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Abstract: We propose an AI-assisted energy-efficient traffic aggregation scheme, which is 

demonstrated in software-defined optical network testbed. The experimental results show 

proposed scheme can efficiently reduce energy consumption by traffic aggregation according to 

traffic prediction. 

 

1. Introduction 

With the exponential growth of power consumption in telecommunication industry, the topic of energy efficiency 

has attracted extensive interest in the related fields in recent years[1,2]. Nowadays, most of researches achieve 

energy saving by configuring resource according to real-time services resource requests[2]. However, as increasing 

dynamic and burst traffic being generated in optical access network, above methods are no longer able to efficiently 

configure resource to reduce energy consumption and satisfy low latency requirement due to their frequent policy 

response and inevitable reconfiguration process[3]. Motivated by this challenge, proactive traffic prediction 

approach is one of the most effective solutions, which can track on and predict traffic value of base station in the 

future, avoiding executing policy and configuration frequently according to real-time services resource requests. But 

in existing studies, little researchers consider the integrated research of traffic prediction and resource scheduling 

schemes to achieve traffic aggregation and reduce energy consumption.  

Thereby, our work focuses on achieving AI-assisted energy-efficient traffic aggregation scheme. According to the 

results of traffic prediction, we can execute energy-efficient traffic aggregation (ETA) scheme and timely 

reconfigure resources in advance. What’s more, the proposed scheme is experimentally demonstrated in our 

software-defined optical access network testbed (SD-OANet). The experimental results show that the proposed 

scheme decreases  average delay and reduces the energy consumption by 29.17% via decreasing the number of 

active vBBU. 

2.  SD-OANet Architecture And AI-Assisted Energy-Efficient Traffic Aggregation Signalling Procedure 

2.1. SD-OANet Architecture  

In order to achieve energy-efficient traffic aggregation according to the traffic prediction, we design a more flexible 

and programmable SDN-based optical access network architecture, namely SD-OANet. 

For data plane, as shown in Fig. 1, BBUs are separates from cell sites and centralized into central offices, 

meanwhile leaving RRHs in cell sites. Time Wavelength Division Multiplexing-based optical links are used to 

connect the BBUs pool (colocated with OLTs)and the separated RRUs (integrated with ONUs). And each physical 

nodes (i.e., BBU, RRH, and remote nodes) are attached with an OpenFlow agent that communicates with RYU 

controller through extended OpenFlow protocols. At first, assumed without AI-ETA scheme, resource utilization of 

vBBUs are 50%, 50% and 80% respectively. After implementing AI-ETA scheme, the resource utilization of 

vBBUs are 90%, 0% and 90%. The scheme achieves saving energy by traffic aggregation to reduce the number of 

activated vBBU. 
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Fig. 1  Data plane architecture and illustration of energy-efficient traffic aggregation scheme: (a) Without AI-ETA; (b) With AI-ETA. 
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Fig .2 (a) Network orchestrator and controller; (b) Signalling procedure of AI-assisted ETA and ETA without AI assistance; (c) LSTM model; (d) 

Prediction results. 

The network orchestrator and controller is shown in Fig. 2(a). The orchestrator consists of database module (DB 

module), AI module and network control module. The DB module includes network topology database, network 

resource database and traffic engineering. In AI module, the data processing applies data stream mining techniques 

on the received data and periodically transforms monitored data into cyclic training. Modelled data is used to train 

traffic prediction model based LSTM. In the network control module, policy injection module injects and executes 

AI-ETA scheme, and network resource management module achieves resource allocation according to the scheme 

by notifying the controller pushing corresponding flows.  

2.2. AI-Assisted Energy-Efficient Traffic Aggregation Signalling Procedure 

With AI-ETA, the workflow of interaction in SD-OANet is shown as Fig. 2(b). Step 1&2: the controller requests 

state information by sending state-request message to vBBUs, RN and RRHs in real time. The agents respond with 

feature report messages carrying physical properties of devices. When controller receives state reply message from 

each of them timely, all of the information are stored and updated in the corresponding database. Step 3: the 

collected traffic statistics are forwarded to AI module consistently. When the next period traffic conditions has been 

predicted, it will be transmitted to network control module. Step 4: according to the prediction traffic value, the 

policy injection module executes our injected ETA scheme. Then, controller will send flow-mod message to inform 

corresponding RRHs, RN and vBBUs to switch path in advance. Step 5: transmit the traffic flows to corresponding 

vBBU servers. Compared with AI-ETA scheme, signalling procedure of energy-efficient traffic aggregation 

according to real-time services resource requests (ETA without AI assistance) is also shown in Fig. 2(b). It is 

obviously that the scheme without AI-assisted ETA increases average delay due to the process of resource request, 

policy response and configuration, degrading the user experience. 

