cation communication between ingest/detect and identifica-
tion, to allow for load balancing, and to dynamically adjust
to node failures. Though there exists a variety of open source
tools for building and managing streaming applications [29,
30, 31, 32, 33, 34], we note that these tools tend to rely on
a separate framework for enabling communication between
containers. It is common in practice to rely on Apache Kafka
to serve this purpose, and each of these projects has propo-
nents extolling the benefits of using Kafka [16, 17, 18, 19,
20, 21]. We therefore use Kafka directly to coordinate com-
munication between our containers.

Apache Kafka implements the publish-subscribe pattern
of communication [35]. This pattern operates by relying on
an intermediate staging area for data, instead of data produc-
ers sending data directly to data consumers. Data producers
publish data without any knowledge of the data consumers
or even a guarantee that any consumers exist. They simply
publish the data as a topic—a category of data where each
individual item is treated identically. Similarly, consumers
subscribe to a topic, oblivious to all details about the produc-
ers. As producers publish data to a given topic, the data be-
come visible to the consumers subscribed to the same topic;
consumers are then free to process the data.

In Kafka, the intermediate staging area where topic data
is stored is implemented in brokers. A topic is implemented
by creating partitions—open file handles—typically spread
across multiple brokers. When a producer publishes data to
a topic, it may send that data to any of the partitions, which
the corresponding broker receives and writes to the open file.
When a consumer requests data from a partition, the broker
reads it from the same file. In contrast to producers, parti-
tions may have a maximum of one consumer. Thus an appli-
cation should divide a topic into at least as many partitions
as there are consumers in order to maximize parallelism.

The topic partition also serves as the basic unit of repli-
cation. Kafka assumes and encourages data replication for
reliability should a broker go down. Each partition has a
“leader” and, in the presence of replication, some number of
followers. After new data is written to a leader partition it is
replicated to the followers. Producers and consumers inter-
act with the broker that holds the leader partition, while the
follower partitions are spread among the remaining brokers.
In the event of a broker failure, one of the follower parti-
tions will become the new leader partition. Unlike partitions,
there are no “leader brokers” or “follower brokers.” Both
leader and follower partitions are spread among all available
brokers; thus, no one broker is more important or heavily
utilized than any other.

For Face Recognition, the ingest/detect containers func-
tion as producers, sending face thumbnails extracted from
each frame to brokers as the “faces” topic. The identifica-
tion containers are the corresponding consumers, subscrib-
ing to the “faces” topic. The placement of brokers between
ingest/detect and identification containers was chosen to pro-
vide load balancing. As we will show in Section 3, the two
containers have different latencies; we thus instantiate more
identification than ingest/detect containers. By placing bro-
kers between them, Kafka ensures that the work is spread
among the consumers evenly.

Table 1: Server details. Each server in our data center is well-equipped,
using leading-edge technology. Our nodes are powered by Intel Xeon
Platinum 8176 or comparable CPUs.

Component Details
CPU 2× Intel Xeon Platinum 8176 [37]

Cores 28
Base Frequency 2.10 GHz
Max Turbo Frequency 3.80 GHz
SMT 2-way
LLC 38.5 MB

Memory 384 GB DDR4-2666 [38]
Storage Intel SSD P4510

Read BW 2.85 GB/s
Write BW 1.1 GB/s
Read Latency 77 us
Write Latency 18 us

Network Full duplex 100 Gbps Ethernet

An alternative setup would separate the ingest/detect con-
tainer into two separate containers, relying on the brokers to
transfer data between them through an additional “frames”
topic. While we do not show the data in this paper, we ex-
plored this option extensively, ultimately rejecting it in order
to reduce network traffic (the importance of which will be-
come apparent in Section 4).

2.3 Edge Data Center Configuration
We utilize a small edge data center built from high-perfor-
mance servers (see Table 1). We use over 2200 processor
cores spread across 40+ nodes to ensure that we have a re-
alistic deployment whose characteristics can scale to larger
setups. Each node is equipped with 56 physical cores spread
across two sockets, 384 GB of RAM, high-speed local NVMe
storage, and 100 Gbps Ethernet. The nodes are connected in
a fat tree topology [36].

We rely on Kubernetes [39] and Docker [28] to deploy
our application containers throughout the data center, re-
flecting common industry practice. Each of the three dis-
tinct pre-built container images (broker, ingest/detect, and
identification) is deployed a set number of times and dis-
tributed throughout the data center. Because of the extremely
low network utilization relative to capacity (Section 4.4), the
placement of containers relative to one another in the data
center is unimportant. We rely on Kubernetes to manage the
deployment of containers. We use a minimum of three bro-
ker nodes in all cases to allow for three-way data replication,
reflecting common practice in industry-quality deployments.

We omit the final stage represented in Figure 1b (display-
ing the identities on the video feed) from measurement stud-
ies because it offers little to no real computational insights.

2.4 Generalizability and Other Workloads
Beyond the value of an industrial case study,1 we have also
developed similar edge deployments of two additional appli-
cations—Object Detection and Language Translation—also
built using the same infrastructure, including Kafka. While
we do not study these in the same detail as Face Recogni-
1Case studies are an important but underappreciated tool in com-
puter systems research [40]. They shed light on an application that
is valuable in its own right and can pioneer an evaluation approach.
The results from a case study are also often generalizable.

518

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

tion, we present some results in Section 3.4 showing that
they exhibit the same kinds of behaviors as Face Recogni-
tion. Object Detection uses an R-CNN [41] to uniquely iden-
tify multiple objects in a frame. Language Translation takes
advantage of Google’s neural machine translation solution
(GNMT) [42] to translate text between English and German.

3 AI Tax
We start our exposition of the AI tax by evaluating the end-
to-end performance of Face Recognition. We aim to under-
stand what fraction of the cycles in an AI application go to
AI processing versus the non-AI components. To this end,
we examine the lifetime of a frame as it flows through the
AI-centric Face Recognition application. In Section 3.1, we
explain how we measure frame progress. Section 3.2 breaks
down the end-to-end progress of a frame in each stage of
the pipeline and shows that AI computation is not so cen-
tral as one would expect in an AI application. In Section 3.3
we break down the application behavior in each container
and reveal how much supporting compute is needed to en-
able AI processing. We show that it is vitally important to
view AI application performance holistically, as it involves
much more than just AI processing and the supporting code
and infrastructure tax have a profound impact on latency. Fi-
nally, in Section 3.4, we present some basic data from other
applications suggesting that they will face the same issues.

3.1 Instrumenting the End-to-End Execution
To really understand an AI application deployed in even an
edge data center, we must raise the level of abstraction from
how applications are traditionally evaluated. While we do
not claim to have the right level of abstraction for all end-
to-end workloads, for Face Recognition, we believe that we
have identified a good level of abstraction for tracking and
measuring application progress without perturbing the appli-
cation’s original behavior.

Application progress is a sequence of unit steps that are
necessary for a frame to progress through the application.
We term the units of application progress “events”; these are
high-level steps in the application and roughly correspond to
the stages introduced in Section 2.1: video ingestion, face
detection, broker waiting time, and identification. Event-
based logging lets us track end-to-end application progress.
This higher level of abstraction is critical in enabling engi-
neers to architect at a cluster level, where the complete ap-
plication executes, instead of just at a node level.

