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Abstract— Robotic-based gait rehabilitation and assistance 
have been growing to augment and to recover motor function in 
subjects with lower limb impairments. There is interest in 
developing user-oriented control strategies to provide 
personalized assistance. However, it is still needed to set the 
healthy user-oriented reference joint trajectories, namely, 
reference ankle joint torque, that would be desired under healthy 
conditions. Considering the potential of Artificial Intelligence (AI) 
algorithms to model nonlinear relationships of the walking 
motion, this study implements and compares two offline AI-based 
regression models (Multilayer Perceptron and Long-Short Term 
Memory-LSTM) to generate healthy reference ankle joint torques 
oriented to subjects with a body height ranging from 1.51 to 1.83 
m, body mass from 52.0 to 83.7 kg and walking in a flat surface 
with a walking speed from 1.0 to 4.0 km/h. The best results were 
achieved for the LSTM, reaching a Goodness of Fit and a 
Normalized Root Mean Square Error of 79.6 % and 4.31 %, 
respectively. The findings showed that the implemented LSTM 
has the potential to be integrated into control architectures of 
robotic assistive devices to accurately estimate healthy user-
oriented reference ankle joint torque trajectories, which are 
needed in personalized and Assist-As-Needed conditions. Future 
challenges involve the exploration of other regression models and 
the reference torque prediction for remaining lower limb joints, 
considering a wider range of body masses, heights, walking speeds, 
and locomotion modes.  

Keywords—Ankle Joint Torque Prediction, Artificial 
Intelligence, Control Strategies, Regression Models, Robotic Gait 
Rehabilitation 

I. INTRODUCTION 

Lower limb disabilities correspond to one of the major 
consequences of neurological diseases. Regarding stroke events, 
according to [1], around 63 % of the stroke survivors cannot 
walk without external support and consequently, their daily life 
activities are severely compromised [2]. 

In the last decade, the number of studies focused on robotic-
based gait rehabilitation and assistance managed by assistive 
control strategies emerged, producing different robot-assisted 
training modes destined to the recovery stage of each patient [3]. 

In the last decade, the number of studies focused on robotic-
based gait rehabilitation and assistance managed by assistive 
control strategies emerged, producing different robot-assisted 
training modes destined to the recovery stage of each patient [3]. 
With these methods, physicians can be released from the heavy 
training therapies and the patient’s recovery status can be 
objectively analyzed through the data recorded during the 
training session. 

According to [4], [5], the patient should receive: (i) passive 
locomotion modes based on predefined joint trajectories in early 
rehabilitation stages, to reduce muscle atrophy and augment the 
movement capacity; (ii) active locomotion modes, encouraging 
the patient’s participation when certain levels of strength are 
achieved. Regarding the passive locomotion modes, typically 
managed by position assistive control strategies, predefined 
reference joint position trajectories are commonly adopted from 
datasets available on the Literature ([6]–[8]) or they are 
determined by user-oriented models [9], [10]. The active 
locomotion modes have been the target of many studies well-
reviewed in [3], towards Assist-As-Needed (AAN) control 
strategies, comprehending Force, Impedance, EMG-based 
control strategies. Recently, there is a considerable motivation 
in the development of adaptive and user-oriented AAN EMG-
based control strategies ([11]–[14]), stimulated by their capacity 
to: (i) invoke the patient’s participation; (ii) detect the user’s 
motion intention based on EMG signals; and (iii) offer an 
amount of assistance as much as needed, i.e., providing AAN 
training.  

Nonetheless, in AAN control strategies, to determine the 
adequate assistance level to provide to each patient, it is required 
to firstly set a user-oriented reference joint trajectory that would 
be desired under healthy conditions, considering the patient’s 
anthropometry. This estimated reference trajectory should be 
correctly generated since it represents the desired trajectory that 
each patient should achieve over therapy sessions. On the other 
hand, the development of control strategies based on EMG 
signals typically requires the use of torque controllers [15]–[17]. 
Thus, to combine EMG-based and AAN control strategies, it is 
necessary to generate a healthy user-oriented reference joint 
trajectory, namely, reference joint torque, based on well-known 
data from each subject. With this, personalized robotic gait 
support can be provided, making the assistance process more 
adequate for each subject.  

To the best knowledge of the authors, there is no evidence of 
studies able to estimate healthy reference joint torque 
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trajectories during the entire gait cycle based on well-known 
data, such as walking speed, kinematic and anthropometric data, 
avoiding prior data collections. Note that kinematic data do not 
require prior data collections since they can be generated using 
algorithms developed in [9], [10]. 

