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Abstract

Pedestrian detection and tracking have become an important field in the com-
puter vision research area. This growing interest, started in the last decades,
might be explained by the multitude of potential applications that could use
the results of this research field, e.g. robotics, entertainment, surveillance,
care for the elderly and disabled, and content-based indexing.
In this survey paper, vision-based pedestrian detection systems are analysed
based on their field of application, acquisition technology, computer vision
techniques and classification strategies. Three main application fields have
been individuated and discussed: video surveillance, human-machine inter-
action and analysis. Due to the large variety of acquisition technologies, this
paper discusses both the differences between 2D and 3D vision systems, and
indoor and outdoor systems.
The authors reserved a dedicated section for the analysis of the Deep Learning
methodologies, including the Convolutional Neural Networks in pedestrian
detection and tracking, considering their recent exploding adoption for such
a kind systems.
Finally, focusing on the classification point of view, different Machine Learn-
ing techniques have been analysed, basing the discussion on the classification
performances on different benchmark datasets. The reported results highlight
the importance of testing pedestrian detection systems on different datasets
to evaluate the robustness of the computed groups of features used as input
to classifiers.
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1. Introduction

The growing interest in autonomous cars demonstrated by the huge in-
vestments made by the biggest automotive and IT companies [1], as well as
the development of machines and applications able to interact with persons
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], is playing an important role in the
improvement of the techniques for vision-based pedestrian tracking. In fact,
autonomous machines able to act in not-controlled environments represent
an high risk for any person who may be in their range of action.

In 2015, in the United States, more than 5000 pedestrians were killed due
to traffic crashes [14]: one pedestrian dies every 1.6 hours due to car accident.
Additionally, in the same year, almost 130000 pedestrians were treated in
emergency departments for non-fatal crash-related injuries. Pedestrians are
1.5 times more likely than passenger vehicle occupants to be killed in a car
crash on each trip [14, 15, 16, 17]. The statistics reported in [14] state
alarming numbers for EU too, even though the general trend of pedestrians’
deaths is reducing thanks to the introduction of driving supports, such as
auto-breaking system. For these reasons, in the last decades, people detection
and tracking has become an important research area in computer vision.

From 1990 to 2016, scientific community has shown an ever-growing in-
terest in human detection and tracking. As reported in Fig. 1, more than
5000 publications in this topic have been published and indexed in Web of
Science, ranging from human detection to pedestrian tracking using 2D and
3D vision systems, or considering indoor and outdoor environments.

Some other surveys regarding pedestrian detection have been presented
in the literature so far. In [18] and [19] the authors focused the topic of the
survey on a taxonomy of system functionalities considering the structure of
the motion capture system and the different information to be processed.

Solichin et al. have focused the work on the steps needed in the process
of pedestrian detection, including input devices, datasets and methods for
detection and, finally, on some open issues related to pedestrian detection
[20].

Zhou and Hu have written a survey on the human detection and tracking
systems from a clinical and diagnostic point of view, highlighting the differ-
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Figure 1: Total Publications from 1990 to 2016 with Keyword: Human Detection and
Tracking - Source: Web of Science
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ences between visual tracking (marker-based or marker-less) and non-visual
tracking using magnetic sensors, inertial sensors and others [21].

In [22], the authors have presented a survey concerning monocular pedes-
trian detection systems focusing on the methodologies for the selection of
Regions Of Interest (ROIs), classification methods and tracking.

In [23] and [24], the authors have discussed two surveys focused on pedes-
trian detection and tracking systems related to the Pedestrian Protection
Systems (PPSs). Specifically, while in the first survey the authors consider
and review general pedestrian detectors, in the latter the authors focus only
on systems dedicated to PPSs.

Dollar and his colleagues [25] have focused on the main methods for
pedestrian detection in monocular images performing an accurate ranking on
benchmark datasets, while in [26] the authors have collected and reviewed
some works, marginally introducing deep architectures.

