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Abstract—The popularity of Artificial Intelligence (AI) –
and of Machine Learning (ML) as an approach to AI, has
dramatically increased in the last few years, due to its out-
standing performance in various domains, notably in image,
audio, and natural language processing. In these domains, AI
success-stories are boosting the applied field. When it comes
to AI/ML for data communication Networks (AI4NETS), and
despite the many attempts to turn networks into learning agents,
the successful application of AI/ML in networking is limited.
There is a strong resistance against AI/ML-based solutions, and
a striking gap between the extensive academic research and the
actual deployments of such AI/ML-based systems in operational
environments. The truth is, there are still many unsolved complex
challenges associated to the analysis of networking data through
AI/ML, which hinders its acceptability and adoption in the
practice. In this positioning paper I elaborate on the most
important show-stoppers in AI4NETS, and present a research
agenda to tackle some of these challenges, enabling a natural
adoption of AI/ML for networking. In particular, I focus the
future research in AI4NETS around three major pillars: (i) to
make AI/ML immediately applicable in networking problems
through the concepts of effective learning, turning it into a useful
and reliable way to deal with complex data-driven networking
problems; (ii) to boost the adoption of AI/ML at the large scale
by learning from the Internet-paradigm itself, conceiving novel
distributed and hierarchical learning approaches mimicking the
distributed topological principles and operation of the Internet
itself; and (iii) to exploit the softwarization and distribution of
networks to conceive AI/ML-defined Networks (AIDN), relying on
the distributed generation and re-usage of knowledge through
novel Knowledge Delivery Networks (KDNs).

Index Terms—Machine Learning; Artificial Intelligence; Data
Communication Networks; Data-driven networking; Knowledge
Delivery Networks (KDNs); AI/ML-defined networking (AIDN).

I. INTRODUCTION

The impressive success of AI/ML in multiple data-driven
problems over the past decade has motivated a revamped
interest in AI/ML-based solutions to networking problems.
Data communication networks generate a wealth of big data,
which offers the chance to characterize and analyze complex
networking systems in a purely data-driven manner, from an
end-to-end perspective, mapping input data to output targets,
and without the need to model and characterize the function-
ing of specific components. With such wealth of big data,
learning-based networking would represent a cornerstone to
better, more efficient, more reliable, more flexible, and safer
networks. The immediate question that poses then is: why

is networking not profiting from the outstanding success
AI/ML is having in so many other data-driven domains?.

Making AI/ML an accepted and fruitful approach to net-
working in operational networks is extremely challenging.
All the major learning and big data challenges - the famous
4 Vs, are present when dealing with operational networks’
data: massive volumes of complex and heterogeneous data
(Volume and Variety), fast and highly dynamic streams of data
(Velocity), lack of ground truth for learning (Veracity), highly
unbalanced data, lack of visibility due to massive adoption of
end-to-end encryption, problems for transparently interpreting
AI/ML-based systems, and more. As a consequence, getting
AI/ML to work in operational networks and at scale, in such
a variety of dynamic data environments, with limited human
intervention, and providing proper and reliable results, is still
an open problem which needs to be solved.

Despite an extensive academic research in the application of
AI/ML to data communication Networks (AI4NETS) over the
past two decades, there is a striking gap in terms of actual
deployments of AI/ML-based solutions: compared to other
network management approaches, AI/ML is rarely employed
in operational scenarios.

To understand the reasons for this limited success of AI/ML
in operational networks, I first present in Section II a brief
overview on the broad domain of AI/ML, considering conven-
tional ML and more recent developments over the past decade.
I then describe past and more recent applications of AI/ML to
networking problems - taking ML as the most representative
approach to AI when it comes to networking. In Section III I
elaborate on the the major bottlenecks hindering a wide and
successful adoption of AI/ML in operational networking areas.
At last, in Section IV I present a potential research agenda in
AI4NETS to advance and tackle some of these bottlenecks.

