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Abstract 
This paper studies AI modeling for the solder joint 

fatigue risk estimation under the thermal cycle loading of 

redistributed wafer level packaging. The artificial neural 

network (ANN), recurrent neural network (RNN) and 

vectorized-gate network long short-term memory (VN-

LSTM) architectures have been trained by the same dataset 

to investigate their performance for this task. The learning 

accuracy criterion, the implementation of all neural 

network architecture, the learning results and result 

analysis would be covered.  

Because the involvement of the time/temperature-

dependent nonlinearity material characteristics, it is 

recommended that more than three hidden layers and a 

proper neural network architecture, which is capable of the 

sequential data processing, should be considered in order 

to guarantee the required accuracy and the satisfied 

convergence speed.  
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1. Introduction 
Solder joint reliability is one of the most critical issues 

for most ball-grid array packaging types. Because of the 

mechanical characteristics of the solder joint fatigue, the 

nonlinear finite element (FE) method has been often 

applied to predict the solder joint reliability when the 

structure is subject to the cyclic thermal loading.  

However, a decent electronic packaging FE model 

requires specialized modeling expertise and numerous 

experimental validation tests. To maximize the utilization 

of these valuable FE results, scholars have developed many 

methods. van Driel et al. [1] had applied the response 

surface model (RSM) to optimize the product/process 

designs against the failure probability estimation. The 

RSM has been generated from the numerical approaches 

with the consideration of the nonlinearity of the 

geometrical and material properties. Liu et al. [2, 3] applied 

the parametric method to study the solder fatigue failure 

mode under the thermal cycling loading. The model used 

in [3] had applied both material and geometrical 

nonlinearity with the precise description of the solder joint 

geometry. Yuan et al. [4, 5] applied the Taguchi matrix to 

establish a response surface of the estimated solder joint 

lifetime based on a validated parametric finite element 

model. Che et al. [6] applied the parametric method to 

investigate the 3D IC packaging based on through-silicon 

interposer and silicon-less interconnection technology by 

finite element modeling with experimental validation. 

Zhang et al. [7] applied RSM method to study the board 

level reliability of LED packaging. Chou et al. [8, 9] model 

the long-term reliability of wafer level packaging using 

artificial neural network architecture with multiple key 

design features.  

Besides the statistical approaches, this paper applies the 

three different artificial intelligence (AI) machine learning 

methods to explore the new way to utilize the FE results.  

An artificial neural network (ANN) is based on a 

collection of connected units called artificial neurons or 

network nodes/cells, which loosely mimic the neurons in a 

biological brain. The connections, like the synapses in a 

biological brain, can transmit a signal to other neurons. An 

artificial neuron that receives a signal then processes it and 

can signal neurons connected to it. In ANN 

implementations, the signal at a connection is mostly 

defined by a real number, and the output of each neuron is 

computed by the non-linear activation function of the sum 

of its inputs. The connections from one node to others are 

called edges. Neurons and edges typically have a weight 

that adjusts as learning proceeds. The weight increases or 

decreases the strength of the signal at a connection. 

Practically, these artificial neurons are aggregated to form 

the artificial layers. Different layers may perform different 

transformations on their inputs. Signals that travel from the 

first input layer to the last output layer, possibly after 

traversing the layers multiple times. 

In the 1940s, Hebb [10] created a learning hypothesis 

based on the mechanism of the neural plasticity that 

became known as unsupervised Hebbian learning. But the 

development of the neural network was blocked due to the 

computational power limitation. A key trigger for renewed 

the interest in neural network method was Werbos' 

backpropagation algorithm [11] that effectively solved the 

particular problem by making the training of multi-layer 

networks feasible and efficient. 

Since the last century, ANN techniques have been 

applied to the electronic packaging design. Subbarayan et 

al. [12] applied ANN to model the solder joint reliability 

and further applied to the reliability of the ball grid array 

packaging. Law et al. [13] had applied ANN in the thermal 

performance of QFN. Yang et al. [14] had applied ANN in 

conditional monitoring of power packaging. However, few 

of the researches paid attention to the ANN modeling 

technique. Yuan et al. [15] applied the neural network 

training algorithm for the thermal response of the high 

power electronics.  
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Figure 1: The general ANN structure with input 

(��)/output layer(��), and the hidden layers 

(��, . �� … ���	) 

 

Basic RNN is a network of nodes, including the input, 

hidden, and output nodes. Similar to ANN, each node in 

RNN is connected with a fixed, directed connection to 

every other node. However, RNN will organize this 

network into successive layers, which is used to represent 

the characteristics of the sequential information. (Part of) 

the output of this layer will be taken to the next input for 

the layer. This makes each node has a time-varying real-

valued activation. 

This research applies the standard backpropagation 

through time (BPTT) for the RNN training. It is a general 

back-propagation for the feed-forward networks [11, 16]. 

The BPTT will be initialized by the very last time sequence 

and propagate its learning errors along with the invert 

sequential order. 