We log all the events during execution of the application
using Elasticsearch [43] and Logstash [44] running on a sep-
arate server. We measure the execution time of each step as
well as the sizes of data that are transferred between stages.
This is done using timestamps around the major regions of
interest, e.g. the time to do the face identification excluding
the supporting code (e.g. iteration management). In essence,
events capture the major steps that a frame goes through
from beginning to end. We use built-in language functions to
measure the size of the data that are transferred through the
brokers. Due to the infeasibility of instrumenting a complex
program such as Kafka, we approximate the broker waiting
time event by calculating the time delta between the end of
face detection and the beginning of identification.

Figure 2: Breakdown of end-to-end frame latency. With inference steps
in detection and identification stages, less than 60% of the latency arises
from AI stages. Over a third of a frame’s lifetime is spent in brokers.

Our instrumentation method has negligible overhead and
resource requirements, since we are only logging events. It
has minimal impact on the application (see Figure 3).

3.2 AI Applications Are More Than Just AI
One of the end user’s primary concerns is latency. In Face
Recognition, this is the total time of a frame progressing se-
rially from ingestion through identification; the latency of
any stage that is not performing AI contributes to the AI tax.

We conduct experiments with 840 ingest/detect processes
(producers) executing on 15 nodes (56 processes per node),
1680 identification processes (consumers) executing on 30
nodes (56 processes per node), and 3 brokers (each given
its own node). We require the brokers to maintain 3× data
replication, which is standard practice for disaster recovery.

We measure an average face size of 37.3 kB and an end-
to-end latency of 351 ms. While this latency may seem
large, there are two points to remember. First, the through-
put per stream is around 10 frames per second (FPS)—and
a single stream could be divided among three ingest/detect
instances for 30 FPS operation—regardless of the latency,
since the application is pipelined; the output video still dis-
plays smoothly, just with a small delay. Second, there are
multiple inferences per frame, performed sequentially, with
the inference stages located on different nodes to improve
performance [46]; the communication between the stages
imposes additional latency.

Figure 2 summarizes the average latency for each stage.
Ingestion operates quickly, taking only 18.8 ms, while the
AI stages, face detection and identification, take 74.8 and
131.5 ms, respectively. Remarkably, over a third of the end-
to-end latency is spent waiting between stages, at 126.1 ms.
As in any real-time application, tail latency is an important
factor to consider. We measure a 99th percentile tail latency
of 2.21 s, with the standalone 99th percentile tail latencies
of ingestion, detection, waiting time, and identification at
27 ms, 1.84 s, 116 ms, and 380 ms, respectively.

The end-to-end tail latency derives almost entirely from
the waiting time in the brokers, which results from conges-
tion in the application. When ingest/detect produces a sur-
plus of faces, identification has a hard time keeping up, leav-
ing the faces in the brokers for a longer time. When there are
almost no faces detected, identification containers are almost
idle and so are able to fetch the few faces quickly.

In summary, deep learning inference performance is more
than just the performance of an individual node in the sys-
tem. Even with a well balanced system, there is a substantial
AI tax latency imposed in managing the transfer of data be-

519

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

(a) Ingestion. (b) Detection. (c) Identification.

Figure 3: Process CPU time breakdowns. Though ingestion uses no
AI algorithms, it consists of straightforward image processing algo-
rithms, which should be easily accelerated [45]. Face identification is
overwhelmingly AI-centric. In contrast, face detection relies heavily on
supporting code to enable its AI processing.

tween the nodes (i.e. the detection and identification stages).
Without looking at the end-to-end latency, one would not
realize that a large portion of time is spent waiting at bro-
kers. This observation is not unique to our application; any
application built on Apache Kafka (or a similarly brokered
communication mechanism) will face this reality.

3.3 Overhead of Pre- and Post-Processing AI
Most AI research papers focus only on the core AI compo-
nent, neglecting the other associated parts that are essential
to end-to-end AI processing. However, there are pre- and
post-processing steps that are unavoidable. Both play a crit-
ical role in the overall latency and both contribute to the AI
tax. Pre-processing involves preparing the data for the AI
kernel execution, while post-processing is loosely defined as
any processing that is performed to convert the generated AI
result(s) into something meaningful to the user or next stage.

To quantify the AI tax for pre- and post-processing we
refine our view of a frame’s processing by looking at the
time breakdown of each process using code profiling tools.
Figure 3 shows, for each of the main processes (ingestion,
detection, and identification), where time is spent.

Ingestion is exclusively a pre-processing stage. It shows
a nearly even split between frame extraction and frame re-
sizing (Figure 3a). Extraction refers to parsing the incom-
ing video stream into individual frames. Resizing converts
frames from 1920x1080 to 960x540 for the detection stage.
The remaining time is split between the overhead of event
logging and other supporting code, including transferring
frames to the co-located detection process.

During face detection (Figure 3b), despite being an AI-
centric stage, only 42% of the time is spent executing the AI
algorithm in TensorFlow. Cropping and resizing faces (to
160x160) for identification takes 25% of the time; support-
ing TensorFlow and Numpy code (pre- and post-processing
for each frame) take 6% and 4%, respectively; and “other”
code takes a whopping 13% of the time. Code in the “other”
category includes inter-process communication (from the in-
gest stage), additional matrix manipulation, loop manage-
ment, bounding box calculation, image encoding, etc.

The AI-centric identification stage has a markedly differ-

ent breakdown. It spends 88% of its time directly executing
AI algorithms; Kafka code, though, takes 8% of the time.
The remaining components contribute little to the total time.

Beyond the pre-processing of the ingestion stage, end-to-
end Face Recognition requires substantial pre- and post-pro-
cessing within the AI-centric stages. In face detection, non-
AI computation constitutes 57.6% of the compute cycles. In
identification, that figure drops to 12.4%, which is still far
from trivial. In a complex and diverse AI-centric application
such as Face Recognition, AI computation constitutes 55.2%
of end-to-end cycles, with the remainder going to supporting
code: 17.8% to resizing, 9.0% to networking, 5.2% to tensor
preparation, 3.6% to Kafka processing (outside of the bro-
kers), and the rest to other supporting tasks.

In summary, despite the massive excitement surrounding
AI algorithms, AI workloads are more than just tensors and
neural networks: without the supporting code, AI is impo-
tent. We emphasize that the supporting code, far from being
a minor player in a complete application, constitutes over
40% of the compute cycles, not counting the compute time in
the brokers. The pre- and post-processing code is executed
on the general-purpose CPU, so it motivates the need to un-
derstand the role of the CPU as AI acceleration increases.

3.4 Additional Applications
Though we do not study them in as great detail as Face
Recognition, our other applications show behaviors that in-
dicate they will face the same issues as Face Recognition.

Object Detection, though also built from two stages and
using Kafka as a communication substrate, only utilizes AI
in one stage. This inference stage is computationally in-
tensive; at 475.2 ms average compute time, its cycles are
97.2% ML. However, instead of transferring faces or objects
through the brokers, it passes entire video frames. These
weigh in at an average of 86.2 kB; image compression keeps
this from ballooning too large. The significance of the larger
data size will become apparent in Section 4.4.