The above-mentioned surveys report the state-of-the-art about pedestrian
detection and tracking systems in terms of acquisition technologies, e.g. 2D
and 3D configurations, and processing methodologies; however, recent adop-
tion of Deep Learning (DL) methodologies and, in particular, Convolutional
Neural Networks (CNNs) for pedestrian detection and tracking deserves a
dedicated state-of-the-art survey.

Generally, the process of vision-based pedestrian detection can be con-
sidered constituted by three fundamental steps, as depicted in Fig. 2: (i)
Image Acquisition, (ii) Feature Extraction and (iii) Classification. As will
be discussed in the following sections, the introduction of DL architectures,
or deep structures inspired to the human visual cortex, in the context of ob-
ject recognition, allowed the removal of the feature extraction step (Fig. 3),
preserving the other ones.

As pointed out by the reported figures, the two approaches differ for the
removed step only. However, the extraction of features is not completely re-
moved from the workflow, but it is an automatic procedure performed by the
deep classifier which is generally constituted by several processing layers that,
taking images as input, compute features at different layers of abstraction
[27, 28, 29, 30]. In this way, the design of a such a kind classifiers is consid-
erably simplified since the design of procedures for the extraction of the so
called ”hand-crafted features”, able to perform an accurate classification, is
the most difficult step. Nevertheless, the incorporation of feature extraction
in the classification process, allowing a faster run-time execution, lead to a
longer training time respect to the hand-crafted features based approach [31].
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Figure 2: Steps needed for pedestrian classification following a features-based model.

Figure 3: Steps needed for pedestrian classification following a model based on Deep
Learning strategy.

Video tracking is a complex process which allows to locate and follow
single or multiple objects over time using several sensors. Due to the need
of a remarkable improvement in both acquisition and processing systems,
a lot of works dealing with tracking could be found in literature. In fact,
each moving object in the world could be potentially tracked regardless the
tracking system. For example, complex systems based on radar or GPS are
widely studied and used currently in different contexts, e.g. aviation industry
or ground movements tracking [32, 33, 34, 35, 36].

Among the variety of traceable objects, human tracking is the most in-
teresting since the processes of human detection and segmentation in images
and videos are difficult due to the large variety of conditions and variables
to take into account for this task, besides the well-known problems related
to images segmentation, such as noise [37, 38, 39, 40, 41].

The automatic tracking of humans in video has always been an interesting
research topic, as it is a cross-domain research area with infinite applications
in different fields. In fact, the potential applications of human motion capture
led to the development of systems in several domains, such as surveillance,
control, and analysis. In addition, there are some recent research fields where
the automatic tracking of humans in video sequences is rising up, such as
human-computer interaction and augmented reality [42, 36, 43, 44, 8, 45, 46,
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46].
Regardless of the kind of object to be tracked, the identification of Re-

gions Of Interest (ROIs) is the first and most important step in the most of
computer vision applications, including object tracking. This step requires
the application of some image processing techniques in order to make easier
the identification and selection of ROIs; the difficulty of this approach mostly
depends on both the acquisition system (e.g., camera resolution, field of view
and technology) and the environmental conditions (e.g., lighting conditions).
Although it seems a trivial process, in some approaches the previous sequence
of steps could be sufficient to track one or more objects into a video sequence
under certain conditions [47, 48, 49].

In more complex applications, some features need to be extracted in order
to describe the identified regions. The extracted features, whose kind is
related to the acquired signal, are then used as input in the subsequent step
for the discrimination of the identified objects; finally a tracker is necessary
to follow the considered object (or class of objects) during the video flow
[50, 51, 52, 53, 18, 32, 54, 55, 56, 57, 58, 59, 19, 60, 61, 62, 23, 63, 64, 65, 21,
66, 67, 68, 69, 22, 70, 71, 72, 73, 36, 74, 75, 76, 77, 78, 79, 3, 80, 81, 82, 25, 83,
84, 85, 86, 87, 88, 89, 90, 43, 91, 92, 93, 44, 26, 94, 8, 95, 96, 12, 97, 13, 98, 99].

