
Decision Support Systems 69 (2015) 20–30

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss
A collaborative filtering approach for recommending OLAP sessions
Julien Aligon a, Enrico Gallinucci b, Matteo Golfarelli b, Patrick Marcel a,⁎, Stefano Rizzi b

a Laboratoire d'Informatique, Université François Rabelais Tours, France
b DISI, University of Bologna, Italy
⁎ Corresponding author at: Campus de Blois, 3 place J
Tel.: +33 2 5455 2155; fax: +33 2 5455 2141.

E-mail addresses: julien.aligon@univ-tours.fr (J. Aligon
(E. Gallinucci), matteo.golfarelli@unibo.it (M. Golfarelli), p
(P. Marcel), stefano.rizzi@unibo.it (S. Rizzi).

http://dx.doi.org/10.1016/j.dss.2014.11.003
0167-9236/© 2014 Elsevier B.V. All rights reserved.

Downloaded from http://www.elea
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 1 April 2014
Received in revised form 25 November 2014
Accepted 25 November 2014
Available online 3 December 2014

Keywords:
OLAP
Similarity measures
Query recommendation
Personalization
While OLAP has a key role in supporting effective exploration ofmultidimensional cubes, the huge number of ag-
gregations and selections that can be operated on data may make the user experience disorientating. To address
this issue, in the paperwe propose a recommendation approach stemming from collaborative filtering.We claim
that thewhole sequence of queries belonging to anOLAP session is valuable because it gives the user a compound
and synergic view of data; for this reason, our goal is not to recommend single OLAP queries but OLAP sessions.
Like other collaborative approaches, ours features three phases: (i) search the log for sessions that bear some sim-
ilarity with the one currently being issued by the user; (ii) extract the most relevant subsessions; and (iii) adapt
the top-ranked subsession to the current user's session. However, it is the first that treats sessions as first-class
citizens, using new techniques for comparing sessions, finding meaningful recommendation candidates, and
adapting them to the current session. After describing our approach, we discuss the results of a large set of effec-
tiveness and efficiency tests based on different measures of recommendation quality.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

OLAP is the main paradigm for accessing multidimensional data in
data warehouses. To obtain high querying expressiveness despite a
small query formulation effort, OLAP provides a set of operations (such
as drill-down and slice-and-dice) that transform one multidimensional
query into another, so that OLAP queries are normally formulated in the
form of sequences called OLAP sessions [1,2]. During an OLAP session
the user analyzes the results of a query and, depending on the specific
data she sees, applies one operation to determine a new query that will
give her a better understanding of a business phenomenon. The resulting
query sequences are strongly related to the user's skills, to the analyzed
phenomenon, to the current data, and to the OLAP tool adopted.

While it is universally recognized that OLAP tools have a key role in
supporting flexible and effective exploration of multidimensional cubes
in datawarehouses, it is also commonly agreed that the huge number of
possible aggregations and selections that can be operated on data may
make the user experience disorientating. Different approaches were
taken in the literature to address this issue; in particular, in the area of
personalization, both preference-based (e.g., [3,4]) and recommenda-
tion techniques (e.g., [5,6]) were specifically devised for OLAP systems.

In this paper we are specifically interested in recommendations. The
original claim underlying our approach is that anOLAP session issued by
ean Jaurés, 41000 Blois, France.

), enrico.gallinucci2@unibo.it
atrick.marcel@univ-tours.fr

rnica.ir
a user is not just a casual path aimed at leading her to a single, valuable
query (the one at the end of the session). Indeed, as stated in [7]with ref-
erence to clickstream analysis, path data contain information about a
user's goals, knowledge, and interests. Undoubtedly, in the case of OLAP
interactions, sessions are first-class citizens: the whole sequence of
queries belonging to a session is valuable in itself, because (i) it gives
the user a compound and synergic view of a phenomenon; (ii) it carries
more information than a single query or set of queries by modeling the
user's behavior after seeing the result of the former query; and (iii) sev-
eral sessionsmay share the same query but still have quite different anal-
yses goals. For these reasons, like done in [8] for recommending sets of
pages to users of a Web site, we propose an approach whose goal is not
to recommend single OLAP queries, but rather OLAP sessions. Some
existing approaches recognize that sessions carry much more informa-
tion about users' behavior than queries and recommend OLAP queries
based on an analysis of past sessions (e.g., [2]); still, like all the other pre-
vious work on OLAP recommendation, they are focused on suggesting
only single queries to users. In this sense our approach is highly innova-
tive in the OLAP field, and therefore it requires brand new techniques.

Consistently with collaborative filtering approaches, our goal in de-
ciding which sessions to recommend is to reuse knowledge acquired
by other users during previous sessions. So let scur be the current user
session for which we have to give a recommendation, and L be the
session log. The approach we propose features three phases: alignment
(search L for sessions that are similar to scur and optimally align each
of them with scur), ranking (extract from the selected sessions the com-
mon subsessions and rate them according not only to their degree of
similarity with scur, but also to how frequent they are in L), and fitting
(adapt the top-ranked subsession r to scur and recommend the resulting

http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2014.11.003&domain=pdf
http://dx.doi.org/10.1016/j.dss.2014.11.003
mailto:julien.aligon@univ-tours.fr
mailto:enrico.gallinucci2@unibo.it
mailto:matteo.golfarelli@unibo.it
mailto:patrick.marcel@univ-tours.fr
mailto:stefano.rizzi@unibo.it
Unlabelled image
http://dx.doi.org/10.1016/j.dss.2014.11.003
Unlabelled image
http://www.sciencedirect.com/science/journal/01679236
www.elsevier.com/locate/dss

21J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
session r′). To assess session similarity we readapt the alignment-based
similarity function specifically devised for OLAP sessions in [1]. Note
that OLAP users are normally grouped into profiles (e.g., CEO, marketing
analyst, departmentmanager); in this case, the session log can easily be
partitioned by profiles so that each user can get recommendations
based on sessions performed by users that share their background and
expertise.

The qualifying properties of the recommendations we aim to give
are relevance: this is obtained by ranking the log subsessions according
to their frequencies so as to identify a dense area of analysis that could
be interesting for users; foresight: this is achieved by allowing even a
subsession that is “far” from the alignment point with the current
session (i.e., intuitively, far in the future) to be recommended; novelty:
thanks to the fitting phase, the recommendation we give may not be a
part of the log; and suitability: during the fitting phase, the top-ranked
subsession found in the log is adapted to the current session.

The paper outline is as follows. After discussing the related literature
in Section 2, in Section 3 we introduce a formalization for multidimen-
sional schemata, OLAP queries, and sessions. In Section 4we present our
approach to recommendation and describe its phases,while in Section 5
we discuss the results of experimental tests. Finally, Section 6 draws the
conclusions.