II. STATE-OF-THE-ART

A. Machine Learning – Past & Present

As a branch of AI or basically as a practical approach to AI,
the field of ML has been studied for more than 60 years now,
and today there is a plethora of ML approaches and techniques
[4], [19], [28], [43], [47], covering the three main learning
paradigms, namely supervised, unsupervised, and reinforce-
ment learning. Very popular ML algorithms include Support
Vector Machines (SVMs), Decision Trees, Neural Networks,
Naı̈ve Bayes, Random Forrest, Clustering approaches such as
K-means and DBSCAN, Q-learning by reinforcement, and the978-1-7281-4973-8/20/$31.00 c© 2020 IEEE
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list goes on. These more conventional ML algorithms fall
within the so called shallow learning techniques, which are
basically bounded to well defined input data representations
(i.e., features), and are incapable to process data in its raw
form. Traditional ML has been therefore very much dependent
on careful feature engineering and expert domain knowledge,
to derive the most relevant set of features out of the raw data
under analysis.

With the major advances in computational processing ca-
pacity, notably through the massive production and adoption
of Graphics Processing Units (GPUs) and more recent Tensor
Processing Units (TPUs), and the surge of data availability
over the past decade, shallow learning approaches started
getting overtaken by a new breed of deep ML approaches,
based on the concepts of Deep Learning (DL) [19], [28],
[45]. Different from conventional ML, DL is extremely data-
driven and somehow agnostic to the specific type of data,
requiring very big amounts of it to learn, and operating in a
completely black-box manner. The main advantage of DL is its
inherent capacity to learn directly from raw input data, without
requiring heavily hand-crafted features to provide good results.
The key behind DL is the so-called representation learning
paradigm [3], which offers a set of methods allowing a ML al-
gorithm to automatically discover the best data representations
or features from raw data inputs for the specific learning task
(e.g., classification). DL methods are basically representation
learning methods with multiple levels of representation or
abstraction, obtained by composing simple but non-linear con-
secutive transformation steps or layers, each of them providing
a more abstract representation of the data. DL has dramatically
improved the state-of-the-art in multiple domains, including
speech recognition, visual object recognition, object detection
and many others such as genomics.

Worth mentioning are two milestones enabling a successful
and massive application of DL to data-driven problems, led
by the dubbed “Godfather of DL”, Geoffrey Hinton: in 2006,
Hinton et al. [22] introduced a novel and effective way to train
very deep neural networks by pre-training one hidden layer at
a time, using the unsupervised learning procedure for restricted
Boltzmann machines [17]. In 2012, one of his students, Alex
Krizhevsky, designed a deep convolutional network called
the AlexNet, which strongly helped to revolutionize the field
of computer vision, by almost halving the error rate for
object recognition at the 2012 ImageNet challenge [27]. This
precipitated the rapid adoption and popularity of DL in com-
puter vision problems, naturally extending to other domains.
Also worth mentioning are the recent developments in Deep
Reinforcement Learning [18], playing a critical role in todays
success of DL, notably through the popular implementations
of AlphaGo, AlphaZero, and more recently AlphaStar.

But of course, even if today everything in AI/ML is about
deep learning, the AI community is extremely active with
other major challenges faced by the application of ML in the
practice, which together would enable the next major steps in
AI. Novel learning paradigms such as the major breakthrough
introduced in 2014 by Ian Goodfellow – the Generative

Adversarial Networks (GANs) approach, where models train
to new levels of performance by pitting against one other, as
well as new approaches to improve the applicability of AI in
the practice, by alleviating the black-box effect of complex
ML models and make them more easy to understand for the
end user – eXplainable AI (XAI) [30], [42], all contribute to
the popularity and successful application of ML. Other major
challenges and disciplines include the problems of Continual
or Lifelong Learning [40], Robust Learning [20], Hierarchical
Learning [8], Multi-task Learning [11], Meta Learning [29],
and Transfer Learning [1], among others.

