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Abstract—The recent years have witnessed a rapid rise in the 

use of Artificial Intelligence (AI) systems, in particular Machine 

Learning (ML) models. The vast majority of AI systems employ 

black box models that lack transparency in operation and decision 

making. This lack of transparency curtails the use of these AI 

systems in regulated applications (such as medical, financial 

applications, etc.) where it is important to understand the 

reasoning behind the predictions of the AI system. In these 

situations, interpretable models need to be used. However, 

interpretable models can turn into black-box models for high 

dimensional inputs. There are a variety of approaches that have 

been proposed to solve this problem. In this paper, we present a 

novel hybrid deep learning type-2 fuzzy logic system for 

explainable AI which addresses these challenges to provide a 

highly interpretable model that has reasonable performance when 

compared to the other black box models. 

Keywords—Explainable Artificial Intelligence, Interval Type-

2 Fuzzy Logic System, Deep Learning 

I. INTRODUCTION 

The latest decade did witness the wide adoption of AI and 

ML in critical domains such as finance, healthcare, automotive, 

education, criminal justice, etc. There are concerns being raised 

that the complex AI systems (such as deep learning, random 

forest, support vector machines, etc.) used in such systems 

could lead to a lack of transparency. The UK Parliament house 

of lords AI select committee, for example, in their report 

mention that “We believe it is not acceptable to deploy any 

artificial intelligence system which could have a substantial 

impact on an individual’s life, unless it can generate a full and 

satisfactory explanation for the decisions it will take” [1]. The 

European Parliament has also recognized this and the recently 

adopted General Data Protection Regulation (GDPR) has a 

clause that reiterates the right of all individuals to obtain 

“meaningful explanations of the logic involved when automated 

decision making takes place” [2]. 
To this end, a new line of research has emerged that focuses 

on developing explainable Artificial Intelligence tools [3]. 
According to the Defence Advanced Research Projects Agency 
(DARPA), there are several approaches that are being pursued 
to realize Explainable AI (XAI) [4]. The first approach is to 
modify deep learning techniques to be more interpretable. This 
approach is called deep explanations [4] and saliency mapping 
is often used for these models. Saliency mapping is achieved by 
repeatedly testing a network to find out which part of the input 
influences the output [5]. LRP [6], DeepLIFT [7], CAM [8], etc, 
are some of the methods that use saliency mapping to provide 

deep explanations. However, the problem with these approaches 
is that the models only show the relationship between the inputs 
and the outputs and the interconnections between the inputs that 
create the intermediate layers are harder to analyse and generally 
require the help of experts in these techniques. 

The second approach that has been proposed to achieve XAI 
is to use model induction through model agnostic methods. 
LIME [9] is one of the approaches which is model agnostic. 
LIME is used to probe the behaviour of the model by inducing 
perturbations on the inputs, this data is then used to find out 
which features contribute to the output and create a linear model 
which is locally faithful i.e, the model faithfully reproduces the 
output of the original model for a particular input. The problem 
with this approach is that we use an external model which means 
that the explanations provided are not always accurate. 

The third approach is to use existing interpretable and causal 
models such as decision trees, Bayesian rules, hidden markov 
models, fuzzy logic, etc. However, these models can be less 
accurate than the corresponding black box models and they can 
also become opaque for high dimensional inputs [10, 11]. 

An alternative to the above approaches is to use a 
combination of an interpretable model and deep learning 
methods. Deep type-2 fuzzy logic system (D2FLS)  is one such 
approach where the intuition behind autoencoders is combined 
with interpretable type-2 fuzzy systems. In this system interval 
type-2 fuzzy logic systems are arranged in a series are trained in 
the same way stacked autoencoders are trained. i.e, greedy layer 
wise training [12]. The Fuzzy Logic Systems (FLSs) are trained 
one layer at a time using unsupervised learning to learn 
important features or combine features. After all the layers are 
trained a final layer is added and the whole model is retrained 
using supervised learning. 

There are several advantages to the above approach. The first 
is that since fuzzy logic systems use linguistic IF-Then rules it 
makes the system inherently interpretable. The second is that the 
system can be trained using both labelled and unlabelled data. 
The third benefit is that since the system is composed of rules 
and membership functions they can be relatively easily changed 
if there are any problems with them while its opaque 
counterparts can’t be directly changed. 