Language Translation similarly has only one AI stage,
which spends 79.4% of its cycles on ML. The large fraction
of supporting code reemphasizes the importance of general
CPU compute. Since the data passed through the brokers is
purely textual sentences, the data transferred is small, typi-
cally no more than a couple hundred bytes per sentence.

4 Accelerating AI
There are numerous efforts underway to accelerate AI [1, 2,
4, 47, 48, 49, 50]. But given the significance of the AI tax
in end-to-end AI performance and in pre- and post-process-
ing, it is important to understand how the tax evolves as AI
is accelerated and its impact on the overall end-to-end appli-
cation performance; there are performance limitations that
arise beyond a certain point of AI acceleration. To build a
balanced system, it is important to understand these limits.
We therefore study how varying degrees of AI speedup affect
the end-to-end performance of our video analytics workload.

We do not attempt to promote any one or group of ac-
celeration techniques, nor do we presume that a particular
approach will be more successful than any other. In gen-
eral, we could foresee accelerated AI coming about in vari-
ous ways: CPU manufacturers may decide to integrate ML-

520

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

centric hardware directly into the CPU execution pipeline;
or dedicated off-chip accelerators may be utilized, including
highly-parallel pipelines (such as GPUs) and dedicated in-
ference engines (such as Intel’s Neural Compute Stick [4],
Habana’s Goya inference processor [51], or Google’s Coral
Edge TPU [50]). Comparisons of the efficacy of each of
these solutions is the subject of other work. In this work, we
look at the impact of theoretical speedups, regardless of how
the speedups are achieved.

In this section, we explore the impact of accelerating AI
applications up to 32×, based on the performance of ex-
isting accelerators. Habana reports that its Goya processor
achieves 13.5× speedup over a two-socket Intel Xeon Plat-
inum 8180 [52].2 We explore speedups approximately twice
as great as this in order to account for future advances.

Section 4.1 analytically estimates accelerated AI perfor-
mance to show its asymptotic limits. Section 4.2 introduces
our technique for emulating accelerated workloads on cur-
rent hardware. In Section 4.3 we evaluate the performance
of accelerated processing and discover a quickly approach-
ing bottleneck. Section 4.4 shows that the bottleneck results
from overwhelming the system’s capacity to write to storage.
We finish by showing in Section 4.5 how frames’ waiting
time in brokers grows as a fraction of end-to-end latency.

4.1 Analytical Speedups for AI Acceleration
The AI tax means that a significant portion of an AI appli-
cation’s compute cycles are spent on tasks other than AI and
ML, and Amdahl’s law dictates that the overall speedup of
a system is limited by the portion of execution that is not
accelerated. Application of Amdahl’s law shows that each
of the three primary processes—ingestion, detection, and
identification—is limited in how much real-world speedup it
can enjoy if AI is accelerated in isolation. Ingestion, which
performs no AI compute, naturally derives no benefit from
acceleration. Detection, which is 42% AI, rapidly approaches
its asymptotic speedup of just 1.74×, achieving 1.59× over-
all speedup at 8× acceleration and 1.66× overall speedup at
16× acceleration. Identification, at 88% AI, has an asymp-
totic speedup limit of just 8×. At 16× AI acceleration it
achieves 5.6× overall speedup, and even at 32× AI acceler-
ation it shows just 6.6× overall speedup.

The exciting speedups promised by up-and-coming infer-
ence accelerators will be severely moderated by the reality
of the supporting, non-AI code—the AI tax. With the fervor
surrounding acceleration of AI and ML, these results from
Amdahl’s law serve as an important reminder that AI ap-
plications are more than ML computation. Supporting and
enabling code is a critical component of an end-to-end ap-
plication and this should serve as a call to action to address
the limitations imposed by that code.

4.2 Emulating AI Acceleration on Hardware
It is instructive to see how the AI tax evolves as compute is
universally accelerated (i.e. overcoming the asymptotic lim-
its of Section 4.1) on a real system. To do so, we emulate
the behavior of accelerated processing. Only the most basic
loop controls and Kafka code are left in their original state.

2Other than its faster clock, the 8180 CPU is identical to the 8176
CPUs we use.

Figure 4: Average frame latency and throughput under increasing AI
acceleration. Beyond 8x speedup, the increased throughput leads to an
unbalanced system. Queueing theory dictates that if elements enter the
system faster than they leave, the latency increases to infinity.

Our emulated acceleration technique relies on the obser-
vation that, from the perspective of application progress, the
perspective of network traffic, and the perspective of the
brokers, it is impossible to distinguish between (1) running
the real application as has been described and characterized
and (2) implementing artificial delays reflective of the ac-
tual compute times (Section 3) and sending meaningless data
over the network of the same size as in the real applica-
tion. In accelerated Face Recognition, rather than accel-
erating and executing the real algorithms, we replace the
compute with calls to sleep, where the sleep duration is
reflective of measured execution times (Section 3.1). Ac-
cordingly, rather than sending face thumbnails to brokers,
we send meaningless data whose size matches the measured
sizes. We can accelerate processing (both ingest/detect and
identification) by an arbitrary factor by dividing the sleep
times by the speedup factor. In this way, we maintain the be-
havior of the brokers, network, storage, and supporting code
while exploring how acceleration changes the AI tax.

We emphasize that this AI acceleration emulation pro-
vides realistic performance estimation under acceleration be-
cause (1) the most basic general purpose processing (the
support code to iterate through available frames, code to
coordinate communication with Kafka brokers, the brokers
themselves, etc.) remains in place and is executed as usual
without the benefits of acceleration; (2) from the perspective
of the data center, compute time spent executing real algo-
rithms and waiting in sleep are identical; and (3) the bro-
kers are completely ignorant of and unconcerned with the
execution details of both producers and consumers. Thus,
our setup to accelerate AI through emulation provides a re-
alistic and believable look at the impact of faster AI on the
data center and on the workload as a whole.

4.3 Accelerated AI Impact on Total Speedup
We explore how the end-to-end frame latency will evolve as
AI benefits from increasingly powerful acceleration. For this
analysis, we assume that the AI algorithms will experience
no latency overhead from acceleration—that is, we assume
that the latency to communicate with dedicated off-chip ac-
celerators is factored into the emulated speeds, or, equiva-
lently, that future CPU architectures will directly integrate
accelerator hardware into their execution pipelines.

For these experiments, we maintain the same application

521

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

(a) Network bandwidth utilization. Network activity from and to pro-
ducers and consumers is concentrated at the brokers; nevertheless,
broker network utilization falls far short of our 100 Gbps capacity.

(b) Storage bandwidth utilization. Storage activity for producers and
consumers is not shown because it is not preserved in accelerator emu-
lation. Network activity is translated to storage activity in the brokers.

Figure 5: Network and storage bandwidth utilization under acceleration. Whereas network utilization never exceeds 6% of network capacity, storage
bandwidth utilization exceeds 67% of capacity at 8x acceleration. Storage bandwidth becomes a bottleneck much sooner than network bandwidth.

organization as depicted in Figure 1b. As we accelerate pro-
ducers and consumers equally, the imbalance between the
two will persist, so it is important to utilize Kafka’s load bal-
ancing features at the interface between the two.