2. Related work

Recommender systems [9] are now well established as an informa-
tion filtering technology and used in a wide range of domains. They
are traditionally categorized as either content-based (suggestions are
based on the user's past actions only), collaborative (suggestions are
based on similarities between users), or hybrid combinations.

A comprehensive survey of collaborative recommender systems
evaluation is presented in [10]. Recommender systems are mostly eval-
uated with accuracy-based measures [11], typically predictive accuracy
like MAE, or classification accuracy like precision and recall. Accuracy
alone fails to capture the usefulness of recommendations, so other ob-
jective metrics related to suitability are being developed. For instance,
coverage [10,12] is the degree to which recommendations cover the set
of available items and the degree towhich recommendations can be gen-
erated to all users. Novelty directly measures non-obviousness, often by
referring to a fixed list of obvious recommendations, while serendipity
measures how far novel recommendations may positively surprise
users, for instance by reporting the rate of useful novel recommendations.

Recently recommender systems started to gain interest in the data-
base community, with approaches ranging from content-based [13] to
collaborative [14] query recommendation, especially to cope with the
problem of interactively analyzing database instances [15,16]. This prob-
lem is particularly important in a data warehousing context, where one
prominent use of such systems is to analyze the warehouse instance
with OLAP queries as a basis for decision support. In a data warehouse
context, the peculiarities of the multidimensional schema and queries
can be leveraged. In [5], operators are proposed to analyze a query an-
swer by automatically navigating to more detailed or less detailed ag-
gregation levels, in order to detect surprising values to recommend. In
[2], the log is represented as two Markov models: one that describes
the transitions between query patterns (where a pattern is a simplified
query expression) and one that describes transitions between selection
predicates. These two models are used to construct the most probable
query that follows the current query.

More recently, [4] proposes a content-based recommendation
approach that synthesizes a recommendation by enriching the current
query answer with elements extracted from a user's profile. [6] intro-
duces a generic framework for query recommendation, where a dis-
tance measure between sessions is used to compare log sessions with
the current session, and the set of final queries belonging to the closest
log sessions are recommended and ranked according to their distance
with the final query of the current session. [17] proposes to recommend
a graph of former queries, based on the application of the operators of
[5] on the query log, to detect surprising values regarding the current
query answer. In [18], queries are recommended using a probabilistic
model of former sessions, inspired by [2], where a similarity tailored
for OLAP queries is used to group queries.

The existing approaches for query recommendation in data ware-
houses are summarized in Table 1where, for each approach,we indicate
(1) the category of the recommender system: content-based, collabora-
tivefiltering, or hybrid; (2) the source of information, i.e., whether the ap-
proach is log-driven, answer-driven, or both; (3)whether the approach is
session-based and, if so, whether sequential aspects are considered or
not; (4) the query model used, i.e., whether the approach leverages
query expressions or query answers; (5) the technique used to process
the input, i.e., whether the approach is similarity-based, preference-
based, or stochastic; (6) the form (query or tuples) of the recommenda-
tion; (7)whether the recommendation is taken froma log, from the data-
base instance, or from the current query; (8) the technique used to output
the recommendation, i.e., if it is simply selected from the source or if it is
synthesized from it; and finally (9) the metrics used for assessing the
quality of recommendations: accuracy, coverage, novelty, and foresight.

The first lesson learned from this literature review is that sessions
are rarely treated as first-class citizens. Sequential aspects are seldom
taken into account, and no approach ever considered recommending
a sequence of queries. Approaches taking sessions into account
only use them as input, to construct a model subsequently used for
recommending. In addition, the stochastic approaches that consider
sessions use afirst orderMarkovModel, and therefore base their predic-
tions only on the user's current query. Recommendation can be too
much prescriptive (only one query) or too little prescriptive (a graph
of queries). Besides, recommendations are rarely synthesized queries,
but more often queries chosen among past queries stored in some
query log or tuples retrieved from the database instance. Many of the
techniques proposed rely on query answers, which may result in a
poor scalability compared to techniques using only query expressions,
as reported in [14] in the case of databases. Finally, none of the former
approaches assesses the system quality beyond accuracy and coverage.
The approach we propose in this article overcomes these limitations.
Sessions are treated asfirst-class citizens all along the process, query ex-
pressions are leveraged with a similarity tailored for OLAP sessions, the
recommendation is synthesized from the log and the current session,
and the quality of the recommender system is assessed using suitability
metrics.

3. Preliminaries

In this section we define themultidimensional model we will use to
formalize our approach and introduce a working example.

Definition 3.1. Multidimensional schema

A (multidimensional) schema is a couple M = 〈Hier, Meas〉 where:

• Hier is a finite set of hierarchies; each hierarchy hi ∈ Hier is associated
to a set of levels and a roll-up partial order ≻hi of this set of levels;

• Meas is a finite set of measures, i.e., numerical attributes.
Example 3.1. IPUMS is a public database storing census microdata
for social and economic research [19]. Its CENSUS multidimensional
schema has five hierarchies, namely RESIDENCE, TIME, SEX, RACE, and
OCCUPATION, and several measures. It is City≻RESIDENCEState (the
complete roll-up orders are shown in Fig. 1). While the experimental
tests in Section 5 will be carried out on the complete CENSUS schema,
as a working example we will use a simplified schema featuring only
the RESIDENCE, TIME, and SEX hierarchies.

To characterize the workload we consider a basic form of OLAP
query centered on a single schema and characterized by a group-by,
that defines a possible way to aggregate data, and a selection expressed

Table 1
Query recommendation approaches in data warehouses.

Ref. Cat. Input Output Quality

Source Session? Model Tech. Form Source Tech. Metrics
[5] CB Ans. Not seq. Ans. Stoch. Tuples Instance Sel. Acc.
[2] CF Log Seq. Expr. Stoch. Query Curr. Synth. –

[6] H Log Seq. Ans. Sim. Query Log Sel. Acc.
[4] CB Ans. No Ans. Pref. Query Curr. Synth. –

[17] H Log/ans. Not seq. Ans. Stoch. Query Log Sel. Acc.
[18] CF Log Seq. Expr. Stoch. Query Log Sel. Acc., cov.
Our approach CF Log Seq Expr. Sim. Session Log/curr. Synth. Acc., cov., nov., fore.

22 J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
by a conjunctive predicate. To be independent of the details related to
logical design of multidimensional schemata and to query plans, we
express queries using an abstract syntax.