To simplify and strengthen the step of ROIs identification, and conse-
quently the overall tracking system, some authors introduced active and pas-
sive markers (or optical references) to be applied to the object to track. In lit-
erature, several kinds of marker could be found; their nature is strictly related
to the technology of the acquisition system, allowing an accurate tracking in
several conditions [100, 101, 102, 90, 9, 103, 104, 105, 106, 107, 108, 109].

In recent years, the spread of innovative techniques based on Deep Learn-
ing has prompted many research groups to apply these techniques for the
segmentation of objects in images and tracking in videos with different aims
[110, 111, 112, 113, 114, 115, 116, 117, 118, 119]. This kind of approach seems
to be very interesting and powerful since the steps needed for the features
extraction from the segmented ROIs is overcame thanks to DL architectures
that make use of deep classifiers, such as Convolutional Neural Networks
(CNNs).

In the sections that follow, we present the application fields of pedestrian
detection and tracking systems, first. We then describe the different con-
figurations of the vision systems in the Section 3. Subsequently, we present
the different methods for video processing and features extraction in the Sec-
tion 4 focusing on pedestrian subjects in the Section 4.1. Then, we introduce
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the approaches pedestrian classification using Machine Learning and Deep
Learning techniques in the Section 5, while we present a final discussion in
the Section 6. Finally, we present conclusions.

2. Applications

The growing interest for vision-based tracking systems can be explained
by multiple factors. To the authors’ opinion, the most important factor is the
advancement of the related fields that make use of the tracking techniques.
In addition, recent researches with background in Artificial Intelligence (AI),
Augmented Reality (AR) and medical imaging, as well as the diffusion of low
cost video acquisition systems and more powerful processing devices, have
contributed to the diffusion of researches in tracking systems.

The three major application areas individuated by the authors are: surveil-
lance, human-machine interaction, and analysis.

2.1. Video Surveillance

Surveillance applications based on human tracking are the most diffused
in literature. The main goal is the detection of one or more people in the
scene for tracking their movements in video flow over time. For example,
several systems are able to monitor parking lots, airports or crowded places
(Fig. 4).

The main differences that characterize the works found in literature about
video surveillance applications consist in the acquisition systems (e.g., colour-
space and resolution), the number of potentially traceable subjects (e.g.,
mono or multi target), and object categorization [51, 61, 65, 78, 79, 77, 91].
Among the video surveillance applications, the most afforded research topic
is focused on pedestrian tracking (see Sect. 4.1 for more details) [94, 116, 97,
98, 99].

2.2. Human-Machine Interaction

The human-machine interaction area relates to tasks where the captured
human motion is used to provide controlling functionalities for remote con-
trolling and designing virtual game interfaces, virtual environments and an-
imations.

Moreover, tracking systems have been also applied in the entertainment
industry where the control of personalized graphic models is making the
productions/products more realistic.
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Figure 4: A representation of pedestrian detection system in outdoor environment. Boxes
rounding pedestrian show the correct detection of person in different poses. Contribution
from [25].

In recent years, the interest in using Unmanned Aerial Vehicles (UAVs)
to accomplish a series of tasks that can be uncomfortable or dangerous to
be performed by human beings has been subject to a constantly increase
(Fig. 5). This can be mostly explained by the higher possibility to purchase
a cheaper drone, especially for game and sport purposes. This has pushed the
scientific community to investigate the capabilities of UAVs in video-based
tracking applications [101, 102, 120, 90, 121, 122, 123, 7, 91, 124, 125, 126,
9, 94, 103, 96, 12, 105, 13, 98, 97, 99].

Besides the UAV control, a lot of research and investments have been done
by big corporations to support the research in self-driving cars [1, 3, 92].

2.3. Analysis

The analysis of captured motion data may be used in different clinical
studies, e.g. to diagnose orthopaedic diseases, to help athletes in under-
standing and improving their performance, to restore patients’ functional
capability in stroke rehabilitation or to prevent fall accidents [21, 100, 44,
95, 106, 107, 109, 108]. In this kind of applications, the patients’ activi-
ties need to be continuously monitored, and subsequently corrected during
motor-rehabilitation sessions [127, 128, 129].