Combining fuzzy logic with deep learning is not a new 

concept and it has been done in recent years in systems like 

Fuzzy Restricted Boltzmann Machine [13] where the 

connections and biases of a Restricted Boltzmann Machine are 

fuzzy parameters. In Fuzzy Deep Neural Network [14], the 
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Fig. 1.  Interval Type-2 Fuzzy Sets [15] 

fuzzy and neural representations are trained at the same time 

and combined in the final layer. In Fuzzy Deep Belief Network 

[16], a Deep Belief Network (DBN) is trained on the data and a 

fuzzy membership is designed for each of the output of the 

DBN, etc. The problem with these methods is that they have 

been designed to improve the performance of models or handle 

uncertainty in the data and did not focus on the interpretability 

of these systems making them unsuitable for XAI without 

further improvements. Other Fuzzy Logic and Deep Learning 

hybrid techniques such as Takagi Sugeno Deep Fuzzy Network 

(TSDFN) [17] where the authors create a Neural Network with 

all the hidden nodes as Takagi Sugeno Fuzzy Logic systems 

and others like Fuzzy Deep Learning [18], etc. can be 

interpretable but they can also become opaque for high 

dimensional inputs. 
In Section II, we present a brief overview of the Interval 

type-2 fuzzy logic system. Section III will present a brief 
overview of Stacked Autoencoders. Section IV will present the 
proposed Deep Type-2 Fuzzy Logic system. Section V will 
present the experiments and results. Finally, Section VI will 
present the conclusions and future work. 

II. A BRIEF OVERVIEW OF INTERVAL TYPE-2 FUZZY LOGIC 

An Interval Type-2 Fuzzy Logic System (IT2FLS) is 

characterized by a Membership Function(MF) 𝜇(𝑥)  where 

each element of this set is a fuzzy set in the interval [0,1] and 

the third dimension of these fuzzy set is set to 1 (depicted in 

Fig. 1). A Type-1 fuzzy logic system, on the other hand, is 

characterized by a type-1 fuzzy set where each element of this 

set is a number in the interval [0,1] [19-25]. 

The IT2FLS works in the following way: In the first step the 
inputs are fuzzified into interval type 2 fuzzy sets, the inference 
engine then activates the rule base using the input interval type 
2 fuzzy sets and produces output interval type 2 fuzzy sets and 
in the final step the output interval type 2 fuzzy sets are 
defuzzified into crisp numbers[26-28]. 

There are two methods for defuzzify interval type 2 fuzzy 
sets into crisp numbers. The first method is a two-step process 
where first the output type 2 fuzzy sets are type reduced into 
type-1 fuzzy sets followed by defuzzification of the type reduced 
sets. The second method is a single step process called direct 
defuzzification [19].  

D2FLS uses the type reduction method proposed by Nie and 
Tan [29] and weighted scaled dominance approach [30] for 
regression and classification datasets respectively. 

III. A BRIEF OVERVIEW OF STACKED AUTOENCODER 

 

Fig. 2.  Stacked Auto Encoder [31] 

An Autoencoder tries to reconstruct an approximation of the 
input at the output i.e, the target output is the input of the model. 
Given a set of training samples [𝑥1, 𝑥2, . . , 𝑥𝑗], where 𝑥𝑖 ∈ 𝑅, the 

autoencoder first encodes the input 𝑥𝑗 to a hidden representation 

𝑦(𝑥𝑗) based on equation (1), then it decodes the representation 

𝑦(𝑥𝑗) back into a reconstruction of the input 𝑧(𝑥𝑗) based on (2). 

 1 1( ) ( )y x f W x b= +  (1) 

 2 2( ) ( ( ) )z x g W y x b= +  (2) 

The intuition behind this is to restrict the number of neurons 
in the hidden layer so that the model is forced to learn important 
features of the inputs or compress the inputs. 