The goal of the present study is the offline estimation of 
healthy user-oriented reference ankle joint torques, based on 
ankle joint kinematics (on the sagittal plane), walking speed and 
anthropometric data (body height and mass) from each user. The 
ankle joint was chosen, since this is the joint that requires more 
assistance when compared to the remaining lower limb joints 
(knee and hip joint), commonly dealing with drop foot 
conditions as a consequence of neurological diseases [18]. To 
realize that, we implemented, validated and compared two 
regression models based on Artificial Intelligence (AI) 
algorithms, namely, a Multilayer Perceptron (MLP) and a Long-
Short Term Memory (LSTM) neural networks since they have 
potential to model nonlinear relationships of data from the 
walking motion [19]–[21]. The proper determination of 
reference ankle joint torques is of utmost importance to provide 
the most suitable assistance level oriented the needs of each user, 
aiming a rehabilitation process more effective.  

The paper is organized as follows. Section II presents a brief 
description of the used regression models and section III 
presents all the procedures to collect walking motion data, in 
order to validate the proposed models. Section IV exhibits the 
organization of the collected data for the regression models, as 
well as their implementation. Section V pertains to the results 
and the discussion of this study. Finally, section VI summarizes 
the main conclusions of the developed work, along with future 
perspectives. 

II. BACKGROUND OF USED ARTIFICIAL INTELLIGENCE 

ALGORITHMS 

Among a huge variability of AI algorithms already 
developed, MLP and LSTM neural networks have been widely 
used to solve regression problems [22]–[24]. In this study, these 
two models were implemented, trained and optimized in 
MATLAB R2018b. 

A. Concepts of MLPNeural Network 

MLP was chosen due to its reputable performance exhibited 
in a considerable quantity of studies already presented in the 
literature [23], [25]. This neural network is composed of (i) input 
layers containing independent variables; (ii) hidden layers 
incorporating activation functions; and (iii) output layers 
including dependent variables. Since all nodes of each layer are 
fully connected to the nodes of the next or previous layer, the 
MLP is called a feedforward neural network.  

Backpropagated algorithms have been generally used as the 
training process of MLPs since the convergence of the neural 
network is improved [26]. The principle behind MLPs with 
backpropagation algorithms is based on the error gradient 
computation with respect to the weights. This error is 
backpropagated through the neural network based on the 
gradient descent techniques. Thus, the weights are updated 
according to the error between the predicted output and the real 

signal. This can enable the achievement of predictive values 
closer to the target [24]. 

Nonetheless, the gradient descent algorithms used to 
backpropagate the error can stick in a local minimum. To solve 
this problem, two new parameters can be considered, namely, 
learning rate and momentum. With these parameters, the effect 
of the error gradient on the weights update is controlled and it is 
possible to avoid local minimums [27]. However, the 
convergence and generalization performance of neural networks 
can be a difficult task due to the difficulty to find the best 
learning rate and momentum values. According to [28], if the 
learning rate is updated during the training process, the 
performance of the neural network can increase, achieving 
stable learning. Furthermore, for generalizing the MLP 
prediction, both the Bayesian regularization [28] and 
Levenberg-Marquardt [25] techniques may be applied, boosting 
the application of this neural network to achieve the aim of the 
present study. 

B. Concepts of LSTM Neural Network 

Ankle joint torque is a continuous signal that varies 
throughout the time and, thus, it can be recognized as a Time-
Series signal. In this field, studies reported that the use of Deep 
Learning methods, such as LSTM, can provide satisfactory 
results [31], [32]. LSTM consists of a special type of recurrent 
neural networks. In the architecture of recurrent neural 
networks, the behavior of the activation functions of the hidden 
neurons depends not only on the behavior of the previous 
activation functions but also on the behavior at an earlier time. 
Thus, the recurrent neural networks can efficiently learn Time-
Series data, since they consider that the behavior of the 
activation functions is dependent on the time [24]. LSTM is a 
conjugation of recurrent neural networks with gradient 
descendent learning algorithms, making easier to obtain good 
results with unstable gradient problems under control [29]. As 
reported to MLP, if only one learning rate and momentum value 
are applied, the weight update is the same in the neural network, 
causing the convergence performance less efficient. To improve 
the convergence performance, some gradient descendent 
algorithms have been emerged, such as, the Adaptive Moment 
Estimation (ADAM). With this algorithm, the weights of the 
neural network are updated using adaptive learning rates, 
avoiding the existence of a global one. Thus, the convergence 
performance is increased, while the learning error is reduced, 
obtaining a versatile neural network with the potential to deal 
with the aim of this paper [30]. 