 

 

Figure 2: The RNN Architecture   

 

Long short-term memory (LSTM) is a special artificial 

recurrent neural network (RNN) architecture with a 

feedback connection. A common LSTM unit is a cell, 

including an activation, input, output and a forget gate. The 

cell remembers values over arbitrary time intervals and the 

four gates regulate the flow of information into and out of 

the cell. LSTM networks are well-suited to classifying, 

processing and making predictions based on time series 

data, since there can be lags of unknown duration between 

important events in a time series. 

LSTM was proposed in 1997 by S. Hochreiter and J. 

Schmidhuber [17] by introducing the constant error 

carousel (CEC) units. The initial version of LSTM cells 

included input and output gates. In 1999, Gers et al. [18] 

introduced the forget gate (also called “keep gate”) into 

LSTM architecture, enabling the LSTM to reset its own 

state. Greff et al. [19] in 2017 performed a large scale study 

for several variants of the LSTM architecture. 

 

 

Figure 3:Typical unit cell of the vanilla LSTM [18] 

 

As indicated in Figure 3, the conventional LSTM 

applied only matrices to convert the 
�� 
������� into the 

output of gates. Because of the nonlinear nature of the 

industrial application, this paper improves the matrix 

configuration to a complete neural network. The training 

technique would be described in this paper.  

This paper will apply three neural network 

architectures, including the ANN, RNN, and VN-LSTM 

for the solder joint fatigue risk estimation of a wafer level 

packaging under thermal cycle loading. The dataset has 

been generated by a validated finite element model. This 

dataset consists of 81 orthogonal data points. Only 1/3 of 

the total dataset will be applied for machine learning and 

the rest for numerical stability testing and the accuracy 

validation. 

 

2. Theory 
As indicated by Figure 1, ANN with � layers can be 

represented as the composition of � �  functions 

�� �� � �� � ���� , where �� , ��  and ����  are inner 

product spaces for all � � 
� � � . The � � ��  and 

� � 
���	  ��	� � ��  are input and parameters. The 

output of such NN as be defined as ! �� � "�� � �
����# � �� [20] by: 

 

� !"�� ���	  ��	#
� ���� $ ���� $$$ ��"%&#�

(1)�

 

Eq. (1) can convert an input vector �� to an output 

vector �� . The number of neurons of each layer is 

'& '� ( '�, accordingly. Each neuron can be written as a 

scalar form as %)*, which indicates the +-th neuron at the 

m-th layer, where , - , � and , + , '*.  

 

3. Establish the dataset 
A glass wafer level chip scaled packaging (G-WLCSP) 

model has been used to generate an orthogonal data set. 

This model is designed to estimate the G-WLCSP solder 

joint risk during the thermal cycle loading [4, 5]. As shown 

in Figure 4, the IC has been redistributed onto a glass wafer 

and then the trace forming and solder bumping process. 

Figure 4 (a) shows the wafer level picture and (a’) is the 
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detail view. The individual packaging can be obtained after 

the dicing from the distributed wafer, as shown in Figure 4 

(b). From the schematic cross-section view in Figure 4 (c), 

the chip has been attached by UV adhesive to the glass 

wafer, and the epoxy filler has been applied between chips 

to protect the sidewall of the chip from cracking. 

 

 

Figure 4: Glass distributed wafer level packaging (a) 

wafer view with the detail (a’), (b) single device (c) 

schematic cross-section [4, 5].  

 

All materials applied in the finite element modeling are 

assumed as linear besides the solder joint and the PI. The 

eutectic solder joint and PI are considered as the 

temperature-dependent, elastic-plastic materials [3]. Only 

one half of the full-scaled two-dimensional finite element 

approximation model is used owing the symmetrical 

condition, and the finite element result is used by the 

commercial finite element code ANSYS® (version 15). 

Figure 5 shows the finite element model with the mesh 

density of the most critical solder joint.   

Figure 5: Finite element model for conventional 

WLCSP and proposed glass WLCSP 

 

4. Machine learning 
4.1 AI learning target 

Figure 6 shows the statistic result of the total dataset 

obtained previously. It indicates that the average plastic 

strain incremental becomes stable after the third cycle. 

Among the 81 data points, the average strain increment of 

the last three cycles is 3.01%, with the standard derivation 

of 1.17%. The empirical Coffin-Mason equation has been 

applied to convert the strain increment to the reliability 

cycles, as  

 

 ./"012# � $ 30124
�� 56

  (2) 

 

On the other hand, it indicates that the difference 

between the experimental and simulation result has $
0 �  cycles, which means the cycle prediction 

accuracy is about 0 � . Based on Eq.(2), define a 

problem of:  

 

 
� � 7

89:;;<�=
>-��?-@�3./"0ABCD E FG

E 0ABHHI4J � 0K  

 

(3) 

 

By the regression computation of Eq. (3), 

0ABHHI  is obtained, and it is assigned as the fitting 

accuracy requirement for machine learning.  