A stacked autoencoder(SAE) is a deep neural network 
depicted in Fig. 2, and it is created by stacking autoencoders. To 
explain it more clearly, consider an SAE with 𝑙 layers, the first 
layer is trained like an autoencoder. Once this is done the first 
hidden layer becomes the input of the next Autoencoder. 

Similarly, after training the 𝑘𝑡ℎ hidden layer, the output of this 

layer is used as the input for the (𝑘 + 1)𝑡ℎ hidden layer. Once 
all the hidden layers are trained the output layer is added to the 
SAE and then all the layers are retrained using labelled data. 
This training method is called greedy layer-wise training [12]. 

IV. DEEP TYPE-2 FUZZY LOGIC SYSTEM 

The Deep Type-2 Fuzzy Logic System (depicted in Fig. 3) 

consists of two or more FLSs where the output of the first FLS 

is the input of the second FLS and the output of the second FLS 

is the input of the third FLS and so on. This structure helps the 

D2FLS to have a low number of rules to reduce the complexity 

of the system. This mitigates one of the problems with modelling 

datasets with a large number of features using FLSs i.e, a FLS 

might require a large number of rules to model these datasets. 

The D2FLS is trained similar to the way stacked 
autoencoders are training i.e, using greedy layer-wise training 
[12]. The training is done using Big Bang Big Crunch algorithm 
(BB-BC) [32] instead of gradient descent algorithms. Each FLS 
layer is called a Fuzzy Autoencoder (FAE) (Depicted in Fig. 4) 
and is trained like an autoencoder. The two parts of the FAE are 
represented as follows: 

 ( )h f x=  (3) 

Where ℎ is a vector that represents the output of the encoder 

and 𝑓(𝑥) represents the encoder. 

 ˆ ( )x g h=  (4) 
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Where �̂� is the output of the decoder i.e, the reconstructed 

input. 

To simplify the training process for the FAE the membership 
functions of the antecedents of the decoder are formed from the 
MFs which represent the consequents of the encoder. The 
consequents of the decoder are formed from the MFS that form 
the antecedents of the encoder  

A. Fuzzy Autoencoder Training 

The MFs and rule base of the Fuzzy Autoencoder are trained 

using the BB-BC algorithm and the training is comprised of 

three steps. In the first step, the MFs of the encoder and the 

decoder are trained as a type-1 fuzzy logic system. In the second 

step, the type-1 fuzzy sets of the model created in the previous 

step are transformed into interval type-2 fuzzy sets and in the 

final step, the rule bases of both the encoder and decoder are 

retrained. Once the training is completed the decoder of the 

FAE is discarded and the next FLS layer is similarly trained 

with the outputs of the previous layer as the inputs. We do this 

until the required number of FAEs are trained. 

1) Optimize Type-1 Fuzzy Autoencoder 

In this step, we train a type-1 FAE using BB-BC and the 

membership functions and rules are encoded in the following 

format to create the individuals of the BB-BC algorithm. The 

MFs for each input or output is encoded in the following format 

based on the number of fuzzy sets per input or output. 

 1 1 2 2

1 2 1 2 1 1, , , ,.., ,j j

iM m m m m m m=  (5) 

Where 𝑗  represents the number of fuzzy sets per 

input/output. This is depicted in Fig. 5. The first value and the 

last value of 𝑀𝑖 is always set to 0 and 1 respectively and all 

inputs and outputs are normalized between 0 and 1. 

Each rule of the FLS is encoded using the below 
representation. 

 1 1

1 2 1 2 1, ,.., , , ,..,a a

l bR r r r r c c=  (6) 

Where 𝑅𝑙  represents the 𝑙𝑡ℎ  rule with each rule having 𝑎 

antecedents and 𝑏 consequents. Each antecedent is represented 

by 2 values the first represents the index of the 𝑖 inputs and the 

second point represents the 𝑗𝑡ℎ  fuzzy set of the input from 

Equation (5). 

Finally, we use Equations (5) and (6) together to represent 
the FAE using below. 

 
1 1,.., ,.., , ,..,e e e e e

n i i k lE M M M R R+=  (7) 

 
1, ,..,d d

x lFAE E R R=  (8) 

Where 𝑖 is the number of inputs, 𝑘 is the number of hidden 

output, 𝑅𝑙
𝑒 are the rules for the encoder and 𝑅𝑙

𝑑 are the rules for 

the decoder. 