III. EXPERIMENTAL DATA ACQUISITION 

In order to train and test each one of the implemented AI 
models, we performed a data acquisition, collecting kinematic 
and kinetic data from the lower limb joints of healthy subjects, 
walking at different speeds. 

A. Participants 

The data acquisition involved sixteen adult subjects (8 males 
and 8 females with a mean age of 23.8 ± 2.02 years, mean weight 
of 67.5 ± 10.8 kg and mean height of 1.69 ± 0.109 m), with no 
evidence of any type of physical and physiological disorder that 
could interfere with their walking pattern. The minimum and 
maximum body height registered was 1.51 and 1.83 m, whereas 
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the minimum and maximum body mass was 52.0 and 83.7 kg, 
covering subjects of both genders with a wide range of body 
height and mass. 

B. Instrumentation and Protocol 

Although ankle joint is the focus of the present study, 3D 
joint kinematic and kinetic data of the remaining lower limb 
joints were also acquired for future developments at these 
joints. Thus, a motion-capture system with twelve cameras 
(Oqus; Qualysis – Motion Capture System, Göteborg, Sweden) 
and five force platforms embedded in the floor (FP4060; 
Bertec, Ohio, United States of America) were used to obtain the 
kinematic and ground reaction force (GRF) data at 200 Hz, 
respectively. 

To determine the kinematic data, a Newington-Hayes 
marker set was adopted, integrating four more reflective 
markers positioned in the first metatarsal head, medial 
malleolus, medial tuberosity of the femur and in the trochanter, 
in order to achieve better measurements [31]. Thus, 24 
reflective markers were used, as presented in Fig. 1. 

 
Figure 1. Marker set adopted. 

After the placement of the reflective markers, all subjects 
were asked to perform a standing static calibration trial to fit the 
anthropometric data to the body model of the acquisition 
system. Then, all subjects were instructed to perform ten 
walking trials at seven different walking speeds (1.0, 1.5, 2.0, 
2.5, 3.0, 3.5 and 4 km/h) on a flat surface with 10 m, containing 
five embedded force platforms. Note that all the walking 
procedures were performed with the same and appropriate type 
of shoes to do not affect the walking motion dynamics. 

C. Data Processing 

The kinematic data acquired with the motion-capture system 
were low pass filtered with a zero-phase fourth-order 
Butterworth. The cutoff frequency chosen was 6 Hz. The GRF 
data acquired with the force platforms were filtered with the 
same filter, using a cutoff frequency of 10 Hz. The GRF was 
processed in Visual3D software to determine the torque values 
of all lower limb joints. These torque data were used as ground 
truth to the torque estimated by each implemented model. 

IV. IMPLEMENTATION OF REGRESSION MODELS  

A. Data Preparation 

 The collected ankle joint data was used to train, validate and 
test both proposed regression models. The input features of MLP 
and LSTM neural networks were the ankle joint angles, angular 
velocity, angular acceleration, body height, and walking speed. 
The body mass was used to normalize the output feature of the 
models: the ankle joint torque.  

To train and to analyze the effectiveness of both models, the data 
were randomly divided: 60 % for training, 20 % for validation 
and 20 % for testing, corresponding to 10, 3 and 3 subjects, 
respectively. To analyze the robustness of both models, a k-fold 
cross-validation algorithm was implemented, where the number 
of folds (k) was set to 4. 

We normalized the input and the output data to improve the 
learning process, achieving the model convergence with faster 
computations times. For this purpose, we used the median 
normalization method, described in Equation (1), where X 
represents the variable to normalize and Xnorm corresponds to the 
normalized variable. 

  

B. Implementation of MLP Regression Model 

Using the neural network toolbox of MATLAB R2018b, an 
MLP with backpropagation algorithm was applied, investigating 
three different training algorithms: (i) trainbr, corresponding to 
the Bayesian regularization method; (ii) trainlm, corresponding 
to Levenberg-Marquardt method; and (iii) traingdx, to update 
the learning rate parameter during the training process of the 
neural network. Note that, in the neural network toolbox of 
MATLAB R2018b is not possible to apply the ADAM algorithm 
when applying an MLP neural network.  

The main characteristics imposed during the training 
process are presented in Table I, where the parameters were 
defined according to the default values presented in the toolbox 
of MATLAB R2018b and explained in [32].  The stopping 
criteria were based on the maximum number of epochs, 
maximum validation failures, minimum performance gradient 
or maximum momentum. 