 

 

Figure 6: The boxplot of the plastic strain incremental 

of the 81 data points.  

 

4.2 The neural network design and learning results 

This applies ANN, RNN, and VN-LSTM to learn the 

risk estimation of the solder joint and the accuracy will be 

then investigated by the complete dataset obtained from 

Section 3.  

27 and 9 data points of the total dataset has been chosen 

as the training and testing set, respectively. The training set 

has been selected carefully to ensure the LMN
��2I�"O �

# are nearly even distributed within the total 

dataset. The training and testing set will be fixed through 

the studies of ANN, RNN, and VN-LSTM. 

The machine learning has been done by the in-house 

software, which has been developed based on .net 

framework 4.6.1. The learning will be terminated before 

the overfitting. The accuracy will be computed by applying 

the trained model to the total dataset with 81 datapoints.  

The ANN architecture will be applied first, in order to 

study the impact of the sequence of the parameters. Three 

major design parameters, will be applied. The “Parameter 

alias” of these three parameters will be mentioned in the 
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following section. The output of the ANN is defined as the 

average plastic strain incremental of the last three cycles.  

The structure of (3,4,4,1) is assigned to the ANN 

architecture, which means there are three parameters at the 

input layer, two hidden layers consisted of four neurons 

and one parameter at the output layer.  

We choose the rectified linear unit (ReLU) as the 

activation function with the formation of P"�# �
" �#, in order to represent the nonlinearity of the data 

and fast convergent rate.  

Table 1 shows the ANN modeling results. Due to the 

time/temperature-dependent nonlinearity nature of the 

dataset, it is expectable that none of them satisfied the 

accuracy requirement. Nevertheless, the parameter 

sequence of “1-2-3” and “2-1-3” perform better than others, 

which will be carried out to the next phase.  

 

Table 1. ANN modeling results  

Parameter sequence Accuracy (%) 

1-2-3 0.338 

2-1-3 0.395 

2-3-1 0.435 

3-2-1 0.425 

3-1-2 0.421 

 

In the RNN learning, two more input parameters and 

are introduced. They are the current temperature and the 

number of cycles. The output of the RNN is the plastic 

strain increment, which is also the recurrent parameter, as 

listed in Table 2.  

 

Table 2. The parameter setting of the RNN and VN-LSTM 

Parameter name Parameter 

Alias 

Parameter function 

Die thickness 1 Input  

Glass thickness 2 Input 

PI thickness 3 Input 

Plastic strain 

increment from the 

previous state 

4 Recurrent / output 

Temperature 5 Input  

Number of cycles 6 Input 

 

The purpose of the RNN is to study the impact of the 

neural network structure against accuracy. ReLU with the 

learning speed of 0.2 has been chosen as the activation 

function. RNN learning has been carried out by in-house 

code and the help of GAIN. Figure 7 shows the typical 

learning of RNN. The learning results are depicted in Table 

3. It shows the same unsatisfied result if the RNN structure 

is similar to the ANN, and also indicated that (6,5,5,1) does 

not provide sufficient degree-of-freedom to represent the 

nonlinearity. On the other hand, the structure (6,5,5,5,1) 

consisted of three hidden layers, could provide enough 

accuracy. Note that, in order to compensate for the 

uncertainty of the weighting initialization, the results are 

the average of multiple learnings.  

 

 

Figure 7: Typical RNN L2 Norm change 

 

 

Table 3. The learning result of RNN 

NN structure Parameter 

sequence 

Accuracy (%) 

(6,5,5,1) “1-2-3-4-5-6” 0.2974 

(6,5,5,1) “2-1-3-4-5-6” 0.3319 

(6,5,5,5,1) “1-2-3-4-5-6” 0.0282 

(6,5,5,5,1) “2-1-3-4-5-6” 0.0411 

 

To verify the learning freedom of VN-LSTM which 

indicated in Section 2.4, a combination of gate network 

structure, activation function, and initial learning rate, 

which differs from the vanilla LSTM, has been chosen. the 

ReLU with a high initial learning rate is introduced. Note 

that Hyper tangent is chosen for the PQI�.   

 

5. Conclusion 
The AI architectures and the machine learning 

processes have been implemented in order to establish a 

reliable regression model for the solder joint fatigue risk 

estimation of G-WLCSP. An orthogonal dataset has been 

collected based on a parametric study of the experimentally 

validated finite element model.  

The ANN, RNN, and the vectorized-gate network 

LSTM (VN-LSTM) methods have been applied with the 

consideration of the time-dependent nonlinearity of the G-

WLCSP structure. Note that, compared to the vanilla 

LSTM, VN-LSTM can learn highly nonlinear data because 

of the gate network design. A learning accuracy 

requirement of 0.18% has been established based on the 

experimental result and database though the Coffin-

Manson empirical equation.  
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