2) Transform T1MFs to IT2MFs 

 
Fig. 5.  Representation of a Footprint of uncertainty (FOU)  

In this step, we transform the type-1 fuzzy sets of the FAE 

into interval type-2 fuzzy sets using BB-BC by adding a 

Footprint Of Uncertainty (FOU) to the start and end of the fuzzy 

sets of the antecedents and the consequents as depicted in Fig. 

5 while retaining the parameters from the previous step. The 

FOU parameters are encoded in the following format. 

 
1 1 ( 1) ( )

1 ,.., ,.., , ,..,i i i k

j jF f f f f f+ +=  (9) 

Where the model has 𝑖 inputs and 𝑗 fuzzy sets per inputs and 𝑘 

fuzzy sets for the output. 

3) Optimizing the Rule Base of the IT2 FAE 

In this step, we retrain the rules of the FAE using the BB-BC 

algorithm. The rules of the encoder and decoder are encoded in 

the following format while retaining all the other parameters 

from the previous step. 

 
1 1,.., , ,..,e e d d

n l lRL R R R R=  (10) 

Where 𝑅𝑙
𝑒 are the rules for the encoder and 𝑅𝑙

𝑑 are the rules for 

the decoder. 

B. Optimization method for the Final layer 

To train the full D2FLS, we first train a set of FAEs and then 

add the final layer and retrain the whole system using labeled 

data using. Hence, this part of the training is supervised. This 

step is similar to the way FAEs are trained i.e, we train the 

D2FLS using the same three steps. 

1) Optimize the Type 1 Final Layer 

In this step, we train the final layer as a Type-1 FLS while we 

retrain the MFs and rules of the set of encoders trained in the 

previous step using BB-BC algorithm. The MFs and rules are 

encoded in the following format. 

 

Fig. 4.  Fuzzy Autoencoder Architecture 

 

 

Fig. 3.  A Deep Type-2 Fuzzy Logic System Architecture  
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 1 1 1 ( ) 12 ,.., , ,.., ,... , ,..,f f f f f

n o p xD FLS E E M M M R R+=  (11) 

Where 𝐸𝑛 represents the MFs and rules of the encoder parts of 

the FAEs created using Equation (7), 𝑜 represents the number 

of inputs to the final layer, 𝑝 represents the number of fuzzy 

sets for the outputs and 𝑥 represents the number rules in the 

final layer. 

2) Transform T1MFs of the final layer into IT2MFs 

In this step, we transform the type-1 MFs of the final layer into 

IT2MFs and retrain the IT2MFs of the encoders using BB-BC 

algorithm. This step is similar to the way we the FOUs were 

added to the MFs of the FAEs (depicted in Fig. [FOU]). The 

parameters are encoded in the following format. 

 
1 ( 1) ( )

1 1,.., , , ,.., , ,..,o o o p

fl n jFOU F F f f F F+ +=  (12) 

Where 𝐹𝑛  represents the FOUs for the 𝑛  encoders, 𝑜 

represents the number of inputs of the final layer with each 

input having 𝑗  fuzzy sets and 𝑝  represents the number of 

outputs of the final layer. 

3) Optimizing the IT2 rule base of the D2FLS 

In this step, we retrain the rules of the final layer along with the 

rules of 𝑛  encoders using the BB-BC algorithm. The 

parameters for this step are encoded in the following format. 

 
1 1,.., ,.., ,..,f f

n xRules RL RL R R=  (13) 

 Where 𝑅𝐿𝑛  represents the rules of the encoders, 𝑥 

represents the number of rules for the final layer. 

C. Method for Extracting Explanations from the D2FLS 

In this section, we provide details of the method used to 

extract simple interpretable explanations, i.e., provide a 

qualitative understanding of the relationship between the input 

features and the output [9]. The algorithm used to create these 

explanations is suitable for a two-layer D2FLS but they can be 

extended for multiple layers. 

For generating the explanation (depicted in Fig 6) a 

compound input for the final layer based on the rules that 

contribute the most to the outputs of the first layer is created. 