B. Where are we in AI4NETS?

When it comes to the popularity of AI4NETS, the picture
looks less promising. The application of AI concepts and
ML approaches to networking problems has today more than
two decades of existence, with the first steps taken back
in the late 90’s, when the concept of Cognitive networking
(CN) [48] - term first coined in 1998 by researchers in
KTH Sweden, was introduced. The CN paradigm describes
a network with cognitive capabilities which could learn from
past observations and behaviors, to better adapt to end-to-
end requirements. CN has been strongly re-furbished along
time, referring to it as self organizing networks, self-aware
networks, self-driving networks, intelligent networks, and so
forth [32]; this has motivated a surge of papers applying all
kinds of ML algorithms to different networking problems
at hand. Today we have a broad number of surveys [2],
[5], [7], [10], [16], [24], [39] over-viewing the literature
on the application of ML to diverse networking problems,
including traffic prediction, traffic classification, traffic routing,
congestion control, network resources management, network
security, anomaly detection, QoS and QoE management, etc. A
common trend we find in the existing literature is that, for the
most part of the papers doing AI/ML for networking, there is a
systematic lack of analysis on the multiple aspects which could
lead to eventually re-use and reproduce, generalize, or even
apply the obtained results in real deployments. In a nutshell,
most of what we have in AI/ML applied to networking has
been about grabbing one particular ML approach and testing
it on some particular networking dataset - hopefully large,
but in reality, of limited size and most probably of limited
representability of the underlying problems.

Today we start seeing papers addressing more modern
flavors of AI/ML and their application in networking, e.g.,
with initial results on deep learning [35], [41], [44], transfer
learning [50], XAI for network security [21], deep reinforce-
ment learning for network management [31], [33], [34], etc.
However, the speed of adoption of AI/ML-based solutions to
current networking problems is extremely slow, with a strong
resistance from not only the applied networking domain, but
also the networking research community. There is a striking
gap between the extensive academic research and the actual
deployments of such AI/ML-based systems in operational
environments.
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Figure 1: Why is AI/ML so challenging in networking applications?

The picture of AI/ML in networking looks even more
downcast when considering the many past efforts we have seen
in turning large-scale networks into cognitive agents. Some
years after the introduction of CN, Clark (one of the pioneers
of the Internet) et al. [12] proposed the “Knowledge Plane”
(KP) for the Internet, a pervasive, distributed system within the
network that would provide the required levels of abstraction
and end-to-end visibility to realize the CN paradigm. While
both CN and KP have inspired numerous research projects
over the last two decades, today we still do not have any of
these paradigms bringing solutions to real network deploy-
ments. With the more recent proliferation and developments
on flexible networking, i.e., the Software Defined Networking
(SDN) paradigm, and based on the growing availability of data
coming from networking applications, there have been new
attempts to realize the notions of CN and KP into operational
deployments [37], and to make of AI an enabler for data-
driven networking [23]. Besides the complexities associated to
SDN and network flexibility, and the limitations on network
measurement and data collection in the large scale, the truth
is that there are still many unsolved complex challenges
associated to the analysis of networking data through ML,
which hinders its acceptability and adoption in the practice.
A quick thought on this already reveals part of the problem:
different from other AI/ML-boosted disciplines where data
comes from “natural” sources (image, video, voice, text)
or highly constrained environments (gaming), network data

lives in hard to charaterize manifolds and is highly complex,
both in variety and in statistical properties (highly non-linear,
statistically variant, multi-structured, etc.). Not surprisingly,
already a decade ago, top networking researchers showed
that the Internet has characteristics of complex systems [14],
making it hard to model and predict its behavior.

