
Using AI for Closed-Loop Control of a Buck Converter Application

Marvin Slippens1, Christian P. Dick1

1 TH Köln - University of Applied Sciences, Germany

Corresponding author: Christian P. Dick, christian.dick@th-koeln.de

Abstract
This paper addresses the training of an artificial intelligence (AI) to control the transistor state of a buck

converter the most efficient way. For this purpose, a buck converter simulation script was implemented in

python. Afterwards, a reinforcement learning agent was trained to provide the optimal duty cycle for the

PWM. The trained agent was then tested in the python environment.

1 Introduction

The increasing significance of AI for optimization

tasks found an useful application field in DC

converters, which show non-linear behaviour. The

project objective is to train an AI to provide optimal

duty cycles for the backend PWM to obtain a

fast and accurate closed-loop control for a buck

converter as shown in Fig. 1. The transient state

of a buck converter shows non-linear behaviour

with regards to two discrete switching states and

possibly discontinuous conduction mode. When

implementing its control strategy for the output

voltage uR , there is a trade-off between a

short rise time and the overshoot of the voltage.

Reinforcement learning, as a sub-field of AI is

predestined to solve for the optimal solution of

this non linear problem field. Initially, a python

simulator for the ideal buck converter behaviour was

implemented. The AI was configured and trained in

this environment to obtain an understanding of the

system’s interdependencies.

2 Reinforcement Learning

Reinforcement learning (RL) is a subfield of

machine learning, which is a subfield of AI. The

basic idea is to have a so-called agent, who

takes actions in an environment. The environment

responds to this actions with giving the agent

information about its state. According to the agent’s

task, the state information is used to tweak its

strategy. The basic principle is shown in Fig. 2.

Fig. 1: Buck Converter

Fig. 2: Reinforcement principle

PCIM Europe digital days 2020, 7 – 8 July 2020

ISBN 978-3-8007-5245-4 © VDE VERLAG GMBH · Berlin · Offenbach1501

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 08:18:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Advantage Actor Critic

This project uses the A2C (Advantage Actor Critic)

reinforcement learning algorithm to train the agent.

The main principle of the A2C is shown in Fig. 3.

The RL-agent performs n actions in the environment

under current policy and samples the n states and

rewards. These samples, are fed into the neuronal

network, which consists of an actor and a critic.

Backpropagation is used as a learning technique

to tweak the parameters of the neurons such as

weights and biases. In this way the state value

function V π(s) will be parametrized by the neuronal

network (Critic). While training, the estimated value

of the state value function will approach the real

value of the state value function. With the state

value function the advantage will be calculated. The

actor uses the estimated advantage of the critic to

adjust its policy via a policy gradient method [1].

3 Python simulator

For the training part of the agent an environment

was set up in python. It simulates the behaviour of

an ideal buck converter. Each action of the agent

will lead to an evaluation of the following state space

representation: Eq. (1) is used to compute the ON

state, while eq. (2) describes the OFF state with

activated diode and eq. (3) shows the case with

switch and diode both turned OFF.

d

dt

(
I0
uR

)
=

(
0 −L−1

C−1 −(CR)−1

)(
I0
uR

)
+

(
L−1

0

)
·Uin

(1)

d

dt

(
I0
uR

)
=

(
0 −L−1

C−1 −(CR)−1

)(
I0
uR

)
+

(
0
0

)
· Uin

(2)

d

dt

(
I0
uR

)
=

(
0 0
0 −(CR)1

)(
I0
uR

)
+

(
0
0

)
· Uin (3)

The python simulator acts as the environment which

is depictetd in Fig. 2. As input it takes the action

from the agent at, namely the duty cycle. In

accordance with the reward function denoted in

table 1 the reward rt+1 is calculated. This reward

and the result of the simulation is then passed as a

tuple (St+1,rt+1) to the agent.

4 Networks’ architecture and
configuration

The actor’s network architecture is shown in Fig. 4.

The critic’s network architecture is displayed in Fig.

5. The blocks in these figures represent the different

layers. The input layers are made up of two neurons,

representing the two dimensional input data. The

question marks represent the number of samples

which are fed into the layers at once. The hidden

layers consists of 100 neurons. Table 1 shows

the hyperparamter and additional information of the

reinforcement learning process. The parameters of

the buck converter, which are used in the python

simulator, are summarized in table 2. The hidden

layers use relu as activation function. The output

layer of the critic uses a linear activation function.

The mu output of the actor network uses tanh for

activation whereas the sigma output also uses

linear activation function. In each step the current

pair of (output voltage, inductor current) are fed

into the first layer of the actor and critic network.

The layers are all feed-forward connected. The

actor network features two output neurons, namely

mu and sigma. These are used to compute a

normal distribution. Afterwards a random sample

of this distribution is drawn, which is then used

as the action. The critic outputs its estimation

of the reward and is only used for updating the

weights and biases of the neuronal net. The reason

why two hidden layers are used is due to the fact

that neuronal networks with two hidden layers can

PCIM Europe digital days 2020, 7 – 8 July 2020

ISBN 978-3-8007-5245-4 © VDE VERLAG GMBH · Berlin · Offenbach1502

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 08:18:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Actor model architecture

Fig. 5: Critic model architecture

represent an arbitrary decision boundary to arbitrary

accuracy with rational activation functions and can

approximate any smooth mapping to any accuracy

[2].