For example, in Fig 6 the output H00 of the first layer is named 

Low loans_2, Mid Rank_2 and Low Contractor_2 because this 

rule contributes the most (67%) to this output, there are five 

other rules that contribute to this output (depicted in Fig 7) but 

their contribution is smaller. We can then use these compound 

inputs to find out the relationship between the output and the 

input features. For example, in Fig 6, the rule which contributes 

54% to the output is composed of 2 compound inputs (High 

Missapp_2, Mid Rank_2 and Mid Rank_0) and (Low loans_2, 

Mid Rank_2 and Low Contractor_2). We can then use the same 

method for the second rule (29% contribution) which is 

composed of one compound input (Low loans_2, Mid Rank_2 

and Low Contractor_2). We can of course drill down further 

but this should provide an easy to understand the interpretation 

of the D2FLS. These values are computed as follows: 

 *g g

n n nR F c=  (14) 

 *g g

n n nR F c=  (15) 

Where 
nF  and nF  represent the upper and lower firing 

levels of the nth rule and g

nc represents the gth consequent of the 

nth rule of the final layer.  

 ( ) / 2g g g

navg n nR R R= +  (16) 

 
1

/ *100
n

g g g

nval navg navg

n

R R R
=

=   (17)     

We use equation (17) to calculate the values for each of the rule 

and consequent combinations for the final layer.  

 *h h

l l lR F c=  (18) 

 *h h

l l lR F c=  (19) 

Where 
lF  and lF  represent the upper and lower firing levels 

of the lth rule and h

lc represents the hth consequent of the lth rule 

of the first layer.  

 ( ) / 2h h h

lavg l lR R R= +  (20) 

 
1

/ *100
l

h h h

lval lavg lavg

l

R R R
=

=   (21) 

We use the Equation (21) to calculate the scores for the first 

layer and an example of these values are depicted in Fig 6. 

 
Fig. 6.  Detailed explanation 

 

 
Fig. 7.  Detailed explanation for one hidden output 
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V. EXPERIMENTS AND RESULTS 

In this paper, the D2FLS model is compared to a Sparse stacked 

autoencoder (SSA) and a multi-layer perceptron (MLP). We 

use 4 datasets for these experiments. The first two are 

regression datasets and their details are below. 

• BT PWA (BTP): The sixth dataset is collected from 

British Telecom in the UK. The data consists of around 

30000 records and 44 attributes and the data was used in 

the following papers [33] 

• Swiss Premium (SP): This dataset is from health 

insurance premium prediction. This dataset consists of 

around 200,000 records with 199 inputs. We used 100000 

records for unsupervised training and the other 100000 

records for supervised training. For more details about 

this dataset please refer to the following [34]. 

We use Mean Absolute Error (MAE) as the fitness function 

for the above two regression datasets. 

 1
ˆ| |

n

i ii
y y

MAE
n

=
−

=


 (22) 

The other two dataset are binary classification datasets and 
their details are given below. 

• Santander CTP (SCTP): This dataset is from Santander. 

It is a binary classification problem where we try to 

identify which customer will make a transaction, it 

consists of around 400,000 records with 200 inputs [35]. 

We used 200,000 records for unsupervised training and 

200,000 records for supervised training. 

• BT Customer Service (BTCS): The dataset is supplied by 

BT and the data is about predicting whether a customer 

service call is about their broadband connection or not. 

The data consists of about 100,000 records with 500 

attributes. We used 50000 records for unsupervised 

training and 50,000 records for supervised training. 

We use Average Recall as the fitness function for the above 

2 classification datasets. 

 
positive

tp
Recall

tp fn
=

+
 (23) 

Where True positive 𝑡𝑝 is the number of correct positive 

predictions and False negative 𝑓𝑛 is the number of incorrect 

negative predictions. 

 
negative

tn
Recall

tn fp
=

+
 (24) 

Where True Negative 𝑡𝑛 is the number of correct negative 

predictions and False Positive 𝑓𝑝 is the number of incorrect 

positive predictions. 