Furthermore, these types of applications are used to answer questions
about what people are doing and where and when they act. To achieve
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Figure 5: An application of drone following human Key points are shown on pedestrian;
in the bottom-left are shown the inputs to control the drone’s trajectory. Contribution
from [12].

this goal, the algorithms implemented in these applications build people’s
appearance patterns and trace people with relative identity (who) through
occlusion events in the imagery. So they are used to increase awareness
of security issue by performing analysis of actions, activities and behaviours
both for crowds and individuals; for example, such systems are used for queue
and shopping behaviour analysis, detection of abnormal activities, and person
identification [51, 52, 18, 53, 55, 19, 62, 69, 74, 90, 130, 104].

3. Vision Systems for Pedestrian Detection

The systems used to capture human motion consist of sub-systems for
sensing and processing, respectively. The operational complexity of these
subsystems is typically related, i.e. the more complex the previous step is,
the simpler the following one will be and vice versa. This trade-off between
the complexities also relates to the use of active versus passive sensing.

Active sensing operates by placing devices on the subject and in the sur-
roundings which transmit or receive generated signals. Active sensing allows
for simpler processing and is widely used when the applications perform in
well-controlled environments; for example, the most of applications in the
analysis and control areas make use of active sensing.

Passive sensing is based on ”natural” signal sources, e.g. visual light
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Figure 6: A 3D acquisition system for gait analysis. The 3D skeleton is reconstructed
thanks to the application of visual markers on the person. Contribution from [107].

or other electromagnetic wavelengths, and generally requires no wearable
devices. An exception can be make if markers are attached to the subject
for an easier motion capture process. Visual markers are not as intrusive
as the devices used in active sensing where passive sensing is mainly used
in surveillance and some control applications where mounting any kind of
active device on the subject it is not allowed.

Computer vision applications based on the passive sensing approach have
challenged active sensing within all the considered application areas. Even
though the use of markers could be a good compromise between passive and
active sensing, the application of any kind of passive or active marker in
real situations for tracking objects in uncontrolled or random environments
is generally inconvenient or often impossible. For these reasons, systems able
to detect and track objects considering only the acquired images from the
vision system are needed.

Considering passive sensing, currently the great majority of the algo-
rithms that accomplish similar tasks relies on colour information or on the
use of external devices that track the target position [121, 124, 125, 126].

10
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Regardless of the use of active or passive sensors, vision systems for pedes-
trian detection may be differentiated considering the video acquisition tech-
nology (2D vs 3D), or the environmental conditions (Indoor vs Outdoor).
These two topics will be afforded in the following two sections.

3.1. 2D vs 3D

Video acquisition technology is one of the fundamental aspects that con-
cern with pedestrian, and generally, object detection and tracking. In litera-
ture, most of the works dealing with pedestrian detection use a 2D acquisition
system and Machine Learning (ML) techniques to perform a large variety of
tasks [50, 51, 54, 56, 59, 60, 61, 62, 23, 63, 64, 21, 67, 68, 69, 22, 71, 72, 74,
75, 76, 77, 78, 79, 80, 81, 25, 84, 85, 86, 87, 88, 89, 90, 91, 93, 26, 94, 96, 131,
12, 97, 13, 98, 132, 99, 133, 134].

In the most of cases, a 2D video is sufficient for pedestrian detection
since videos contain extremely valuable information that can be extracted
after an appropriate processing, i.e. the 2D coordinates of a detected person.
Moreover, as will be discussed in the following section (Sect. 4), motion
information, which is generally extracted using a 3D vision system, could be
obtained following a bi-dimensional approach [52, 53, 18, 55, 19, 65, 21, 76,
3, 135, 92, 44, 136, 95].