Definition 3.2. OLAP query

A query fragment on schema M = 〈Hier, Meas〉 is either (i) a level
l∈ hi (hi∈Hier), or (ii) a Boolean clause of type l= value, or (iii) amea-
surem ∈Meas. A query on schemaM is a set of fragments q such that:

1. q includes at least one level for each hierarchy hi ∈ Hier; this set of
levels defines the group-by of q;

2. the conjunction of all Boolean clauses in q defines the selection pred-
icate of q;

3. q includes at least one measure; the set of measures q ∩ Meas is the
one whose values are returned by q.

An OLAP session is an ordered sequence of correlated queries formu-
lated by a user on a schema; each query in a session is typically derived
from the previous one by applying an OLAP operator (such as roll-up,
drill-down, and slice-and-dice).

Definition 3.3. OLAP session

An OLAP session is a sequence s= 〈q1, q2,… 〉 of queries on schema
M. A log L is a set of sessions.

Given a session s, wewill denotewith length(s) the number of queries
in s, with s[w] (1 ≤ w ≤ length(s)) the w-th query of s, and with s[v, w]
(1 ≤ v ≤ w ≤ length(s)) the subsession of s spanning from its v-th query
to the w-th one. The last query of s, s[length(s)], is briefly denoted with
s[.], so s[v,.] is the subsession of s spanning from its v-th query to the end.

Example 3.2. An example of query on the CENSUS schema is q={State,
Year, AllSexes, State= TN, AvgCostGas, SumIncTot}. All examples will be
based on a log that consists of 3 sessions, s1, s2, and s3, each including 6
queries. For simplicity, predicates and measures are not changed during
each session, while group-bys are changed as shown in Fig. 2 with refer-
ence to a portion of the multidimensional lattice of the CENSUS schema.

4. Our approach

Let scur be the current OLAP session and L be a log of past sessions. As
sketched in Fig. 3, our approach to compute a recommendation for scur
City

State

Region

AllCities

Race

RaceGroup

MRN

AllRaces

Year

AllYears

Sex

AllSexes

Occ

AllOccs
RESIDENCE RACE

TIME

SEX OCCUPATION

Fig. 1. Roll-up orders for the five hierarchies in the CENSUS schema.
based on L includes three consecutive phases, described in detail in
the following subsections:

1. Alignment, described in Section 4.1, that selects from L a set of ses-
sions that are similar to scur by finding an optimal alignment between
each of them and scur. For each session l in this set, its future is defined
as the subsession of l following the query that has been aligned with
the last query of scur (i.e., with the last query currently issued by the
user). The set of futures obtained in this way constitutes the set F of
candidate recommendations for scur.

2. Ranking, detailed in Section 4.2, that chooses a base recommendation r
as a subsession of a candidate recommendation in F by considering
both its similarity with scur and its frequency in L.

3. Fitting, described in Section 4.3, that adapts r to scur by looking for
relevant patterns in the query fragments of scur and r and using
them to make changes to the queries in r, so as to deliver a recom-
mendation r′.

Noticeably, the user has a possibility of influencing the recommen-
dation by acting on a parameter called minimum foresight, denoted Φ,
used in the ranking phase to select the base recommendation. With
this threshold, the user indicates how distant from the current query
the recommended session should be: higher values result in recom-
mendations being farther from, and less strictly related to, the current
session. Automatically adjusting this value based on the history of the
user interactions with the system is beyond the scope of this work
and is left as future work.

4.1. Alignment

The goal of this phase is to identify in the log L a set F of candidate
recommendations for the current session scur. To do so, first we try to
find an alignment between scur and each session l in L. The alignment al-
gorithmwe adopt is an adaptation of the one thatwas proposed in [1] to
effectively capture the similarities between OLAP sessions; in turn, that
algorithm is based on the Smith–Waterman algorithm [20], whose goal
is to efficiently find the best alignment between subsequences of two
given sequences by ignoring their non-matching parts.

The Smith–Waterman algorithm is a dynamic programming algo-
rithm that computes the optimal alignment between two sequences
s and s′ based on a score matrix. In position (v, w), this matrix reports a
score that expresses how well s and s′ match when they are aligned
Fig. 2. A log for our working example.

image of Fig.�1
image of Fig.�2

Fig. 3. The three recommendation phases.

0

1

2
3

4
5

6
7

8
9

10

0
0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

v

cand

w

Fig. 4. The sigmoid function used for SWcand (|scur| = 10, |l| = 15, ρmin = 0).

23J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
ending in elements s[v] and s′[w]; each score is recursively calculated by
progressively adding the similarities between all pairs of matching ele-
ments in the two sequences (the similarity between two elements can
also be negative, to express that they do not match). Intuitively, the algo-
rithmseeks anoptimal trade-off between the cost for introducing a gap in
the matching subsequences and the cost for including a poorly matching
pair of elements. In the extension proposed in [1] for OLAP sessions, se-
quence elements correspond to queries. A query similarity function,
σque∈ [0..1], is defined as a combination of three components: one relat-
ed to group-bys (based on howdistant the two group-bys are in themul-
tidimensional lattice), one to selection predicates (based on the distance
of the levels on which predicates are formulated), and one to measure
sets (their Jaccard index). A similarity threshold is then used to
distinguish matches from mismatches. Besides, a time-discounting
function is introduced to promote alignments based on recent queries,
and a variable gap penalty is used to discourage discontinuous align-
ments. The output of the alignment algorithm when applied to two
sessions s and s′ is their best alignment a, defined by two matching
subsessions s[vstart, vend] (denoted s(a)) and s′[wstart, wend] (denoted
s′(a)). If an alignment between s and s′ is found we say that s and s′
are similar, denoted s ∼ s′, and their similarity (computed as explained
in [1]), is denoted with σses(a)∈]0..1]. Otherwise it is s ≁ s′.

For our alignment phase we use a variant, denoted SWcand, that
promotes alignments between the end of scur and the beginning of
each log session l, so as to favor log sessions capable of providing a
“long” candidate recommendation. This is achieved by modifying the
two-dimensional logistic sigmoid function originally used as a time-
discounting function as defined below and shown in Fig. 4:

ρcand v;wð Þ ¼ 1− 1−ρmin

1þ e
−20
lj j wþ 5

scurj jvþ 10
scurj j

;

where v is a position in scur, w is a position in l, and ρmin is the minimal
value desired forρcand (i.e., theminimalweight given to query alignments
considered as irrelevant). The constants have been experimentally tuned
in order to answer to the specific desired behavior: −20
lj j defines the pro-

portion of queries in l whose alignment with the last queries of scur has
to be favored; 5

scurj j defines the proportion of queries in scur whose align-

ment with the first queries of s has to be favored; 10
scurj j defines a minimal

weight to consider between the first queries of scur and l.
The pseudocode for the whole alignment process is given in

Algorithm 1. For each log session l such that l ∼ scur (line 2), its future
is determined as the subsession f= l[v+1,.] (line 6) where v is the po-
sition of the last query aligned (line 4). If the last query aligned in scur
is scur[.], i.e., the last query in scur, and l has a non-empty future f (line
5), then f is added to the set F of candidate recommendations (line 7).