The first step to unleash the power of AI in networking
and to turn Clark’s KP vision into a reality is to tackle the
fundamental problems limiting AI’s successful application
in the practice. This is exactly where I think the agenda
in AI4NETS has to focus on: enabling a systematic and
successful application and adoption of AI/ML in networking,
by making AI/ML “immediately applicable” to large-scale net-
working problems, addressing the major bottlenecks through
the application of what I have defined as effective machine
learning and Knowledge Delivery Networks (KDNs). I
further elaborate on these concepts in Section IV.

III. THE CHALLENGES – WHY IS AI/ML SLOWLY
SUCCEEDING IN NETWORKING?

Let us dig deeper into the causes of such an impressive
mismatch between the developments of AI/ML for networking
and the popularity and success of AI in other data-driven
domains. Next I provide a non-exhaustive summary on some
of the main bottlenecks and challenges hindering a bright
adoption of AI4NETS, including part of those previously
flagged by Paxon in his seminal work on machine learning
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for anomaly detection [46]. I make reference to Figure 1 as
a graphical guide to the different limitations we are facing in
AI4NETS.

Data Complexity (Figure 1a): as I mentioned before, the
complexity (and heterogeneity) of the data related to Internet-
like networks is one of the most significant bottlenecks to
AI4NETS. The Internet, and in general large-scale networks,
are a complex tangle of networks, technologies, applications,
services, devices and end-users. As a consequence, even if
networking protocols are well defined (at least a-priori), the
interaction among all these components makes of the resulting
data a major challenge when it comes to learning anything
out of it. Quoting Eric Schmidt, former Google’s CEO: “the
Internet is the first thing that humanity has built that humanity
does not understand, the largest experiment in anarchy that we
have ever had”. Data arising from domains where AI has so
far shown very successful results generaly comes from more
predictable and easy to undertand sources, for example natural
images, or natural language, or even from well defined and
controlled environments when it comes to more recent AI
victories in gaming - and not only easy Atari-like games, but
more complex ones such as the recently tackled Star Craft
game by Google DeepMind. For example, while one would
not expect to find images of faces with five eyes and three
noses when addressing face-recognition tasks, networking data
can change in unpredictable manners, making it harder to deal
with data-driven approaches.

Diversity of Network Data (Figure 1b): besides complex-
ity, network data often exhibits much more diversity than one
would intuitively expect. Even within a single network, the
network’s most basic characteristics - e.g., the mix of different
applications, can exhibit immense variability, rendering them
unpredictable over short time intervals. With the ever-growing
number of devices connected to large-scale networks and the
continuous emergence of new applications and services run-
ning on them, the diversity and unpredictability of networking
data can just increase.

Data Dynamics (Figure 1c): this brings us to an even
more critical issue in networking; networking data is non-
static, and generally comes in the form of data streams, which
by nature are difficult to analyze. Networking stream data is
full of constant concept drifts - changes in the underlying
statistical properties, which requires different from traditional
approaches to make sense and good use out of it [38].

Lack of Learning Generalization (Figure 1b): as a con-
sequence, it becomes extremely difficult in the networking
practice to learn models which can generalize to other envi-
ronments, different from those where the training data comes
from. A very common issue in learning for networking prob-
lems is that those solutions which are built and calibrated for
certain types of networks, are no longer useful when deployed
in the operational environments.

Lack of Ground Truth (Figure 1f): supervised learning
needs massive amounts of labeled data to learn, but “in the
wild” networking data is usually non-labeled; labeling data in
operational environments is extremely costly and error prone.

As a result, AI/ML-based solutions have to heavily rely on
unsupervised or semi-supervised learning schemes, with their
corresponding limitations in terms of knowledge generation.

Dealing with highly Imbalanced Problems: network data
is usually highly imbalanced when it comes to classes repre-
senting different categories in the data; for example, network
anomalies and attacks reasonably occur much less often than
normal instances; this has to be properly taken into account
to avoid over-fitting and other undesirable learning problems.