Conversely, in applications where the motion of a person should be ac-
quired with high levels of accuracy, like pedestrian protection systems for
autonomous vehicle or clinical and diagnostic environments for gait analysis,
3D motion capture systems are needed since 2D acquisition could lead to an
excessive loss of information. 3D systems are able to generate a pedestrian
coordinates representation in the 3D space (x, y, z planes of motion), often
used to generate a representational model in virtual environments. This kind
of systems generally differ for the sensing device that affect the overall cost of
the application; in particular, 3D systems may use RGB-D cameras, which
consist in the combination of a classic RGB camera and a Depth camera
based on infra-red (IR) light acquisition [137, 138]; stereo camera which is
a type of camera constituted by two or more lenses with a separate image
sensor or film frame for each lens to simulate human binocular vision, and
therefore gives it the ability to capture three dimensional images, by using
stereo photograph. Multi-camera system allows to capture the scene from
several points of view and needs, in the latter case, calibration and regis-
tration phases and optical markers to obtain high levels of accuracy during
people tracking.
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Typically, 3D optical systems are more expensive than 2D ones, but 2D
video cameras are much easier to use and faster to configure and set-up. On
the contrary, using a 3D acquisition system, the detection and tracking of
people could be easier and more accurate than using 2D acquisition system.

3.2. Indoor vs Outdoor

The environmental conditions are the second aspect to take into account
during the design of a new system for pedestrian detection and tracking. In
fact, illuminating conditions, as well as the variability of subjects in the scene
are critical aspects to be considered. Since outdoor environments generally
have tricky boundary conditions which need performing algorithms for their
handling, the most of literature on pedestrian detection and tracking systems
concerns with applications for outdoor. On the other hand, since the con-
ditions in indoor environments are more controllable, there are applications
which show robust and performing human tracking.

Excluding extremely variable indoor crowded places, such as airports,
that are considered the same as outdoor, the most of works on pedestrian
detection in indoor areas use external markers to detect a moving object
inside the scene [21, 100, 90, 104, 106, 107, 109, 108].

Visual markers are useful easy-to-locate tools and thus allow an easier
tracking within a video stream in a controlled environment. Thanks to their
non-invasive nature, they could be easily applied on the object to be tracked
into a scene. Both the detection and tracking systems are simplified since
common RGB cameras could be used to acquire the scene; in particular, high
performance pattern matching systems may be used to find the marker inside
each frame.

The use of markers in indoor environment may have multiple aims; for
example, while in [104], Mehner et al. placed a marker on each person’s head
that could be recorded in the scene and have used it to track the different
trajectories for subsequent analyses, Naseer et al. describe a system to follow
pedestrians using a quadcopter and use markers to support the motion of the
quadcopter itself [90]. In particular, the authors set up two cameras, first
one for determining the 3D position of the UAV based on markers placed on
the ceiling of a controlled room and second, a depth camera, for detecting a
person in the 3D space. The image resulting from the depth camera is then
warped, based on the calculated 3D position.

Considering scenarios of human tracking, marker-based systems are highly
recommended in applications where the body position needs to be quickly
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and accurately tracked, while the human skeleton makes unpredictable and
complicated motion trajectory. In addition, cluttered scenes, or varied light-
ing, most likely distract visual attention from the real position of a marker.
Given these problems, visual marker-based tracking is preferable.

In these circumstances, simple human tracking is not sufficient; in fact,
some applications require to detect and track single body parts, especially
in applications within the analysis domain [100, 21]. In order to reach high
levels of accuracy in human body tracking, it could be necessary to change the
marker technology and, consequently, the acquisition system. For example, in
[106, 107, 109, 108] the authors have used multiple IR cameras with specific
visual markers to track human body parts with high accuracy for specific
tasks.

From a technical point of view, marker-based tracking systems are easy
to implement since, as already stated, markers are employed in controlled
environments in terms of lightning and field of view. Scientific community,
instead, spent much time to study and implement human detection and track-
ing system that do not use any kind of marker. In fact, regarding indoor
detection, literature reports some recent works describing application were
human tracking is performed in indoor environments without any adoption
of markers [136, 135].