For the sake of simplicity and repeatability and without
loss of generality, we configure these emulation experiments
so that each frame produces exactly one face. This has two
impacts on performance: (1) on average, this is more faces
per frame than produced by the video file used previously,
which yields 0.64 faces per frame on average; and (2) be-
cause the rate of face production is constant, we do not have
to provision our cluster to handle sudden spikes in traffic,
allowing us to deploy fewer identification instances than for
the video file. None of the conclusions we draw from these
experiments is invalidated by these these two observations.

Figure 4 shows the effects of accelerating the AI compo-
nents of Face Recognition. Note that because we assume
one face per frame, which is significantly higher than the
0.64 faces per frame average produced by our default video
file, the average end-to-end latency is somewhat higher at
1× speed than in Section 3.2. At higher speedups, we see
a two-fold benefit: first, the latency is very clearly reduced;
second, the throughput is commensurately increased.

At 8× speedup, we see a new manifestation of the AI tax,
with latency tending toward infinity—the longer the experi-
ment runs, the larger the latency grows. This is an example
of an unstable system in queueing theory: faces are entering
the system more quickly than they are leaving. This is a ma-
jor limitation that can severely hamper the prospects of AI
acceleration and demands further investigation.

4.4 Network and Storage Bandwidth Limits
With state-of-the-art industry accelerators claiming improve-
ments of up to 15× in inference speedup over CPUs [1], it is
critical to understand why the system becomes unbalanced
at 8× acceleration. Without this insight, it will be difficult to
build systems to accommodate higher acceleration factors.

Intuitively, we suspect the imbalance results from the in-
creased throughput of the system overwhelming one of two
resources with limited bandwidth: either network or stor-
age bandwidth. We measure the utilization of both band-
widths to understand the problem at increased acceleration

factors (i.e. greater than 8×). In Figure 5a, the network
bandwidth utilization of all container types rises with in-
creasing acceleration factor. Unsurprisingly, producer (in-
gest/detect containers) network read bandwidth is next to
zero, as is consumer (identification containers) write band-
width. Conversely, producer write and consumer read band-
widths are comparable. But the real network bandwidth hot
spot is the brokers—as the point of communication between
producers and consumers, they must process all network traf-
fic generated by the producers or read by the consumers.
However, even the combined network traffic flowing through
the brokers constitutes a small portion of the available band-
width: at 8× accelerated AI, the read bandwidth is only
6 Gbps, a mere 6% of the available 100 Gbps.

Figure 5b shows the storage bandwidth requirements of
the brokers. We omit the data for the producer and consumer
containers, as their storage behaviors are not preserved by
our emulation technique and are nevertheless expected to be
near zero, as they work largely out of memory. The brokers,
however, have rather high bandwidth requirements. Even at
native (1×) speed, the write bandwidth is 10% of capacity
(1.1 GB/s). At 8× acceleration, that rises to over 67%.

With the overhead of the operating system, managing the
file system, and coordinating all the small requests to be
written to storage, by 8× acceleration, 67% utilization has
effectively saturated the available bandwidth. Returning to
queueing theory, the inability of storage to write data to stor-
age (and make it available to the consumers) as fast as it is
supplied leads to the imbalance and growing latency.

We note that data reads, however, use essentially none of
the available bandwidth. This is easily understood: bro-
kers are tasked with ensuring data reliability, so they must
write producer data to storage, but the operating system can
also cache the data in memory, allowing reads directly from
memory and bypassing the storage read path.

Doubtless, fine-tuning the brokers’ parameters could al-
low them to better utilize the storage bandwidth. An in-
depth exploration of the Apache Kafka parameter space is
not, however, the purpose of this paper. Regardless of the
ability of the brokers to utilize available bandwidth, they will
hit a hard limit at the specifications of the hardware devices.

In a setup with a more conservative network bandwidth

522

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

(e.g. 10 Gbps), both the storage and the network would
quickly become bottlenecks when accelerating compute.

Thus the increased throughput of a moderately acceler-
ated end-to-end system creates a new AI tax that quickly
overwhelms the communication substrate, counteracting the
gains achieved through hardware acceleration of AI.

4.5 Increase in Waiting Time
Furthermore, whereas the waiting time at 1× speed consti-
tutes 64.6% of the total latency of a frame (Figure 4), it
grows to 66.4% at 2×, 68.0% at 4.0×, and 79.1% at 6×.
This trend can be partially understood by Kafka’s automatic
batching between brokers and consumers and producers. A
message from a producer can be held in the producer for a
small amount of time until a larger group of messages has
been accumulated to be sent as a batch. Similarly, when
a consumer requests available messages from a broker, the
broker can withhold messages until there exists some min-
imum amount of data. Thus, the broker time grows with
the decrease in compute time to improve batching. Both
batching behaviors are limited by timeouts to ensure that
neither producer nor consumer waits excessively long. We
have tuned these parameters to find settings that ensure good
behavior across a variety of experiments. Nevertheless, the
time spent waiting between producers and consumers ap-
proaches some lower limit beyond which no amount of tun-
ing can help; in an application that has many more stages
than Face Recognition, this minimum waiting time could ac-
cumulate across stages and prove prohibitively long.

5 AI-Centric Data Center Design
As future accelerators emerge, we seek to unlock higher
speedups. In Section 4, we saw that in an accelerated AI en-
vironment, the AI tax overwhelms the communication mech-
anism; in particular, the storage medium is quickly saturated
at relatively modest emulated compute acceleration speeds.
So in Section 5.1 we explore two avenues to overcoming this
bottleneck. Implementing these solutions to the tax trans-
lates to actual monetary cost, as shown in Section 5.2. We
show in Section 5.3 that a purpose-built edge data center can
address the tax with increased capacity to handle accelerated
compute at lower total cost of ownership (TCO).

5.1 Unlocking Higher Speedups
There are three ways to deal with the limitation in the stor-
age bandwidth: (1) utilize faster storage in the existing bro-
kers, either through a faster storage medium (e.g. Intel Op-
tane [53]) or through multiple drives operating in parallel;
(2) create more storage bandwidth by allocating additional
brokers; or (3) decrease the size of the face thumbnails, thus
demanding less bandwidth. We explore all three methods
(Figure 6), first increasing the installed drive count from one
to four to provide greater bandwidth to each broker node,
then increasing the broker count from three to eight across
distinct broker nodes, and finally decreasing the face thumb-
nails down to one-eighth their original size.

Increasing the Bandwidth. The effect of additional stor-
age bandwidth on the existing nodes is captured in Figure 6a.
For these experiments, we instantiated additional broker in-
stances on each broker node (one for each drive) to ensure
that each drive is given the same access to compute and

(a) Using additional storage devices on each node to add bandwidth.

(b) Using additional brokers to handle added bandwidth requirements.

(c) Decreasing thumbnail sizes to offset higher bandwidth demands.