Lack of Standardized and Representative Datasets (Fig-
ure 1f): different from other AI/ML-related domains, where
well established, publicly available datasets are available for
testing, evaluation and benchmarking purposes (e.g., ImageNet
in image processing), it is very difficult to find appropriate
public datasets to assess AI4NETS. While one of the main
reasons for this lack clearly arises from the data’s sensitive na-
ture - including end-user privacy, other limitations come from
the efforts required to build proper and representative datasets
in networking. Given the scale of Internet-like networks, the
massive volumes of data, and the multiplicity of operational
conditions, building such a representative dataset is a daunting
task. So in simple words, there is no ImageNet in AI4NETS.

Lack of Model Performance Bounds & High Cost of
Errors: deploying AI/ML-based solutions in operational en-
vironments comes with the associated challenge of incurring in
costly errors - specially when dealing with critical applications
such as security, which usually ISPs and network vendors
are not willing to bear. Being data-driven by nature, and
prone to outliers, it is extremely challenging to provide tight
performance bounds on trained AI models. Robust learning is
paramount for networking.

Learning occurs in an Adversarial Setting (Figure 1e):
learning data is full of adversarial examples in many network-
ing problems, which again makes the learning process more
cumbersome; this is the case not only in network security
applications, where a classic arms-race is evident, but also
when it comes to traffic identification and classification tasks,
as applications do not want to be tracked by intermediate
entities, and therefore obfuscate and dynamically modify their
functioning to bypass monitoring and avoid traffic engineering
policies.

Lack of Model Transparency (Figure 1d): the lack of
transparency of most ML models limits their application in
real deployments, especially in critical applications such as
security. If you cannot understand why this or that decision is
taken, then you would not trust it and therefore not use it. The
complexity of current DL models exacerbates this black-box
effect, therefore limiting its application in the practice.

Lack of a combined Knowledge & Expertise in both
networking and AI/ML: the networking and the AI/ML
communities are totally separated, and it is very hard today
to find the required expertise to properly tackle networking
problems through AI/ML. So far, AI/ML in networking has
been about grabbing one particular ML approach and testing
it on (hopefully) large-scale datasets, without really mastering
the underlying properties and requirements of the selected ML
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approach. At the same time, we have seen AI researchers
applying ML to networking problems which they do not
really understand, and therefore the validity of the obtained
conclusions and their analysis is quite limited in the best case.
There is a huge need of interdisciplinary approaches and teams
to tackle this limitation.

Up to date, there has not been any systematic research
effort towards better understanding and tackling the main
issues limiting a successful adoption of AI to data-driven
networking problems. As a consequence, the lack of success-
stories in AI4NETS is not surprising at all.

IV. A RESEARCH AGENDA IN AI4NETS

In the next lines I propose an ambitious research agenda
to materialize novel ideas, concepts, and learning approaches
towards bridging the gap between AI/ML and its suc-
cessful and systematic application to improve networking
problems at the large scale. The so far presented state of
affairs in AI4NETS clearly suggests that resolving the main
bottlenecks hindering a natural adoption of AI/ML in data-
driven networking problems requires a solid grasp on the main
concepts and principles behind network measurements and
AI/ML. In Figure 2, I depict the three main pillars of the
proposed research agenda, including (i) effective learning, (ii)
Internet (distributed) learning, and (iii) AI defined Networks.