5 Training and testing results

The training goal for the agent was to control the

mean output voltage of the buck converter uR to

12 V with 24 V as input voltage. After finishing each

epoch the voltages and currents of the simulation

were set to zero. This forces the agent to pass

the transient phase periodically. Fig. 6 shows

the reward which was obtained during the training

process. In each step the maximum reward is one

which can be concluded by the reward function in

table 1. One epoch consists of 200 steps which

leads to an optimal reward value of 200 per epoch

when summing up the rewards. This value is

approached during the training. In Fig. 7 the

courses of the output voltage, the inductor current

and the duty cycles are presented. It can be stated

Fig. 6: Reward progression over 12000 epochs

that the output voltage retains at the target output

voltage of 12 V after the transient phase. The

inductor current holds its analytical steady state

value of 2.4 A accordingly. The reason for this

course of voltages and currents has its origin in

the actions being taken by the agent. The agent

chooses 0.5 as duty cycle for the steady state,

which is the analytical optimum. The main focus of

interest in this project lies in control of the non-linear

transient phase of the buck converter. Fig. 9 shows

the output voltage during the transient phase. The

peak overshoot is 12.3363 V which is equivalent

to an overshoot of 2.8 %. The actions which led

to this outcome as well as the transient course of

the inductor current are displayed in Fig. 8. The

steady state is reached after 170 μs which equals

17 periods.

6 Conclusion

During the project, the buck converter simulation

script was implemented using python. Furthermore,

the OpenAI Gym interface was set up and the RL-

agent was coded from scratch. The results show

that the agent learnt to control the output voltage uR

to meet the target output voltage. The actions taken

by the agent can be classified as optimal during

the steady state as they met the analytical optimal

value. When analyzing the transient behaviour one

can argue that there is an overshoot of the voltage.

Throughout the development of the agent other

results without an overshoot were produced. In

PCIM Europe digital days 2020, 7 – 8 July 2020

ISBN 978-3-8007-5245-4 © VDE VERLAG GMBH · Berlin · Offenbach1503

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 08:18:52 UTC from IEEE Xplore. Restrictions apply.

Tab. 1: Parameter used in training

Configuration

Parameter Value

Maximum epochs 6000

Length of epoch 200

Gamma 0.9

Actor learning rate 1e-6

Critic learning rate 1e-6

Batch size 32

Optimizer Adam

Reward function e−|target output voltage−actual output voltage|

Fig. 7: Course of output voltage, inductor current and
duty cycles

Fig. 8: Transient course of inductor current and duty
cycles

Tab. 2: Parameter of buck converter simulator

Configuration

Parameter Value

Uin 24 V

Rl 5 Ω
L1 180 μH

C1 10 μF

Switching frequency 100 kHz

Fig. 9: Transient phase of the output voltage

direct comparison with the here displayed agent it

can be stated, that the reward here was higher. This

concludes that accepting an overshoot to meet the

target output voltage faster yields in a smaller sum

of deviations from the target output voltage, which

was the goal of the agent from the very beginning.

7 Outlook

The current work shows the possibilities of using

AI. Especially using algorithms which support

continuous action spaces can be beneficial for

finding optimal solutions. One aspect to be followed

is to train the agent to control the output voltage

during changes of the load or input voltage. After

training the agent to cope with major influences

which occur in real life systems, we expect a trained

AI featuring high performant transient behaviour,

being visible in time dependent duty cycles leading

to a short rise time of the target output voltage

while maintaining high accuracy with low overshoot

PCIM Europe digital days 2020, 7 – 8 July 2020

ISBN 978-3-8007-5245-4 © VDE VERLAG GMBH · Berlin · Offenbach1504

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 08:18:52 UTC from IEEE Xplore. Restrictions apply.

as well as controlling the output to the target value

during disruptions and changes of circumstances.

Finally the AI will be ported to a microcontroller for

testing on hardware.

References

[1] D. John Pradeep, Mathew Mithra Noel, N.

Arun, ”Nonlinear control of a boost converter

using a robust regression based reinforcement

learning algorithm”, sciencedirect,

https://doi.org/10.1016/j.engappai.2016.02.007

[2] Jeff Heaton, ”The Number of Hidden Layers”,

https://www.heatonresearch.com/2017/06/01/hidden-

layers.html

PCIM Europe digital days 2020, 7 – 8 July 2020

ISBN 978-3-8007-5245-4 © VDE VERLAG GMBH · Berlin · Offenbach1505

Authorized licensed use limited to: Universita Studi di Torino - Dipartimento Di Informatica. Downloaded on September 12,2020 at 08:18:52 UTC from IEEE Xplore. Restrictions apply.