Figure 6: Average frame latency under accelerated AI. The higher
bandwidth demands can be accommodated by allocating extra band-
width or reducing face thumbnail sizes.

memory resources; in practice, only one broker should be
instantiated per node to avoid replicating data on the same
node. In the figure, we start with 8× speedup—the speedup
that sent latency to infinity in the previous experiments—
and increase the emulated speedup to 32×. With just one
NVMe drive, the average end-to-end frame latency is infi-
nite (depicted by the latency bar extending beyond the limits
of the chart) at 8× and all higher speedups. These exper-
iments rely on additional drives being installed only in the
brokers—in our case, there are three of them; the remainder
of the servers remain unaltered from their original configu-
ration. In increasing the storage bandwidth by going from
one drive to two drives, both 8× and 12× speedups are “un-
locked”—the system gains the ability to support compute of
these speeds. With three drives, the system supports up to
24× speedup, and with four drives, 32× is unlocked.

Spreading the Load. Rather than installing additional
drives in each of the brokers, we can instantiate additional
brokers in the data center. This spreads out the load on stor-
age to more brokers and hence more drives. Returning each
broker to its default storage configuration (one NVMe drive),
we repeat our experiments with four, six, and eight brokers.

With three brokers, as we saw before, any acceleration
factor at or above 8× leads to infinite latency. A small 33%
increase in the broker count (going from three to four bro-
kers), however, allows the system to handle the 8× factor,

523

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

Table 2: Homogeneous data center equipment. In a homogeneous data
center similar to (but larger than) our own, there is considerable ex-
pense in ensuring that all components are equally equipped. The equip-
ment cost of a 1024-node data center would be around US$30.9 million.

Component Price (US$) Quantity
Dell PowerEdge R740xd (base server) $28,731 1024

Intel Xeon Platinum 8176 Included 2
32 GB DDR4 SDRAM Included 12
Intel SSD DC P4510 1 TB (NVMe SSD) $399 1
Mellanox MCX415A (100 GbE adapter) $660 1

Mellanox MSN2700-CS2F
(100 GbE switch for fat-tree topology)

$17,285 160

Mellanox MCP1600 (100 GbE cable) $100 3072

Total $33,577,760

while a 2× broker increase allows for up to 16× accelera-
tion. At eight brokers, the system can handle a 32× factor.

We find an important distinction between adding addi-
tional drives to existing brokers and adding additional bro-
kers: the latter is more efficient. To achieve the ability for the
system to support 32× accelerated AI compute, we had to
increase the number of drives by a factor of four; in contrast,
we had to increase the broker count by 2.7× (going from
three brokers to eight) for the same performance achieve-
ment. The significantly lower increase in storage bandwidth
in the increased-brokers approach indicates that brokers may
also benefit from having additional compute capacity, mem-
ory bandwidth, or network bandwidth available.

Decreasing the Demand.
There exists one additional possibility for reining in the

bandwidth demands on the storage: decrease the volume of
data that needs to be stored. Rather than spreading the data
among additional brokers, the data volume can be reduced
by decreasing the average size of face thumbnails. Figure 6c
shows the effect of face sizes at one-half, one-quarter, and
one-eighth their original size. Similar to increasing the band-
width in each broker, we see that the smaller face sizes use
a smaller portion of the available bandwidth and so increase
the maximum supportable speedup, but without instantiating
additional brokers or installing additional storage devices.

This solution, however, comes with serious trade-offs. De-
creasing face size using compression would require addi-
tional compute time, potentially offsetting much or all of
the accelerator gains. Decreasing face size by using smaller
thumbnails changes the algorithm and can detrimentally im-
pact accuracy. Due to these severe limitations of this ap-
proach, we will focus on the previous two solutions.

5.2 The Cost of the AI Tax in the Data Center
A typical and simple approach that customers rely on to
build an edge data center is to aim for homogeneity across
servers (i.e., all of the server components are literally iden-
tical across the machines). But in a specialized applica-
tion domain, such as edge video analytics, this ignores the
unique characteristics of the applications and either signifi-
cantly over-provisions some resources or severely handicaps
application performance, leading to suboptimal TCO.

Table 2 shows the basic computing and networking equip-
ment needed to build a homogeneous 1024-node edge data
center similar in compute capabilities to our own setup. This
design gives each node comparable equipment to that used in
our experiments: two 28-core processors, 384 GB of RAM,

100 Gbps interconnect, and a single NVMe drive. The nodes
are connected in a three-level fat-tree topology using 32-port
Mellanox Ethernet switches. This topology ensures full-
speed non-blocking network connectivity to each node.

Using an open source TCO calculator from Coolan [54]
to include power (servers, networking equipment, cooling,
etc.), rack equipment, cabling costs, etc. and assuming a
three-year amortization life, we estimate a yearly cost of
US$10.2 million for server equipment, US$1.3 million for
network equipment, and US$1.4 million for power, for a to-
tal yearly cost of US$12.9 million.

While common wisdom regarding data centers suggests
that the majority of the TCO is spent on power (including
powering cooling equipment), simple analysis shows this is
not necessarily the case. Each of the servers in our hypothet-
ical data center is equipped with a 750 watt power supply,
while Mellanox reports that its routers can consume a maxi-
mum of 398 watts [55]. This yields a total maximum power
consumption of 921 kW. Cooling is estimated to require ap-
proximately as much power as the compute resources [56,
57], bringing the total to 1842 kW. Assuming US$0.10 per
kilowatt hour, operating the data center would cost US$184
per hour or US$1.61 million per year under maximum load.

To accommodate up to 32× accelerated compute in AI,
we must either install three additional drives in each node
(to maintain homogeneity) or designate a large number of
the nodes as brokers. Adding the additional NVMe drives
costs US$1.23 million. Instead, we designate 157 of the
nodes as brokers, 289 as producers, and 578 as consumers.
This maintains the ratio of each node type as in our origi-
nal Face Recognition experiments (15 producer and 30 con-
sumer nodes, though with 8 brokers instead of 3) to en-
able support for 32× accelerated AI. Extrapolating from Fig-
ure 5a, we estimate each producer and consumer node will
consume approximately 4 Gbps of network bandwidth and
each broker node 24 Gbps. The broker nodes demand less
than 9 Gbps (or 1.1 GB/s) of storage write bandwidth.

5.3 AI-Specific Edge Data Center
The homogeneous data center was designed to be generic,
capable of executing a variety of application classes; hence,
we had to adapt the application to the data center, resulting
in hugely over-provisioned network and storage. The pro-
ducers and consumers constitute over 84% of the data center
and use only 4% of the available network capacity and es-
sentially none of the storage bandwidth. The brokers use a
respectable 24% of the network capacity and basically all of
the storage bandwidth but use very little of the compute ca-
pacity. This shows extremely inefficient allocation of limited
resources in the data center. But we can do better.

Instead of forcing the application to fit into an existing
data center, we propose building a data center that fits the
application. We recommend a purpose-built data center that
specifically targets the broker-specific AI tax (the demand
for storage bandwidth). The AI tax, if not accounted for, can
translate to non-trivial real-world costs that can drastically
affect end users’ needs. In contrast, by understanding the AI
tax and designing to it, we demonstrate that a moderately-
sized edge data center can be purpose-built to better address
the AI tax while yielding meaningful cost savings.