Effective Learning in AI4NETS deals with making AI/ML
immediately applicable to networking problems. By imme-
diately applicable, I mean a successful application in terms
of performance, generalization of results, and model trans-
parency, leading to a subsequent natural adoption in net-
working problems. The principles behind what I shall refer
to as effective learning for networks consists of a series
of general AI/ML-related problems (robust, transferable and
explainable learning), applied to the particular networking
challenges outlined above. The work I propose in this area can
be further structured under three specific topics – (i) Robust
learning for networking: consists of the investigation, tailor-
ing and application of more novel learning paradigms which
are currently showing great performance in other domains, in-
cluding (among others) robust-deep-learning based paradigms
and representation learning, (deep) reinforcement leaning for
closed-loop applications, and the study of robust transfer in
networking learning tasks. All these approaches have evolved
driven by non-networking applications (e.g, image process-
ing), and as such, need to be seriously re-considered when
dealing with networking data. (ii) Learning in operational
networks: should tackle those challenges which arise from
the networking practice, when dealing with real networks
data and when deploying AI/ML-based solutions into opera-
tional settings; learning with highly imbalanced data, learning
with limited (or none) availability of labels/ground truth, or
learning in highly dynamic settings and under the presence
of frequent concept drifts are some of the problems tackled
here. (iii) Explainable AI for networks: addresses one of the
most important challenges stopping the adoption of AI/ML-
based solutions, namely the transparency and understanding
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Figure 2: A research agenda in AI4NETS.

of the decisions taken by ML models in networking problems.
Conceiving approaches to better explain model properties,
explain the specific rationale behind decisions, and validate the
operation of black-box like models, will ease their adoption
in operational environments.

Internet Learning is complementary to the first pillar,
but instead of asking what can AI/ML do for the Internet,
the target here is to figure out what can the Internet do
for AI/ML; in particular, here I propose a radically different
approach to design distributed learning algorithms, by lever-
aging the underlying properties of the Internet itself in terms
of distributed topological principles and operation, to build
better and more robust learning approaches for networking. As
noted by Stonebraker - one of the gurus of big data analytics,
distributed learning is the next frontier to AI/ML scalability
[9]. One major bottleneck for scalable and distributed AI/ML
is that most ML algorithms were not originally conceived to
operate in a distributed manner, which seriously limits the
availability of ML libraries for parallel computing platforms.
To realize this Internet learning concept, and as noted in
[6], I propose to leverage the fact that distributed network
algorithms generate a wealth of big data in the form of
problem instance and solution pairs as part of their normal
operation, which introduces an unexplored opportunity to
learn from this examples at a massive scale. The work I
propose in this area can be further structured under three
specific topics – (i) Distributed (and distributing) learning
in networks: here the focus is on the principles behind
distributed machine learning and distributed computation [13],
[15], [49], conceiving approaches to realize such distributed
learning by relying on distributed network measurements. (ii)
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Hierarchical learning at the Internet: investigates the main
properties of hierarchical learning approaches, through the
application of divide & conquer paradigms to solve complex
learning tasks, breaking them up into smaller components.
The Internet itself has a highly hierarchical structure, thus the
synergies and parallels between learning with hierarchical data
and the underlying hierarchical networks is an appealing topic
to explore. (iii) Multi-task learning: lastly, I put the emphasis
on learning from multiple, heterogeneous networking data,
aiming to generate knowledge from the large amount of data
available in large scale networks. I propose to leverage the data
contained in multiple related tasks to improve overall learning
generalization, by solving multiple learning tasks at the same
time, while exploiting commonalities across tasks.

Finally, AI Defined Networking has as main objective to
make of AI/ML and the knowledge distributively generated
at the Internet scale a driving force for flexible network
management and operation. With the recent developments and
rising deployment of SDN at the large scale [26], there is now
a bright new path to couple this flexibility with the knowledge
generated by AI/ML. Here I propose to (i) revamp the KP
(Knowledge Plane) concepts [12], focusing in particular on
the KP architecture in terms of availability and accessibility
of the knowledge (trained-models, building-blocks) generated
across multiple networks. I propose to investigate different
concepts and architectural designs to make this knowledge
flowing through the Internet, the same way routing information
and content propagate in current networks. How to store and
distribute such knowledge brings me to a novel proposal, that
of (ii) Knowledge Delivery Networks (KDNs). A KDN repli-
cates the same concepts of current Content Delivery Networks
(CDNs), but takes into account the potential and characteristics
of the particular content, similarly to the Information-Centric
Networking (ICN) paradigm [25]; using the techniques and
results obtained through effective, Internet learning, a KDN
could build, maintain and merge different pieces of knowledge-
blocks to improve learning and replicate lessons learned.
The KDN concept would eventually lead to a knowledge
transfer system, where different models learned in specific
environments and conditions could be re-used, to improve
new learning steps. Similar ideas have been recently proposed
[36], relying on Cloud repositories. A KDN overlay network
could be initially realized through well established CDN
networks. (iii) AIDN meets SDN: the ultimate integration
of the concepts behind Internet Learning, the foundations of
the KP, and the realization of KDN networks withing a SDN
architecture, would lead to the next generation of AI/ML-
defined (driven and capable) networks.