Example 4.1. With reference to the log of Example 3.2, sketched in
Fig. 2, let the current session scur be the one whose group-bys, selection
predicate, andmeasure set are shown in Fig. 5 An alignment is found be-
tween scur and each session in the log. In particular, scur is aligned with
log subsessions s1[1, 3] (with similarity 0.15), s2[1, 3] (similarity 0.21),
and s3[2, 3] (similarity 0.29); in the last case, similarity is higher (though
the matching subsession is shorter) because the component of query
similarity related to measure sets is higher. So, in this example the set
of candidate recommendations is F= {s1[4, 6], s2[4, 6], s3[4, 6]}, obtain-
ed by considering the futures of the aligned log subsessions.
4.2. Ranking

The goal of this phase is to examine F to determine themost suitable
base recommendation r, which will then be refined in the fitting phase.
Consistently with collaborative filtering approaches, we identify the
densest areas in F so as to define r as the most relevant subsession in
F. More precisely, this phase requires first to compute pairwise align-
ments between all sessions in F, and to use those alignments to assign
a relevance score to each query q ∈ fi, for each fi ∈ F. Then, a relevance
score is computed for each subsession that has been successfully aligned
in each fi by averaging the scores of its queries. Finally, r is chosen as the
subsession with the highest relevance among those that meet the min-
imum foresight constraint Φ set by the user. Note that the ranking

image of Fig.�3
image of Fig.�4

Fig. 5. A current session, its aligned log subsessions, its candidate recommendations, its base recommendation, and its recommendation.

24 J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
methods normally used in collaborative filtering approaches can hardly
be adapted to the context of databases [14], and even less in our context
because (i) we work with two different levels of aggregation: queries
and sessions; and (ii) we compare objects (queries in our case) in
terms of similarity and not of identity.

The pseudocode for this phase is sketched in Algorithm2. The for loop
starting at line 4 aims at finding, for each candidate recommendation fi,
its subsession yielding the highest relevance score. This is done by first
computing the pairwise alignments between fi and all the other sessions
in Fmaking use of a different version of the alignment algorithm. In this
version, called SWrank, no time-discounting function is used (as we do
not need to favor alignments in particular positions), and every possible
alignment is returned; so, differently from SWcand, the result of
SWrank(fi, fj) is not only the best alignment but a set of alignments Aij be-
tween fi and fj. For each alignment a ∈ Aij, in lines 7–11 we increase the
scores of all aligned queries in fi and fj by the similarityσses(a). Eventually,
the querieswith the highest scoreswill bemarking the densest areas in F,
i.e., those that have been traversed themost by the sessions in F. Then, in
lines from 12 to 17, the query scores are used to compute a score for each
subsession of fi corresponding to an alignment found with another ses-
sion in F. In particular, for subsession fi

(a) aligned in a, its relevance score
is computed as the average score of its queries. To check that the con-
straint onΦ is met, the foresight of fi(a) is estimated in line 15 as the dis-
tance between its last query and the last query of the current session,
weighted on the distance between the whole fi

(a) and scur.

Example 4.2. With reference to ourworking example, the subsession in
F yielding the highest score (0.32) is s2[4, 6], which becomes the base
recommendation r (see Fig. 5).
4.3. Fitting

The goal of this phase is to adapt the base recommendation r to the
current session scurr, i.e., to move r closer to scurr while preserving its
intrinsic logic. This is achieved by characterizing (i) the differences be-
tween scur and its aligned counterpart in the log session l from which r
is extracted and (ii) the user's behavior during scur. These characteriza-
tions adapt the technique of [21], that is itself inspired by label ranking,
a form of classification that has been shown to be effectively handled by
association rules. In [21] we proposed to modify a query using associa-
tion rules extracted from a query log. Our fitting phase therefore con-
sists of extracting association rules from scur and l. Two types of rules,
called Type-1 rules and Type-2 rules respectively, are extracted and
used to transform r as sketched in Algorithm 3. Type-2 rules are those
introduced in [21] and have been proved successful in a similar context,
while Type-1 rules are novel and ensure that the final recommendation
remains focused on the fragments frequently used in the current ses-
sion. The main difference between the two types is the sessions they
are computed from, which impacts the form of the rules.

A Type-1 rule aims at establishing a correlation between a query frag-
ment x (either a measure, a group-by level, or a selection predicate) used
in l and a query fragment y of the same type used in scur, so that r can be
transformed by substituting all occurrences of x with y. These rules take
the form x → y and are extracted from couples formed by a query qi of
scur and qj′, the query of l alignedwith qi (line 1 of Algorithm3). For instance,
session lmay be characterized by a recurrent selection predicate Year =
2013 and be focused on measure AvgCostGas, while session scur may be
characterized by Year = 2011 and measure AvgPerWt; in this case, two
rules (Year = 2013) → (Year = 2011) and AvgCostGas → AvgPerWt
will be extracted aimedatmaking thebase recommendation rmore similar
to the current session by focusing r on 2011 and AvgPerWt rather than on
2013 and AvgCostGas.

Type-2 rules aim at finding query fragments used frequently togeth-
er in scur (line 2), and have the form X → y with X a set of fragments of
scur and y a fragment of scur. For instance, rule {AvgCostGas, (Year =
2011)} → Region captures the fact that the trends of measure
AvgCostGas for 2011 are mainly analyzed in scur on a region-by-region
basis. If in r the same measure for 2011 is analyzed by State instead,
this rule can be used to adapt r by changing query group-bys from
State to Region. Noticeably, letting both types of rules potentially work
with all query fragments ensures that the full range of transformations
between OLAP sessions are covered.

Rules of both types are ranked according to the geometric mean
of the following figures, which have been experimentally selected:
(i) the support of the rule; (ii) the confidence of the rule; (iii) the aver-
age position in scur where the head fragment y appears (to favor recent
fragments); (iv) the support of the head fragment y in scur (to favor fre-

quent fragments). Note that, for Type-1 rules, support is given by supp

image of Fig.�5

25J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
x→yð Þ ¼
qi ;q

0
j

� �
s:t:qi∈scur ;q0j∈l;x∈q0j ;y∈qi

n o���
���

scurj j , while for Type-2 rules it is supp

X→yð Þ ¼ qis:t:qi∈scur ;X∪ yf g⊆qif gj j
scurj j . The confidence of a rule B → H (where B

and H are sets of fragments) is conf B→Hð Þ ¼ supp B∪Hð Þ
supp Bð Þ .