524

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

Figure 7: Possible network configuration for an accelerated AI-centric edge data center. This network configuration is fundamentally a fat-tree built
from 100 Gbps switches. However, since no node needs the full 100 Gbps bandwidth, we subdivide it. Mellanox offers splitter cables that split, for
example, a 100 Gbps connection into two 50 Gbps or four 25 Gbps connections. Each pair of broker nodes shares a 100 Gbps port. Rather than
providing each producer/consumer node with 50 or even 25 Gbps, we further subdivide the network connection speed using 32-port 40 Gbps switches.
To provide full bandwidth to the 40 Gbps switches, each 100 Gbps port is split into two 50 Gbps connections, both of which are connected to the same
40 Gbps switch. Thus, the aggregate bandwidth provided to a 40 Gbps switch is 800 Gbps, of which the switch can use 640 Gbps. A 100 Gbps switch
can connect two 40 Gbps switches. The slower switches use four-way splitter cables providing each producer/consumer node with 10 Gbps network.

Table 3: Video analytics-targeted data center equipment. We use net-
work splitter cables to supply 50 Gbps network to the brokers and,
in combination with slower switches, 10 Gbps network to the compute
nodes. This offers significant savings on network equipment. Further,
we only install NVMe drives in the broker nodes, which are equipped
with less compute power than the compute nodes.

Component Price (US$) Quantity
Dell PowerEdge R740xd (compute server) $28,731 867

Intel Xeon Platinum 8176 Included 2
32 GB DDR4 SDRAM Included 12
Mellanox MCX411A (10 GbE adapter) $180 1

Dell PowerEdge R740xd (broker server) $11,016 157
Intel Xeon Bronze 3104 Included 2
32 GB DDR4 SDRAM Included 12
Mellanox MCX413A (50 GbE adapter) $395 1
Intel SSD DC P4510 1 TB (NVMe SSD) $399 4

Mellanox MSN2700-CS2F
(100 GbE switch)

$17,285 28

Mellanox MSN2700-BS2F
(40 GbE switch)

$10,635 14

Mellanox MFA7A20-C010
(optical splitter 100 GbE to 2x 50 GbE)

$1,165 7

Mellanox MC2609130-003
(copper splitter 40 GbE to 4x 10 GbE)

$90 217

Mellanox MCP7H00-G002R
(copper splitter 100 GbE to 2x 50 GbE)

$140 79

Mellanox MFA1A00-C030
(optical 100 GbE interconnect)

$515 192

Total $27,878,431

In Table 3 we see the equipment needed for this setup, de-
signed to support up to 32× AI acceleration. In this scenario,
we utilize the same highly parallel servers as in Table 2 for
producers and consumers but limit the network bandwidth
on these nodes to only 10 Gbps and install only basic storage
for operating each server. The broker nodes, in contrast, are
built on far less parallel but still impressive CPUs, while en-
joying 50 Gbps network connections and four NVMe SSDs.

We illustrate in Figure 7 a simple network solution that
could provide the designated bandwidths to each server. At
its heart, the network is still a fat-tree built from 100 Gbps
Mellanox switches, but, using Mellanox splitter cables and
slower 40 Gbps switches, broker nodes are provided with
50 Gbps connections while producer and consumer nodes
get 10 Gbps connections. A single edge switch can connect
32 broker nodes or 128 producer/consumer nodes. We can
thus build the complete data center using a two-level fat-
tree of just 28 100 Gbps switches (12 edge and 16 core);
seven edge switches connect to a total of fourteen 40 Gbps
switches and five connect to the 157 brokers.

In designing this purpose-built data center, we wanted to

avoid limiting potential advancements or upgrades during
the lifetime of the data center. We designed it with double
the anticipated requirements for network and storage band-
width. The brokers were designed to accommodate the 32×
speedup in two separate ways. First, we maintained the
higher ratio of brokers to compute nodes, just as we did in
the homogeneous design; second, we allocated four times
the storage devices and bandwidth to each broker. Either
one of these solutions on its own would have been adequate
to accommodate the compute speedup. Furthermore, by giv-
ing 50 Gbps and 10 Gbps network connections to the broker
and compute nodes, respectively, we have allowed them to
grow to double their anticipated needs. In combination, we
have given the data center the ability to adapt to unantici-
pated application speedups during its intended lifetime.

Our purpose-built data center incurs an equipment cost of
US$27.9 million with a yearly power cost of US$1.4 mil-
lion for a three-year amortized yearly total cost of ownership
of US$10.8 million. This is 16.6% lower than the TCO of
the homogeneous data center while being better equipped to
handle future accelerated compute.

6 Discussion
With the flurry of research and focus on advancements in AI
and ML algorithms, it is easy to miss the forest for the trees.
One of the most exciting and promising ML benchmarking
efforts—MLPerf Inference [58, 59]—offers a suite of ML
benchmark tasks, including both vision- and language-based
tasks. While its creators took great care to ensure it covers
a diverse set of ML tasks, MLPerf Inference is so focused
on the ML tasks themselves that it entirely ignores the issue
of end-to-end deployment. The reality of any complete AI-
based application is that it will operate with pre- and post-
processing code, often in the context of a data center, and
frequently as part of a multi-stage pipeline. Not only is this
context often neglected in current research, it tends to be
entirely ignored in accelerator-level research. This leads to
three key takeaways.

The first takeaway is that much of the pre- and post-pro-
cessing code, which is often on the critical path for online re-
quest processing, relies on the CPU for its execution. These
non AI-stages are often overlooked in research despite the
fact that they can dramatically impact the accuracy of the
AI models. For instance, choosing a different resizing algo-
rithm like PIL.Image.BILINEAR, cv2.INTER_CUBIC, and
tf.image.resize_bicubic for better pre-processing on
the CPU can cause the accuracy to vary between 76.16% and

525

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

76.52% [60]. Dropping accuracy by 0.4% is a non-negligi-
ble change. Therefore, we stress the general-purpose CPU’s
importance as a crucial workhorse of the AI pipeline.

Second, AI in end-to-end applications often involves mul-
tiple queries, not just one inference lookup. However, the
vast majority of work tends to focus on optimizing inference
for uni-model processing. Optimizing for a cascade of dif-
ferent models stitched together into an AI data flow has yet
to be investigated. Like us, Hazelwood et al. [6] also hint
at the need to understand the end-to-end AI data flow as that
can help lead to new optimizations in minimizing data move-
ment and communication, both within and across nodes.

Finally, we demonstrated using our setup that the stream-
ing infrastructure’s underlying communication and storage
mechanism will be overwhelmed by the huge throughput of
data from accelerated AI processing. Therefore, we rec-
ommend expanding beyond CPU and AI compute acceler-
ation and looking for opportunities to accelerate the system
as a whole, especially including network and storage. As
we demonstrated previously in Section 5, the imbalance be-
tween compute and storage requirements of AI and commu-
nication nodes presents an opportunity for research on edge
data centers to specialize their design, reducing TCO while
addressing the unique requirements of AI applications.

In summary, our work has been one of the few, if not only,
to look at AI and ML execution in the end-to-end context,
evaluating the impact not only of the supporting code but
also the infrastructure of an edge data center. We show that
the AI tax is significant and identify its various sources. We
hope that our findings foster new opportunities for future re-
search. More specifically, we must pursue system-level AI
insights in addition to the streamlined focus on AI accelera-
tion because, as we show, the two are not orthogonal.