TABLE I.  PARAMETERS FOR MLP 

Parameter Value 

Maximum number of epochs 10000 

Performance goal 0 

Maximum validation failures 10 

Minimum performance gradient 1e-7 

Initial mu 0.001 

 Momentum decrease factor 0.1 

Momentum increase factor 10 

Maximum Momentum 1e10 

 

Xnorm = 
X -	median(X)

Interquartile Range
 (1) 
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Since there are no related studies in the literature, the 
architecture of the MLP was investigated regarding (i) the 
number of neurons (NN), considering 10, 70 and 110; and (ii) 
the number of hidden layers (NHL) varying from 1 to 2.  

C. Implementation of LSTM Regression Model 

Table II presents the main options defined during the 
training process of LSTM, according to the default values of the 
neural network toolbox of MATLAB R2018b. The neural 
network trained while the number of maximum validation 
failures or the number of maximum epochs was not reached. 
Moreover, we explored different NN in LSTM, varying 
between 10, 70 and 110, to find the structure that provides the 
best predictions. 

TABLE II.  PARAMETERS FOR LSTM 

Parameter Value 

Maximum number of epochs 10000 

Maximum validation failures 10 

Gradient Descendent Algorithm ADAM 

Initial Learning Rate 0.01 

Learning Rate Drop Period 50 

Learning Rate Drop Factor 0.2 

Batch Size 64 

 

D. Model Evaluation Metrics 

 To evaluate the performance of the regression models, two 
metrics were used: Goodness of Fit (GOF) and Normalized Root 
Mean Square Error (NRMSE) between the predicted and the real 
ankle joint torque. These evaluation metrics were chosen since 
(i) the GOF evaluates the performance of the fit achieved with 
each model, where −∞ represents a very poor fit and 100 % 
corresponds to a perfect fit; and (ii) the NRMSE provides a 
percentage of the Root Mean Square in the range of the 
experimental data. 

The GOF is determined by Equation (2): 

 

Where yref symbolizes the real parameter (real ankle joint 

torque), yref, represents the mean of the real parameter and y is 

the estimated parameter (estimated ankle joint torque). 

 The NRMSE was computed as described in Equation (3), 
where maxyref

-minyref
 represents the range of the real ankle joint 

torque: 

 

V. RESULTS AND DISCUSSION 

A. MLP Regression Model 

Table III presents the results obtained for the MLP neural 
network, considering different training functions and different 
architectures. 

TABLE III.  MLP RESULTS 

Method NHL NN GOF (%) NRMSE (%) 

MLP 
(trainlm) 

1 

10 55.3 9.41 

70 66.8 7.00 

110 69.0 6.54 

2 

10 67.8 6.78 

70 69.4 6.44 

110 69.8 6.36 

MLP 
(trainbr) 

1 

10 58.8 8.67 

70 69.1 6.50 

110 69.9 6.33 

2 

10 67.0 6.95 

70 70.9 6.13 

110 69.2 6.50 

MLP  
(traingdx) 

1 

10 46.9 11.2 

70 36.8 13.3 

110 32.5 14.2 

2 

10 45.1 11.6 

70 40.5 12.5 

110 28.3 15.1 

 
Based on the results achieved with trainlm and trainbr 

training functions, the regression performance was very similar. 
An increment in the NN improves the fit, achieving (i) a GOF’s 
increase around 12.0 % and an NRMSE’s decrease around 2.60 
%, when 1 hidden layer is considered; (ii) an increment around 
3.75 % of the GOF and a decrement around 0.620 % of the 
NRMSE when 2 hidden layers are considered. Note that these 
percentages correspond to the average values obtained by the 
GOF’s increase and NRMSE’s decrease concerning both 
trainlm and trainbr training functions. Additionally, an increase 
in the NHL was reflected by an improvement in the regression 
performance. However, considering 2 hidden layers, it was 
noticed that this performance’s improvement became less 
appreciable when the NN was incremented. Using traingdx as 
the training function, it would be expected to achieve better 
performances, considering that an adaptive learning rate during 
the training process produces better results [28]. However, with 
this training function, the worst results were achieved (GOF ≤ 
46.9 % and NRMSE ≥ 11.2 %). Thus, this training function is 
the least indicated to predict the ankle joint torque. 

Overall, findings of Table III indicate that an MLP with 2 
hidden layers, 70 hidden neurons and trained with trainbr as 

GOF	=	 1-
yref	-	y

yref	-	yref

×100 (2) 

NRMSE	= 
RMSE

maxyref
	-	minyref

×100 (3) 
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training function was the architecture that provided the best 
performance to the predict the reference ankle joint torque. 

B. LSTM Regression Model 

The results achieved for the LSTM regression model can be 
consulted in Table IV. 