3.  AI-Assisted Energy-Efficient Traffic Aggregation Scheme 

As prediction model, LSTM algorithm can learn long-term dependency information which has good performance in 

predicting time series problems, as shown in Fig. 2(c). It is trained and evaluated by the traffic recording dataset of 

existing optical networks from China Telecom, from 12 base stations in 9 km2 area. The dataset was divided into 3 

sets that are training set, verification set and test set and the ratio of them is 6:2:2. We trained the prediction model 

to obtain the set of weights of the LSTM that minimizes the error between the predicted value and the true value of 

the traffic. By training prediction model, we perform a 30-minutes prediction given the previous six-hours historical 

data and average percentage accuracy is up to 90.2%. The predicted traffic value and the true traffic value of one of 

these base stations is given in Fig. 2(d).  

 According to the predicted traffic, network operators can 

execute AI-ETA algorithm in advance and timely reconfigure 

resources, decreasing the number of active vBBU and the energy 

consumption. In the algorithm, as shown in Fig. 3, first, we 

standardize the predicted traffic of RRHs according to the vBBU 

capacity and put them in list L in decreasing order. Then determine 

the number of active vBBU and their threshold as Bth. Each 

packing tests all possible subsets of predicted traffic to find one 

that fits the vBBU capacity. When a subset is determined, these 

traffic will be removed from L and aggregated to a same vBBU. 

The procedure will end when all the RHHs are assigned. G = G∗ = 

∅ and r = 1, where r is the index of the traffic in list L, G is the 

subsets of tasks currently assigned for the vBBU and G∗ is the 

subsets of tasks in the best packing, which will be equal to the new Fig. 3 Energy-efficient traffic aggregation algorithm 
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Bth. The slack in packing G is represented by S(G), and S(G) can be basically computed by starting from S(G) = vth 

and updating every time a task is added to or removed from G. 

4.  Experimental Setup and Results 

The SD-OANet testbed includes three Linux servers equipped with Gigabit Fiber interfaces and one optical 

switch, as depicted in Fig. 4(a). The orchestrator and controller are implemented on a separate Linux server using 

Ryu version 3.20.29. The interfaces are connected with a virtual switch supporting OpenFlow 1.3, that is 

implemented by using OpenvSwitch (OvS) 2.48. The specific network connection topology as shown in Fig. 4(b), 

OvS1 and OvS2 are the switches to which two RRUs (i.e., RRU1 and RRU2) are connected respectively. Optical 

switch connects the RRUs and the vBBUs. OvS3 and OvS4 are the switches to which two BBUs (i.e., BBU1 and 

BBU2) are connected respectively. We generated two data flows according to existing optical networks from China 

Telecom as inputs of UE1 and UE2 by OP WILL OTP-6200 traffic analyser. And in our testbed, we achieve traffic 

prediction according to the traffic inputs of UE1 and UE2, as shown in Fig. 4(c).  

To verify the performances of the proposed scheme in terms of average delay and energy consumption, we 

perform the experiment on the testbed. The traffic inputs of UE1 and UE2 is shown in Fig. 4(c), generated by OP 

WILL OTP-6200 traffic analyser. During time T in Fig. 4(c),  the corresponding OpenFlow protocol messages have 

been captured. The SDN controller inform the switch to modify flow entries by using an OFPT FLOW MOD 

message, which shows the successful configuration of the flow entry as shown in Fig. 4(d). As shown in Fig. 4(e), 

compared with the scheme without AI-ETA, the proposed AI-ETA scheme reduces the energy consumption by 

29.17% via traffic aggregation to decrease the number of active vBBU. What’s more, AI-ETA can preferably satisfy 

low latency requirements of subscribers. Because policy response and resource configuration can be executed in 

advance according traffic prediction, which can avoid the process of services resource request, policy response and 

configuration and improve user experience. As shown in Fig. 4(f), it is clearly that the experimental results show the 

average delay of the scheme with AI-assisted energy-efficient traffic aggregation scheme is much better than the 

energy-efficient traffic aggregation scheme without AI assistance, especially in heavy load. 

5.  Conclusion 

This paper presented an AI-assisted energy-efficient traffic aggregation scheme to efficiently configure resource, 

reduce energy consumption and satisfy latency requirements according to the traffic prediction. The scheme is 

demonstrated in our software-defined optical access network testbed and the experimental results demonstrate the 

feasibility. 
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Fig. 4 (a) SD-OANet testbed; (b) Network topology; (c) Traffic prediction results of two users; (d) Capture of OpenFlow messages; (e) Energy 

consumption with AI-ETA and without AI-ETA; (f) Average delay with AI-assisted energy-efficient traffic aggregation scheme and average 

delay of energy-efficient traffic aggregation scheme without AI assistance. 
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