V. CONCLUSIONS

The ultimate goal of this positioning paper is to contribute to
strengthening the future research on the (re)-emergent field of
AI4NETS, by pinpointing some of the fundamental challenges
it faces. I acknowledge that the discussion I present in this
paper is by no means fully exhaustive and final, and I am

sure many aspects were left aside; however, I do hope it will
motivate further discussion on the limitations we are facing in
AI4NETS as a research community, to better target the next
wave of AI/ML-based solutions in the practice.
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S. Barkai, M. J. Hibbett, G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan, H. Latapie, C. Cassar, J. Evans, F. Maino,
J. Walrand, and A. Cabellos. Knowledge-Defined Networking. SIGCOMM Comput. Commun. Rev., 47(3), 2017.

[38] P. Mulinka, S. Wassermann, G. Marı́n, and P. Casas. Remember the Good, Forget the Bad, do it Fast: Continuous
Learning over Streaming Data. In Advances in Neural Information Processing Systems 32, Continual Learning
Workshop. 2018.

[39] T. T. T. Nguyen and G. Armitage. A Survey of Techniques for Internet Traffic Classification using Machine
Learning. IEEE Communications Surveys Tutorials, 10(4):56–76, 2008.

[40] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual Lifelong Learning with Neural Networks:
A Review. CoRR, abs/1802.07569, 2018.

[41] B. J. Radford, L. M. Apolonio, A. J. Trias, and J. A. Simpson. Network Traffic Anomaly Detection Using Recurrent
Neural Networks. CoRR, abs/1803.10769, 2018.

[42] M. T. Ribeiro, S. Singh, and C. Guestrin. Why Should I Trust You?: Explaining the Predictions of Any Classifier.
In Proceedings of the 22Nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2016.

[43] S. J. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Pearson Education, 2010.
[44] J. Saxe, R. Harang, C. Wild, and H. Sanders. A Deep Learning Approach to Fast, Format-Agnostic Detection of

Malicious Web Content. In 2018 IEEE Security and Privacy Workshops (SPW), pages 8–14, 2018.
[45] J. Schmidhuber. Deep Learning in Neural Networks: an Overview. Neural Networks, 61:85–117, 2015.
[46] R. Sommer and V. Paxson. Outside the Closed World: On Using Machine Learning for Network Intrusion Detection.

In Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 305–316, 2010.
[47] R. S. Sutton and A. G. Barto. Reinforcement learning - an Introduction. Adaptive computation and machine

learning. MIT Press, 1998.
[48] R. W. Thomas, L. A. DaSilva, and A. B. MacKenzie. Cognitive networks. In First IEEE International Symposium

on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005., pages 352–360, Nov 2005.
[49] E. Zamanian, C. Binnig, T. Kraska, and T. Harris. The End of a Myth: Distributed Transaction Can Scale. PVLDB,

10(6):685–696, 2017.
[50] J. Zhao, S. Shetty, and J. W. Pan. Feature-based Transfer Learning for Network Security. In MILCOM 2017 -

2017 IEEE Military Communications Conference (MILCOM), pages 17–22, 2017.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 09:56:33 UTC from IEEE Xplore.  Restrictions apply. 