The rules extracted are used to change the fragments Fr shared by all
the queries of the base recommendation r (line 3 of Algorithm 3). This
ensures that the fitting process respects the intrinsic logic of r, without
producing two identical queries in the recommended session. First,
Type-1 rules x → y are considered (lines 5 to 11), in descending order
(line 6), as follows. If fragment x exists in r and not in scur, then this frag-
ment is replaced by y in r. Every modified fragment is marked so as not
to be adapted any more (line 10). Then, Type-2 rules X→ y are consid-
ered (line 12 to 22), in a descending order (line 13), only for changing
the queries that include the rule body X (line 14), as follows. If the
rule head y is a selection predicate or a level and is not already present
in the query (line 15), then it replaces the corresponding fragment
(i.e., the one belonging to the same hierarchy) of the query (line 17).
If y is a measure that is not already present in r (line 19), then it is
added to the measure set of the query (line 21). Like for Type-1 rules,
once a fragment is modified, it is marked so it is not modified anymore
(line 21).

Note that, as an effect of the fitting phase, there is a possibility that
the recommendation produced, r′, includes some queries that are iden-
tical to queries that were part of scur (i.e., queries that the user has al-
ready formulated during the current session). Such a recommendation
would be completely useless. So, in this case, we go back to the ranking
phase and take as a base recommendation the next most relevant
subsession.

Example 4.3. In our working example, the only applicable rules are
the Type-1 rules AvgCostGas → SumIncTot and (Region = MA) →
(Region = Mountain), which transform r into r′ by changing its mea-
sure set and its selection predicate as shown in Fig. 5.
5. Experimental results

This section describes the results of the experimental tests we
performed. After explaining the measures we use to assess the
quality of a recommendation, we describe the techniques we
used to generate session logs for the experiments. Then, we
report and discuss the test results from both the effectiveness
and efficiency points of view.

5.1. Assessing the quality of recommendations

Consistently with the literature on recommender systems (see
Section 2), we assess the accuracy and coverage of our recommender
system first, and then use more elaborated measures to assess the suit-
ability of recommendations.

Accuracy is measured by extending the classical precision and recall
measures to take session similarity into account. Let L be a log and S be a
set of current sessions for which recommendations are to be computed.
Given session s∈ S, let fs be its actual future (i.e., the sequence of queries
the users would have formulated after s[.] if she had not been given any
recommendation) and rs be the future recommended by our system.
Recommendation rs is considered to be correct when rs ∼ fs, i.e., when
it is similar to the actual future of s.

Let FS= { fs ; s ∈ S} and RS = {rs ; s ∈ S}. The set of true positives is
then defined by

TP ¼ rs∈RS ; rs∼ f sf g

i.e., the set of recommended futures similar to their actual counterparts.
The set of false positives is FP = RS\TP and the set of false negatives is

FN = { fs ∈ FS ; fs ≁ rs}. Then, recall is
TPj j

TPjþj FNj j and precision is TPj j
TPjþj FPj j ¼

TPj j
RSj j.

The global accuracy is measured using the F-measure [22]:

F ¼ 2
Precision � Recall
Precisionþ Recall

while the coverage is RSj j
Sj j .

To assess the suitability of a recommendation rs for a current session
s we adopt two more measures. Foresight, measured like in Section 4.2,
indicates how “far” from the current query of s the last query of rs is,
weighted by the distance between the two sessions:

Foresight sð Þ ¼ 1−σque s :½ �; rs :½ �ð Þ
� �

� 1−σ ses að Þð Þ

(where a is the best alignment between s and rs, andσses=0 if no align-
ment can be found).Novelty indicates howdistant rs is from the sessions
in the log:

Novelty sð Þ ¼ minl∈L 1−σ ses a0
� �� �

(where a′ is the best alignment between l and rs).

5.2. Log generation

The benchmarkwe adopted for our tests is based on a set of synthet-
ic logs over the CENSUS schema. The sessions in each log were generat-
ed using CubeLoad, a Java application specifically aimed at generating
realistic workloads [23]. Workload realism is achieved in CubeLoad in
different ways:

• OLAP users are normally grouped into profileswith different skills and
involved in business analyses with different features. Often, a profile
has one or more segregation predicates, i.e., it can only view a specific
slice of the cube data. Both differentiated profiles and specific segrega-
tion attributes are modeled and tunable.

• When a user logs to the OLAP front-end, she is typically shown a page
where some predefined “seed” queries are linked. Sometimes seed
queries include a prompt, meaning that the front-end asks the user
to select one value out of the domain of a level. Both seed queries
and prompts are managed and tunable.

slice-and-drill slice all

explorative goal-oriented

gr
ou

p-
by

selection predicate

Fig. 6. Session templates (seed queries in green, surprising queries in red) in CubeLoad
[23]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

26 J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
• After executing one seed query, the user starts applying a sequence of
OLAP operations that progressively transform a query into another so
as to build an analysis session. In CubeLoad, each session starts with a
random seed query then it evolves by applying at each step one atom-
ic OLAP operation to the previous query.

• Features such as the number of seed queries available, the maximum
size and complexity of reports returned by seed queries (in terms of
dimensionality, size, and number of measures), and the average
length of sessions may significantly depend on the typical ICT skills
and business understanding for the users of each profile — besides
on the quality of the OLAP front-end. All these parameters are fully
tunable for each single profile.

• Some recurrent types of user analyses are normally found in OLAP
workloads. To cope with this, session evolution in CubeLoad is driven
by four predefined templates (see Fig. 6): slice-all, where the value of a
selection predicate is iteratively changed, slice-and-drill, where
sequences of slicing and drill-down operations are executed on
hierarchies, explorative, where sessions quickly move towards one
in a small set of “interesting” queries and then evolve randomly,
and goal-oriented, where each session slowly converges to one final
query chosen from a set of randomly generated ones. These four
templates are uniformly distributed in CubeLoad workloads, and are
completely independent of the parameters described above (number
of profiles, session length, etc.).
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15

Minimum Relevance

Fig. 7. Accuracy vs. coverage trade-off in function of
5.3. Effectiveness tests

This section presents the results of the seven groups of tests we con-
ducted to assess the accuracy and coverage of our recommender system,
as well as the suitability of the generated recommendations. All tests
were conducted on a 64-bits Intel Core i7 quad-core 3.4 GHz, with
8 GB RAM, running Windows 7 pro SP1.

A set of tests on a log L generated by CubeLoad is executed by itera-
tively (i) picking one session s ∈ L; (ii) taking subsession s[1, 4] as the
current session and subsession fs = s[5,.] as its actual future (except
for the third group of tests, where the position of the current query is
varied); (iii)finding a recommendation rs for s[1, 4] using the remaining
sessions, L\{s}, as the log sessions. As explained in Section 5.1, rs is con-
sidered to be correct when rs ∼ fs, non-correct otherwise.