 
2

positive negative

avg

Recall Recall
Recall

+
=  (25) 

Where 𝑅𝑒𝑐𝑎𝑙𝑙𝑎𝑣𝑔 represents the Average recall for a binary 

classification problem. 

All the inputs and outputs of these datasets were normalized 

between 0 and 1. We then randomly divided the training part of 

the datasets into three parts: 70% of the data is used for training, 

15% of the data is used for validation and the last 15% of the 

data is used for testing. 
The sparse stacked autoencoder was trained using greedy 

layer-wise training[12]. We used 2 hidden layers with 100 and 
15 neurons each. Adam Algorithm [36] was used for training the 
SSA and we set the learning rate as 0.001, beta 1 as 0.9 and beta 
2 as 0.999 and trained it for 200 epochs. 

The Multilayer perceptron we used had 1 hidden layer with 
15 neurons in the hidden layer. And we used Adam Algorithm 
for training the MLP with the same parameters as the SSA. 

The Deep Type 2 Fuzzy Logic System we used had 2 layers 
with 100 rules and 3 antecedents per rules for each layer and 3 
MFs per input. For the regression datasets, the first layer had 50 
outputs and for the categorical datasets, the first layer had 30 
outputs. For the BB-BC algorithm, we used 30 individuals with 
500 iterations as parameters. 

We then trained the three models on the two categorical 
datasets 5 times and the mean and standard deviation of the 
MAE of these runs is calculated and shown in Table I. Similarly, 
for the two regression datasets we trained the trained the models 
5 times and the mean and standard deviation of these 5 runs were 
calculated and shown in Table II. 

From Table I, we can see that the D2FLS is within 6% of the 
SSA and MLP in the BT customer service dataset and performs 
within 2 % in the other classification dataset. From Table II, we 
can see that the D2FLS model performs reasonably well when 
compared to the SSA and MLP models on the regression 
datasets. This shows that the D2FLS provides good performance 
when compared to its opaque deep learning counterparts while 
providing us with good interpretability as seen from Fig 6 and 7. 

VI. CONCLUSIONS AND FUTURE WORK 

The widespread use of Artificial Intelligence models has 

necessitated the emergence of a new line of research focused on 

developing explainable AI tools. A majority of this research has 

been focused on existing interpretable models, model induction 

or deep explanation methods to solve this problem.  

    We argued that there is an alternative method available 

which combines the power of Deep learning method with the 

interpretability and flexibility of interpretable models. We 

outlined the proposed Deep Type-2 Fuzzy Logic system which 

aims to solve this problem for high dimensional inputs. We 

showed that this model performs well and provides comparable 

results to those achieved by Stacked autoencoder and Multi-

layer Perceptron. This is especially true in categorical datasets 

where it performs within 5 percent of the other two models.  

TABLE II.  COMPARISON OF THE MODELS OVER THE CATEGORICAL 

DATA 

Dataset 

Mean 

MAE 

D2FLS 

Std of 

MAE 

D2FLS 

Mean 

MAE 

SSA 

Std of 

MAE 

SSA 

Mean 

MAE 

MLP 

Std of 

MAE 

MLP 

CTP 63.16% 1.57 64.77% 2.24 65.5% 0.67 

BTCS 69.37% 0.05 75.84% 0.01 74.63% 0.03 

 

TABLE I.  COMPARISON OF THE MODELS OVER THE REGRESSION 

DATA 

Dataset 

Mean 

MAE 

D2FLS 

Std of 

MAE 

D2FLS 

Mean 

MAE 

SSA 

Std of 

MAE 

SSA 

Mean 

MAE 

MLP 

Std of 

MAE 

MLP 

BTP 0.057 0.0052 0.038 0.0003 0.038 0.0002 

SP 0.0474 0.0051 0.0268 0.0014 0.026 0.0003 
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    The proposed method the D2FLS is a good approach to 

solving high dimensional problem where there is a need to train 

from labelled and unlabeled data and where the interpretability 

of the model is especially important. Hence, we can conclude 

that hybrid deep learning and fuzzy logic approaches are a key 

component in making Artificial intelligence models 

trustworthy and ultimately more useful. For future work we 

propose to extend the D2FLS model to cater to image 

classification and natural language processing. 
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