TABLE IV.  LSTM RESULTS 

Batch Size NN GOF (%) NRMSE (%) 

64 

10 77.7 4.70 

70 78.4 4.55 

110 79.6 4.31 

Based on the achieved results, we verified that an increment 
in the NN did not offer considerable improvements in the ankle 
joint torque prediction, being the best performances reached 
when 110 neurons are considered (achieving a GOF of 79.6 % 
and an NRMSE of 4.31 %). 

In this neural network, the effect of the batch size was 
studied. However, due to the high time consumption 
encountered during the neural network’s training, the batch size 
was only varied for the LSTM with 110 neurons, since that was 
the architecture that provided the best performance considering 
the default parameters presented in Table IV. The results of this 
variation are exhibited in Table V. 

TABLE V.  LSTM RESULTS WITH BATCH SIZE VARIATION 

Batch Size NN GOF (%) NRMSE (%) 

128 110 79.5 4.57 

64 110 79.6 4.31 

32 110 76.8 4.87 

 
 According to Table V, as the batch size increases, similar 

performances are obtained (achieving GOF and NRMSE values 
of 79.5 % and 4.57 %, respectively). On the other side, as the 
batch size decreases, the performance of the LSTM started to 

decline, presenting a reduction of 2.80 % in the GOF and an 
increase of 0.560 % in the NRMSE values. Thus, an LSTM with 
110 neurons and trained with a batch size of 64 was found as 
the architecture that provided the best performances. 

C. Comparative Analysis of Regression Models 

Considering the best results achieved for MLP and LSTM 
neural networks (presented in Tables III and V, respectively), it 
is possible to infer that LSTM was considerably better than 
MLP, exhibiting higher GOF and lower NRMSE values (GOF: 
79.6 %  > 70.9 %; NRMSE: 4.31 % < 6.13 %). The reliability 
of these results can be confirmed by Fig. 2, where it is possible 
to conclude that the LSTM generated reference ankle joint 
torques closer to the expected ones when compared to the 
predictions made by MLP. By performing a deeper analysis 
centered on the gait cycle, during the stance phase, it was 
verified that the MLP was also able to achieve an adequate 
estimation of the ankle joint torque. However, in the swing 
phase, irregularities and sudden peaks were verified. On the 
other hand, LSTM was able to fit the ankle joint torque 
throughout the full gait cycle. This fact can be justified by the 
architecture of this neural network, which makes it able to 
consider present and past information, offering good 
performances for time-series data, such as the ankle joint 
torque. The findings of this work showed the reliability of AI 
regression models to achieve accurate ankle joint torque 
predictions. Particularly, the implemented LSTM model has the 
potential to be integrated into control architectures of the 
robotic assistive devices to accurately estimate user-oriented 
reference joint torque trajectories needed in AAN control 
strategies. To the best knowledge of the authors, there is no 
previous literature work focused on the ankle joint torque 
trajectory generation based on well-known data from each 
subject, avoiding prior data collections. Thus, it is not possible 
to perform a comparative analysis with literature algorithms.  

D. Limitations 

Results show that the LSTM was able to estimate healthy 
user-oriented ankle joint torque trajectories. However, the 
generation of these trajectories is only valid when: (i) the 
walking speed is between 1.0 and 4.0 km/h; (ii) the subject’s 

Figure 2. Predictions of the MLP and LSTM models in comparison to the real ankle joint torque for a random selected range of the test dataset. 
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body height ranges from 1.51 to 1.83 m; (iii) the subject’s body 
mass is higher than 52.0 and lower than 83.7 kg; and (iv) the 
locomotion mode is on a flat surface.   

VI. CONCLUSIONS AND FUTURE PERSPECTIVES 

The accurate prediction of healthy reference ankle joint 
torques oriented to the user is of utmost importance on AAN 
control strategies that require an adequate healthy reference 
torque in their architecture towards personalized robotic-based 
gait assistance. Based on the obtained results, it is possible to 
conclude that the ankle joint torque can be accurately generated 
by an LSTM for subjects with a body height ranging from 1.51 
to 1.83 m, a body mass between 52.0 and 83.7 kg and walking 
on a flat surface with a walking speed ranging from 1.0 to 4.0 
km/h. 

Future challenges involve the determination of the joint 
torque for the remaining lower limb joints, namely, knee and 
hip. On the other hand, the exploration of other machine 
learning algorithms could be issued to improve the results 
achieved in the present study. Furthermore, to address the 
limitations of this study, future challenges also involve the 
generation of reference joint torque trajectories for a wider 
range of body masses, heights, and walking speeds for different 
locomotion modes, such as ramps or stairs. 
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