The aimof thefirst groupof testswe carriedwas to tune our approach,
i.e., to determine a good trade-off between accuracy and coverage. To this
end we recall from Section 4.2 that the base recommendation is chosen,
among the candidate recommendations, as the one with the highest rel-
evance score; this suggests to check how often selecting a subsession
with low relevance leads to a wrong recommendation. So in these tests
we gave a recommendation only if the base recommendation had rele-
vance higher than a minimum relevance threshold, otherwise we gave
no recommendation. The results in Fig. 7 show how the accuracy and
coverage change when the minimum relevance increases, on a log of
200 sessions. When the minimum relevance is 0 no filtering of base rec-
ommendations is made, so coverage is about 90%. Expectedly, precision
increases with the minimum relevance, while coverage — and therefore
recall — decrease quite rapidly, meaning that base recommendations
often have low relevance. However, the curve for precision clearly
shows that our approach iswell capable of delivering good recommenda-
tions even out of base recommendations with low relevance. These facts
arewell summarized by the F-measure curve, showing that the best over-
all performance is achievedwhen theminimum relevance is 0. Therefore,
no minimum relevance threshold was posed for all the following tests.

The focus of the second group of tests was to observe how the ap-
proach performs on logs with different characteristics. To this purpose,
we tuned CubeLoad parameters to create two series of logs: the first
one with different densities, the second one with different session
lengths. Note that a clustered log is meant as one with dense groups of
similar sessions (specifically, each session is similar to about 30 other
sessions on average), whereas in a sparse log all sessions tend to be dis-
similar from each other (each session is similar to about 15 other ses-
sions on average). The minimum foresightΦ was set to 0. As shown in
Fig. 8 (top left), the coverage increases as sessions get more clustered,
while precision is not significantly affected; this behavior is consistent
with that of collaborative filtering approaches, where the capability of
20 25 30

Precision

Recall

Coverage

F-measure

the base recommendation minimum relevance.

image of Fig.�6
image of Fig.�7

Fig. 8. Effectiveness vs. log and session features.

27J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
giving a recommendation depends on the quantity of data that matches
the user's query. Also, Fig. 8 (top right) shows that it is hard to give good
recommendations when log sessions are short; indeed, the shorter the
log sessions, the less likely for the recommendation to be similar to
the (even shorter) actual future — therefore, the lower the precision.
As to the average foresight, in these tests it is expectedly low because
Φ = 0. Finally, the average novelty is relatively higher but still it does
not exceed 0.3, again as a consequence of having setΦ= 0; the reason
for this relationship between novelty and Φ will be explained below
(see comments to the fourth group of tests).

The core question of the third group of tests was: which is the best
time in the user's OLAP journey to give her a recommendation? In other
Fig. 9. Effectiveness vs. m
words, we analyzed how the recommendation effectiveness changes
with the length of the current session on a log with medium density
and medium length of sessions (again with Φ = 0). The results in
Fig. 8 (bottom) show that increasing the length of current sessions has
a clear positive effect on accuracy: this is compatible with the intuition
that a longer past is more explanatory of the user's behavior and inten-
tions, thus leading to the delivery of better recommendations.

The fourth group of tests was aimed at measuring the effectiveness
of the parameter Φ set by the user to rule the minimum foresight of
the base recommendation. The log used for these tests is again the one
with medium density and medium length of sessions, and current ses-
sions have length 4. Fig. 9 enables a comparison of the accuracy and
inimum foresight.

image of Fig.�8
image of Fig.�9

0.0

0.2

0.4

0.6

0.8

1.0

20 60 100 140 180 220 260 300 340 380

Si
m

il
ar

it
y

Candidate Recommendation Rank

Fig. 11. Inter-session similarity for increasing rank of candidate recommendations.

28 J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
suitability measures with the fitting phase of our approach switched on
(plain lines) and off (dashed lines); in this regard, some interesting ob-
servations can be made:

• The average foresight of the base recommendation (no fitting) is
always higher than theminimum foresightΦ, which confirms the cor-
rectness of the approach. However, the average foresight of the final
recommendation (withfitting) is slightly lower: in fact,fitting inevita-
bly reduces the foresight by applying modifications that move the
base recommendation closer to the current session.

• Fitting has a strong impact on the recommendation correctness. Not
only precision is improved by fitting when Φ = 0, which indeed is
the motivation for the fitting phase, but the increase in precision
caused by fitting with higher values of Φ is remarkable. The reason
is that, whenΦ is high, the base recommendation tends to be very dis-
tant from the current session, so it is probably not similar to the actual
future; however, fitting is quite effective in making the base recom-
mendation compatible with the current session.

• The novelty of the base recommendation is always very low; this is
expected, as the base recommendation is just a portion of a log ses-
sion, hence it will always have a strong similarity with the session
from which it was extracted. The novelty of the given recommenda-
tion is much higher, indicating that the recommendation is actually
something newwith respect towhatwe have in the log. Interestingly,
the novelty reaches very high values when Φ is also high. This can be
explained by considering that the sessions in the log tend to be clus-
tered into some high-density areas; to achieve a high foresight for a
current session taken from one of these clusters, base recommenda-
tions are mostly chosen from a low-density inter-cluster areas of the
log, so fitting transforms them into something very different from
the other log sessions.

The fifth group of tests investigates how the recommendation accu-
racy changes with continued usage of the system. These tests were
made on the same three logs used for the second group of tests (a sparse
one, a clustered one, and an intermediate one), and the results were
averaged. The sessions in each log were then randomly grouped in
groups of 20: at the first step, the 20 sessions in the first group were
put in the log, and the 20 sessions in the second groupwere used as cur-
rent sessions; at the second step, the 20 sessions in the second group
were added to the log and the 20 sessions in the third group were
used as current sessions; and so on. As a result, the log size is increased
by steps of 20 in a way that simulates real usage of the system. Fig. 10
shows the results. As expected, recall and coverage increase quickly
with the log size; precision is quite stable and above 80% even when
the log is very small.
Fig. 10. Effectiveness vs. log size.
The sixth group of tests is focused on the robustness of the approach
in terms of stability of the recommendation. Fig. 11 shows the similarity
between thebase recommendation and the other candidate recommen-
dations ordered according to their relevance (averaged on groups of
20). The curve smoothly decreases, whichmeans that themost relevant
subsessions, as ranked during the ranking phase, are all quite similar to
each other. This means that small variations in the current session or in
the log features will not drastically change the final recommendation
returned.