7 Related Work
We build on prior work that enabled and rapidly expanded AI
and ML applications. Unlike most of the prior work, how-
ever, we explore the implications of accelerating AI com-
putation and how it affects an end-to-end application flow.
We present related work in five categories: (1) AI and ML
benchmarking, (2) integrating AI and ML, (3) end-to-end
application flow studies, (4) exploiting heterogeneity, and
(5) edge data centers.

Benchmarking. MLPerf is one of the leading resources
for benchmarking ML-related compute [58, 59]. It provides
flexibility for benchmarking a variety of hardware across a
variety of ML kernels, but it entirely ignores the issue of
end-to-end application behavior and performance. In our
work we demonstrate the central importance of understand-
ing the end-to-end application, showing that each ML kernel
can constitute a relatively small portion of the pipeline and
that truly optimizing ML performance requires a more holis-
tic view of the system.

Integrated AI. In presenting the scale and deployment of
ML workloads at Facebook, Hazelwood et al. acknowledged
the importance of pre-processing data for training and em-
phasized its stress on storage, network, and CPU [6]. They
acknowledged the potentially high latency of inference for
top quality models but did not expose the overhead of pre-
and post-processing. Nor did they discuss the resource re-

quirements of streaming inference workloads. We empha-
size both of these to show how they can pose a barrier to
overall performance improvement from AI acceleration.

Microsoft recognizes the importance of latency in the data
center particularly as it applies to deep neural networks [61].
Chung et al. presented Microsoft’s Project Brainwave which
implements DNNs largely in FPGAs distributed throughout
the data center, emphasizing the importance of accelerating
increasingly complex DNNs [62]. In contrast, this work em-
phasizes the importance of the enabling code for AI and as-
sumes that accelerating AI and ML will be successful, in-
stead looking at its ultimate impact on the larger workflow.

End-to-End Application Flows. Though not specific
to AI workloads, Kanev et al. offered a comprehensive look
at the trends of warehouse-scale computing at Google [14].
They quantified data center “taxes”—overheads that come
with applications but do not directly contribute to the end
result, including compression, communication serialization,
and remote procedure calls. We show that the brokers act as
a tax, coordinating the activities of a distributed application.

Other work has broken down the end-to-end latency of re-
quests, at various levels of granularity, ranging from evalua-
tion of Internet speed and programming language patterns to
operating system scheduling and memory latency [63, 64].
This more closely matches our contribution, though our anal-
ysis is restricted to latency within the data center and is fo-
cused specifically on the common communication base (Ap-
ache Kafka) of open source streaming frameworks in an ef-
fort to bring perspective to end-to-end AI application flows.

Heterogeneous Execution. Prior works sought to ex-
ploit the heterogeneity in a data center, producing benefits
in speed, energy consumption, and operating costs [65, 66].
Where these papers sought to capitalize on unintentional het-
erogeneity (arising from workload co-location and, for ex-
ample, later upgrades), we extol the benefits of intention-
ally designing an on-premise data center with heterogeneous
servers and network. We thereby add hardware cost savings
to the existing benefits of data center heterogeneity.

Edge Data Centers. Hewlett Packard Enterprise re-
cently demonstrated that cloud-based computing is often not
the most cost-effective solution [7]. Their analysis showed
for a well-utilized edge data center, TCO can be drastically
lower than comparable capabilities in the cloud. Our work
extends that idea, showing how the on-premise data center
can be specifically tailored to the needs of AI applications.

8 Conclusion
It is easy to get caught up in the excitement of AI and ML;
this work has brought context to those advancements, elu-
cidating an AI tax, and serves as a call to action to address
limiters of performance in realistic, edge data center deploy-
ments of AI applications. Streaming AI applications are only
possible with the support of pre- and post-processing code,
which is far from trivial in both latency and compute cycles
and relies almost exclusively on the CPU for all of the pro-
cessing. AI applications will likely be composed of multiple
inference stages, each with its own characteristics and over-
heads. And the enabling substrate for managing AI applica-
tions in a data center sees hot spots in both network and stor-
age that could soon become bottlenecks if not addressed.

526

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

9 References

[1] “Habana Homepage - Habana.” https://habana.ai/.

[2] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” ACM Sigplan Notices, vol. 49, no. 4,
pp. 269–284, 2014.

[3] “Google Cloud Platform Blog: Google supercharges machine
learning tasks with TPU custom chip.”
https://cloudplatform.googleblog.com/2016/05/Google-
supercharges-machine-learning-tasks-with-custom-
chip.html.

[4] “Intel Unveils the Intel Neural Compute Stick 2 at Intel AI Devcon
Beijing for Building Smarter AI Edge Devices.”
https://newsroom.intel.com/news/intel-unveils-
intel-neural-compute-stick-2/.

[5] “Deep Learning and Artificial Intelligence Solutions | NVIDIA.”
https://www.nvidia.com/en-us/deep-learning-
ai/solutions/.

[6] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, et al., “Applied
machine learning at facebook: A datacenter infrastructure
perspective,” in High Performance Computer Architecture (HPCA),
2018 IEEE International Symposium on, pp. 620–629, IEEE, 2018.

[7] H. P. Enterprise, “Hpe on-prem vs. amazon web services (aws),”
tech. rep., Hewlett Packard Enterprise Company, 09 2018.

[8] K. Gyarmathy, “How to Reduce Latency Using Edge Computing.”
https://www.vxchnge.com/blog/how-data-center-
reduces-latency.

[9] M. Hannula, “How Hybrid Cloud Simplifies Data Sovereignty
Challenges | CIO.”
https://www.cio.com/article/3396631/how-hybrid-
cloud-simplifies-data-sovereignty-challenges.html.

[10] “The rise of edge data centres - data economy.” https://data-
economy.com/the-rise-of-edge-data-centres/.

[11] “On-Premise Data Centers: Coming Back or Heading Out?.”
https://emconit.com/blog/on-premise-data-centers-
coming-back-or-heading-out.

[12] “Video analytics market to reach usd 25.4 billion by 2026.”
https://www.marketwatch.com/press-release/video-
analytics-market-to-reach-usd-254-billion-by-
2026cisco-systems-inc-axis-communications-genetec-
inc-2019-09-09.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of the
IEEE conference on computer vision and pattern recognition,
pp. 815–823, 2015.

[14] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,”
in ACM SIGARCH Computer Architecture News, vol. 43,
pp. 158–169, ACM, 2015.

[15] “Apache Kafka.” https://kafka.apache.org/.

[16] A. Woodie, “Understanding Your Options for Stream Processing
Frameworks.”
https://www.datanami.com/2019/05/30/understanding-
your-options-for-stream-processing-frameworks/.

[17] R. Onat, “Apache Storm and Kafka Together: A Real-time Data
Refinery.” https://hortonworks.com/blog/storm-kafka-
together-real-time-data-refinery/.

[18] M. Kleppmann, “Apache Kafka, Samza, and the Unix Philosophy of
Distributed Data.”
https://www.confluent.io/blog/apache-kafka-samza-
and-the-unix-philosophy-of-distributed-data/.