Finally, we compared our approach with the one proposed in [6]
(slightly modified to recommend sessions instead of ordered sets of
queries), using a log of 200 sessions with minimum relevance 0 and
minimum foresight 0. The approach of [6] is clearly outperformed
in terms of accuracy, with a precision of 0.52 (against 0.94) and a recall
of 0.52 (against 0.87). This is explained by the fact that this approach
always computes a recommendation (coverage 1 against 0.92) that
is chosen from the log (novelty 0 against 0.18, foresight 0.18 against
0.05).

5.4. Efficiency tests

Computing effective recommendations is useless if they are not
returned in a time frame compatible with OLAP interactions. Fig. 12
shows the execution times for our system considering logs with differ-
ent features. Execution times are split according to the three phases:
alignment, ranking, and fitting. Overall, execution times rarely exceed
50 msec., which is perfectly compatible with a human–computer
interaction.

Before analyzing in more details the system behavior, we
briefly discuss the computational complexity of the three phases.
Algorithm 1 looks for the best Smith–Waterman alignment between
the current session and those in the log, thus its computational com-

plexity is O jLj � v2
� �

where v is the average length of the log sessions

[1]. Algorithm 2 ranks the candidate sessions computing an all-
against-all Smith–Waterman alignment, thus its computational com-

plexity isO jFj2 � v2
� �

where F is the set of candidate recommendations.

Finally, Algorithm 3 applies fitting to the base recommendation; its
computational complexity is mainly ruled by Type-2 rule extraction,
requiring to extract all rules, even infrequent ones, which has an expo-
nential complexity (see e.g., [24]). The time taken remains acceptable

though, since the average number of fragments f that are common to
all the queries of a base recommendation is low. Type-1 rule extraction
is polynomial, due to the nature of the rules extracted. However, Type-1
rule extraction takes as input the set of fragments of both the current

session and the log session, whose size can be greater than f , especially
in the presence of small logs, where the similarity between the log ses-
sion and the current session is likely to be low. Clearly, the execution
time of each phase depends on the one hand on the cost of the basic op-
eration carried out (i.e., alignment for Algorithms 1 and 2), on the other

image of Fig.�10
image of Fig.�11

Fig. 12. Efficiency vs. log features (all times in msec.; unless otherwise stated, all logs have size 200; labels report the average number of candidate sessions).

29J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
hand on the number of times such operation is executed. In the light of
this premise, the following considerations hold:

• The costs for alignment and ranking increase with the log size |L| and
the average session length |v|, which jointly determine the number of
alignments found with the current session.

• Though fitting works on a single session, its cost is predominant due
to the high computational complexity of rule extraction. Unexpected-
ly, the execution time of fitting increases as the log size decreases; this
is due to the fact that the extraction of Type-1 rules is computationally
more expensivewhen the current session is less similar to the log ses-
sion, which is more likely in the case of smaller logs.

• As to the two remaining phases, as suggested by the complexity esti-
mates reported above, the predominance of either alignment or rank-
ing depends on the relationship between |F|2 and |L|: the cost of
ranking tends to become higher than that of alignment for large and
clustered logs, that determine several candidate recommendations
thus making |F|2 N |L|.

As to the comparison with [6], the tests show that our approach is
slightly worse in terms of efficiency (50 msec. against 17.8 msec.) due
to the extra costs paid for the fitting phase; however, as discussed
in Section 5.3, the higher effectiveness largely compensates for this
lower efficiency.

6. Conclusions

In this paper we have proposed a collaborative filtering approach to
recommendation of OLAP sessions that reuses knowledge acquired by
other users during the previous sessions. Like other collaborative
approaches, ours follows a three-phase process, but it is the first that
treats sessions as first-class citizens, using brand new techniques for
comparing sessions, finding meaningful recommendation candidates,
and adapting them to the current session.We have extensively evaluat-
ed it by discussing its efficiency and its effectiveness from different
points of view. Though our approach ensures that the returned recom-
mendations have several desirable properties (such as novelty, rele-
vance, and foresight), we plan to further improve it under different
aspects:

• We have observed that large logs and longer log sessions are neces-
sary to obtain a good coverage (see Figs. 8 and 10). To cope with
this well known cold-start problem, extending our approach with
non collaborative recommendations (like, e.g., [5]) is a promising re-
search direction.

• As shown in Fig. 11, several candidate recommendations with high
relevance can normally be found. Though we have chosen to recom-
mend only the top-1 session, the approach can be easily reworked
to recommend a top-k set of sessions. In this case, the approach effec-
tiveness could benefit from query result diversification [25].

• The user should be enabled to easily understand in which direction a
recommendationwill guide her throughmultidimensional data. Since
we are recommending sessions rather than single queries, and ses-
sions are complex objects, a visualization problem arises. Solving
this problem requires to (i) understand the set of features that de-
scribe an OLAP session direction at best, and to (ii) find a good visual-
ization metaphor.

• Our approach has been tested with synthetic, yet realistic workloads.
However, given real OLAP logs, characterizing user sessions and
analyzing sessions and queries to filter out the irrelevant ones
(e.g., those showing an erratic behavior due to a trial-and-error user

image of Fig.�12

30 J. Aligon et al. / Decision Support Systems 69 (2015) 20–30
approach), remain open problems, that should be solved to better
adapt our approach to different kinds of users.We are currentlywork-
ing to collect real, user-annotated logs, aswell as user feedback on our
recommender system.

References

[1] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia, Similarity measures for OLAP
sessions, KAIS 39 (2) (2014) 463–489.

[2] C. Sapia, PROMISE: predicting query behavior to enable predictive caching strategies
for OLAP systems, Proc. DaWaK, London, UK, 2000, pp. 224–233.

[3] M. Golfarelli, S. Rizzi, P. Biondi, myOLAP: an approach to express and evaluate OLAP
preferences, IEEE TKDE 23 (7) (2011) 1050–1064.

[4] H. Jerbi, F. Ravat, O. Teste, G. Zurfluh, Preference-based recommendations for OLAP
analysis, Proc. DaWaK, Linz, Austria, 2009, pp. 467–478.

[5] S. Sarawagi, G. Sathe, i3: intelligent, interactive investigation of OLAP data cubes,
Proc. SIGMOD, Dallas, Texas, 2000, p. 589.

[6] A. Giacometti, P. Marcel, E. Negre, Recommending multidimensional queries, Proc.
DaWaK, Linz, Austria, 2009, pp. 453–466.

[7] A. Montgomery, S. Li, K. Srinivasan, J. Liechty, Modeling online browsing and path
analysis using clickstream data, Marketing Science 23 (4) (2004) 579–595.

[8] S. Gündüz, M.T. Özsu, A web page prediction model based on click-stream tree rep-
resentation of user behavior, Proc. KDD, Washington DC, USA, 2003, pp. 535–540.