[19] R. Metzger, “Kafka + Flink: A Practical, How-To Guide.”
https://www.ververica.com/blog/kafka-flink-a-
practical-how-to.

[20] DataTorrent, “End-to-end “Exactly-Once” With Apache Apex.”
https://cdn.rawgit.com/dtpublic/website/b0c73294/
blogs/End-to-end%20_Exactly-

Once_%20_with%20Apache%20Apex%20-%20DataTorrent.htm.

[21] F. Yang, “Building a Streaming Analytics Stack with Apache Kafka
and Druid.”
https://www.confluent.io/blog/building-a-streaming-
analytics-stack-with-apache-kafka-and-druid/.

[22] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., “TensorFlow:
Large-scale machine learning on heterogeneous distributed systems,”
arXiv preprint arXiv:1603.04467, 2016.

[23] C. Regazzoni, A. Cavallaro, Y. Wu, J. Konrad, and A. Hampapur,
“Video analytics for surveillance: Theory and practice [from the
guest editors],” IEEE Signal Processing Magazine, vol. 27, no. 5,
pp. 16–17, 2010.

[24] “Amazon.com: : Amazon Go.”
https://www.amazon.com/b?node=16008589011.

[25] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multi-task cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

[26] “GitHub - davidsandberg/facenet: Face recognition using
Tensorflow.” https://github.com/davidsandberg/facenet.

[27] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
in AAAI, vol. 4, p. 12, 2017.

[28] “Docker - Build, Ship, and Run Any App, Anywhere.”
https://www.docker.com/.

[29] “Apache Storm.” http://storm.apache.org/.

[30] “Samza.” http://samza.apache.org/.

[31] “Apache Flink: Stateful Computations over Data Streams.”
https://flink.apache.org/.

[32] “Apache Apex.” http://apex.apache.org/.

[33] “Druid | Interactive Analytics at Scale.”
https://druid.apache.org/.

[34] “Apache Kafka.”
https://kafka.apache.org/documentation/streams/.

[35] K. Birman and T. Joseph, Exploiting virtual synchrony in distributed
systems, vol. 21. ACM, 1987.

[36] C. E. Leiserson, “Fat-trees: universal networks for hardware-efficient
supercomputing,” IEEE transactions on Computers, vol. 100, no. 10,
pp. 892–901, 1985.

[37] “Intel R© Xeon R© Platinum 8176 Processor (38.5M Cache, 2.10GHz)
Product Specifications.” https://ark.intel.com/content/
www/us/en/ark/products/120508/intel-xeon-platinum-
8176-processor-38-5m-cache-2-10-ghz.html.

[38] “Intel R© SSD DC P4510 Series (1.0TB, 2.5in PCIe 3.1 x4, 3D2,
TLC) Product Specifications.” https://ark.intel.com/
content/www/us/en/ark/products/122573/intel-ssd-dc-
p4510-series-1-0tb-2-5in-pcie-3-1-x4-3d2-tlc.html.

[39] “Production-Grade Container Orchestration - Kubernetes.”
https://kubernetes.io/.

[40] K. Pingali, “A Case for Case Studies.”
https://www.sigarch.org/a-case-for-case-studies/,
2019.

[41] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” in
Advances in neural information processing systems, pp. 91–99, 2015.

[42] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[43] “Open Source Search & Analytics · Elasticsearch | Elastic.”
https://www.elastic.co/.

[44] “Logstash: Collect, Parse, Transform Logs | Elastic.”
https://www.elastic.co/products/logstash.

[45] A. Lindoso and L. Entrena, “Hardware architectures for image
processing acceleration,” in Image Processing, IntechOpen, 2009.

[46] U. Gupta, X. Wang, M. Naumov, C.-J. Wu, B. Reagen, D. Brooks,

527

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

B. Cottel, K. Hazelwood, B. Jia, H.-H. S. Lee, et al., “The
architectural implications of facebook’s dnn-based personalized
recommendation,” arXiv preprint arXiv:1906.03109, 2019.

[47] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.
Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based
framework for accelerating statistical machine learning,” in 2016
IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 14–26, IEEE, 2016.

[48] Xilinx, “Accelerating dnns with xilinx alveo accelerator cards,” tech.
rep., Xilinx, Inc., 10 2018.

[49] “NVIDIA Deep Learning Accelerator.” http://nvdla.org/.

[50] “Coral.” https://coral.withgoogle.com/.

[51] “Inference - Habana.” https://habana.ai/inference/.

[52] B. Wheeler, “Data centers accelerate ai processing,” tech. rep., The
Linley Group, 12 2018.

[53] “Intel R© Optane
TM

Technology.” https:
//www.intel.com/content/www/us/en/architecture-and-
technology/intel-optane-technology.html.

[54] “Slash data-center costs and downtime by using Coolan’s TCO
Model - TechRepublic.” https:
//www.techrepublic.com/article/slash-data-center-
costs-and-downtime-by-using-coolans-tco-model/.

[55] “Specifications - SN2000 Series - Mellanox Docs.” https://docs.
mellanox.com/display/sn2000pub/Specifications.

[56] “HPE Power Advisor.”
https://paonline56.itcs.hpe.com/?Page=Index#.

[57] “Data Center Cooling Costs | Dataspan.” https:
//www.dataspan.com/blog/data-center-cooling-costs/.

[58] V. Janapa Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling,
C.-J. Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou,
R. Chukka, C. Coleman, S. Davis, P. Deng, G. Diamos, J. Duke,
D. Fick, J. S. Gardner, I. Hubara, S. Idgunji, T. B. Jablin, J. Jiao,
T. St. John, P. Kanwar, D. Lee, J. Liao, A. Lokhmotov, F. Massa,
P. Meng, P. Micikevicius, C. Osborne, G. Pekhimenko, A. T. R.
Rajan, D. Sequeira, A. Sirasao, F. Sun, H. Tang, M. Thomson,
F. Wei, E. Wu, L. Xu, K. Yamada, B. Yu, G. Yuan, A. Zhong,
P. Zhang, and Y. Zhou, “Mlperf inference benchmark,” 2019.

[59] “MLPerf.” https://mlperf.org/inference-overview/.

[60] B. Felter, “[green] change preprocess module from PIL to opencv by
ClarkChin08 · Pull Request #273 · mlperf/inference · GitHub.”
https://github.com/mlperf/inference/pull/273.

[61] “Project brainwave - microsoft research.”
https://www.microsoft.com/en-
us/research/project/project-brainwave/.

[62] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, et al.,
“Serving dnns in real time at datacenter scale with project
brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[63] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The
mystery machine: End-to-end performance analysis of large-scale
internet services,” in 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), pp. 217–231,
2014.

[64] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the tail:
Hardware, os, and application-level sources of tail latency,” in
Proceedings of the ACM Symposium on Cloud Computing, pp. 1–14,
ACM, 2014.

[65] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in “homogeneous”
warehouse-scale computers: A performance opportunity,” IEEE
Computer Architecture Letters, vol. 10, no. 2, pp. 29–32, 2011.

[66] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and
K. S. McKinley, “Exploiting heterogeneity for tail latency and energy
efficiency,” in Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 625–638, ACM,
2017.

528

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:57:48 UTC from IEEE Xplore. Restrictions apply.