[9] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems:
a survey of the state-of-the-art and possible extensions, IEEE Transactions on
Knowledge and Data Engineering 17 (6) (2005) 734–749.

[10] J.L. Herlocker, J.A. Konstan, L.G. Terveen, J. Riedl, Evaluating collaborative filtering
recommender systems, ACM Transactions on Information Systems 22 (1) (2004)
5–53.

[11] A. Gunawardana, G. Shani, A survey of accuracy evaluation metrics of recommenda-
tion tasks, Journal of Machine Learning Research 10 (2009) 2935–2962.

[12] M. Ge, C. Delgado-Battenfeld, D. Jannach, Beyond accuracy: evaluating recommender
systemsby coverage and serendipity, Proc. RecSys, Barcelona, Spain, 2010, pp. 257–260.

[13] M. Drosou, E. Pitoura, YmalDB: exploring relational databases via result-driven
recommendations, The VLDB Journal (2013) 1–26.

[14] M. Eirinaki, S. Abraham, N. Polyzotis, N. Shaikh, QueRIE: collaborative database
exploration, IEEE Transactions on Knowledge and Data Engineering 26 (7) (2014)
1778–1790.

[15] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, D. Suciu, A case for a
collaborative query management system, Proc. CIDR, Asilomar, CA2009.

[16] M.L. Kersten, S. Idreos, S. Manegold, E. Liarou, The researcher's guide to the data
deluge: querying a scientific database in just a few seconds, PVLDB 4 (12) (2011)
1474–1477.

[17] A. Giacometti, P. Marcel, E. Negre, A. Soulet, Query recommendations for OLAP
discovery-driven analysis, IJDWM 7 (2) (2011) 1–25.

[18] M.-A. Aufaure, N.K. Beauger, P. Marcel, S. Rizzi, Y. Vanrompay, et al., Predicting your
next OLAP query based on recent analytical sessions, Proc. DaWaK, Prague, Czech
Republic, 2013, pp. 134–145.

[19] Minnesota Population Center, Integrated public use microdata series, 2008. (http://
www.ipums.org).

[20] T. Smith, M. Waterman, Identification of common molecular subsequences, Journal
of Molecular Biology 147 (1981) 195–197.
[21] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, E. Turricchia, Mining preferences from
OLAP query logs for proactive personalization, Proc. ADBIS, Vienna, Austria, 2011,
pp. 84–97.

[22] C.J. van Rijsbergen, Information retrieval, Butterworth, 1979.
[23] S. Rizzi, E. Gallinucci, CubeLoad: a parametric generator of realistic OLAP workloads,

Proc. CAiSE, Thessaloniki, Greece, 2014, pp. 610–624.
[24] P. Purdom, D.V. Gucht, D. Groth, Average-case performance of the a priori algorithm,

SIAM Journal on Computing 33 (5) (2004) 1223–1260.
[25] P. Fraternali, D. Martinenghi, M. Tagliasacchi, Top-k bounded diversification, Proc.

SIGMOD, New York, NY, USA, 2012, pp. 421–432.

Julien Aligon received his Ph.D. from the University of Tours in 2013 for his work onOLAP
query recommendation. His research interests include on On-Line Analytical Processing,
Knowledge Discovery and query recommendation in databases. His current researchwork
focuses on leveraging past analytical sessions for assisting OLAP users in their explorations
of datacubes.

Enrico Gallinucci receivedhisMaster's degree inComputer Science from theUniversity of
Bologna in 2013 and is currently a Ph.D. student at the University of Bologna. His main re-
search interests include data-warehouse design and OLAP, collaborative business intelli-
gence, and query recommendation.

Matteo Golfarelli received his Ph.D. for his work on autonomous agents in 1998. In 2000
he joined the University of Bologna as a researcher. Since 2005 he is Associate Professor
and teaches Information Systems, Database Systems, and Data Mining. He has published
over 80 papers in refereed journals and international conferences in the fields of data
warehousing, pattern recognition, mobile robotics, multi-agent systems. He is co-author
of the book “Data Warehouse Design: Modern Principles and Methodologies”. He served
in the PC of several international conferences and as a reviewer in journals. He has been
co-chair of DOLAP 2012 and is permanent co-chair of the Business Information System
Conference. His current research interests include all the aspects related to business intel-
ligence and data warehousing, in particular multidimensional modeling, business intelli-
gence on social data, and data mining.

PatrickMarcel obtained his Ph.D. in computer science from INSA Lyon in1998 and hisHa-
bilitation from the University of Tours in 2012. He is currently associate professor at the
Computer ScienceDepartment of theUniversity of Tours,where he is the local coordinator
of the Erasmus Mundus IT4BI Master's program. His research interests include database
query languages, On-Line Analytical Processing, Knowledge Discovery in Databases, query
personalization and recommendation in databases. He has many publications on these
topics in referred conferences and journals, and regularly serves as a reviewer for confer-
ences and journals.

Stefano Rizzi received his Ph.D. in 1996 from the University of Bologna, Italy. Since 2005
he is Full Professor at the University of Bologna, where he is the head of the Data
Warehousing Laboratory and teaches Business Intelligence and Software Engineering.
He has publishedmore than 110 papers in international refereed journals and conferences
mainly in the fields of data warehousing, business intelligence, and pattern recognition,
and a research book on data warehouse design. He joined several research projects on
the above areas and has been involved in the PANDA thematic network of the European
Union concerning pattern-base management systems. He is member of the steering com-
mittee of ER andDOLAP. His current research interests include datawarehouse design and
business intelligence, in particular OLAP personalization, OLAM, social business intelli-
gence, and analysis services for genomic data.

http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0005
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0005
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0115
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0115
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0120
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0120
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0125
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0125
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0130
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0130
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0130
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0135
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0135
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0030
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0030
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0140
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0140
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0040
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0040
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0040
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0045
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0045
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0045
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0050
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0050
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0145
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0145
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0060
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0060
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0065
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0065
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0065
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0150
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0150
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0075
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0075
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0075
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0080
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0080
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0155
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0155
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0155
http://www.ipums.org
http://www.ipums.org
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0090
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0090
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0165
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0165
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0165
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0100
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0170
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0170
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0110
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0110
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0175
http://refhub.elsevier.com/S0167-9236(14)00270-X/rf0175

	A collaborative filtering approach for recommending OLAP sessions
	1. Introduction
	2. Related work
	3. Preliminaries
	4. Our approach
	4.1. Alignment
	4.2. Ranking
	4.3. Fitting

	5. Experimental results
	5.1. Assessing the quality of recommendations
	5.2. Log generation
	5.3. Effectiveness tests
	5.4. Efficiency tests

	6. Conclusions
	References