Generally, outdoor pedestrian detection is a more difficult task than in-
door one, since the external environment is generally influenced by so many
variables and the scenes to be acquired are completely unpredictable. Recent
literature contains several works dealing with marker-based human tracking,
the most of which make use of drones [51, 65, 139, 77, 78, 79, 140, 101, 120,
121, 102, 91, 122, 123, 126, 94, 96, 103, 97, 105]. In some cases, they do
not use external markers to detect and track a human. In [101], the authors
have developed a 3D object following system based on visual information ac-
quired from the UAV camera; in particular, the authors recognize a specific
object placed into the scene and use this information to control the move-
ment of a drone. In [105], Vasconcelios et al. have used shirts with markers
to track a person with a drone; in particular, the authors have developed a
”behavioural marker” composed of two different parts: the first one, which
is constant, is used for detection and tracking processes; the second part,
instead, is variable and is used to adapt the drone behaviour to the specific
recognized person so that the UAV is able to know which person is targeting
and following.
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(a) (b)

Figure 7: HOG features extraction for pedestrian detection. The input image is on the
left (a); the output image on the right shows the superimposition of HOG descriptors on
the input image (b).

4. Computer Vision Methods for Pedestrian Detection

The initial approach for detection and tracking of moving objects into
a video flow acquired by a static camera consisted in the Background Sub-
traction (BS); this technique allows the detection and distinction of moving
objects inside a scene using an appropriate background model [48]. Even
though algorithms based on BS are quite simple to implement, this approach
is not robust to illumination variability, dynamic background, shadows or
noise limiting its usage mostly in controlled environments [141, 139, 140].

In recent years, a huge number of algorithms have been developed and
tested to perform human detection and tracking, but the most of them are
based on the following approaches for features extraction and detection:

• Histograms of Oriented Gradients [56]: this method is based on
the idea that local object (human or not) appearance and shape can
often be characterized considering local intensity gradients or edge di-
rections distribution (Fig. 7). Each video frame is divided into small
regions and a local 1-D histogram of gradient directions or edge orien-
tations over the pixels of the block is computed. An improved version
of this algorithm, which is able to handle with problems related to illu-
mination or shadowing, is used for the normalization of the histograms
considering a group of smaller blocks. In both cases, each generated
histogram is considered as image representation and a cascade of clas-
sifiers is used to discriminate each sub-region.
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Figure 8: A representation of some filters from the extraction of Haar-like features from
images. A contribution from [76].

• Haar-Like Features [50]: with this approach, the wavelet represen-
tation is used to capture the structural similarities between various
instances of the class of humans [142]. In particular, 2-dimensional
Haar wavelets include basis functions which capture change in inten-
sity along the horizontal, vertical and diagonals (or corners) directions
(Fig. 8). As in previous case, each representation is used as input to
a classifier. Improved versions of the algorithm are applied to support
multi-scale detection.

• Viola-Jones Features [54]: this approach is an extended version of
the rectangle filters presented by Viola and Jones for the static face
detection [143, 144]; in particular, this approach considers particular
filters based on Haar wavelets. In this case, the proposed approach take
into account both motion and intensity information even considering
sequences of frames.

• Texture [145]: features extraction from texture is a quite simple ap-
proach and consists in the elaboration of its distribution in the image; in
literature several works dealing with textural features extraction could
be found [59, 145, 146]. On the contrary, the classification of pedestrian
considering textural features only is a challenging problem due to the
high variability of classes to be considered, e.g. pedestrians variations
due to clothing and varying lighting conditions. In order to avoid this,
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textural features are generally used in combination with other kinds of
features, such as shape, colour and others.

• Local Binary Pattern (LBP) [68]: this technique allows to describe
images based on their texture by opportunely considering the neigh-
bourhood of each pixel [147]. LBP approach have become very popular
due to its robustness against variations in pose or illumination than
other methods. As reported in [68], LBP feature vectors are very often
used in combination with HOG features to reach higher performance
in pedestrian detection.

In the following paragraph, more details about pedestrian detection will
be given related to some innovative works making use of these algorithms or
their variations.

4.1. Pedestrian Detection and Tracking

In this paragraph, the most important works dealing with the task of
pedestrian detection and tracking are investigated. In Table 1, the perfor-
mance of each detector are reported in terms of Log-Average Miss Rate (MR)
on the most common benchmark databases, namely Inria [56] and Caltech
[148, 25], along with details about both the detector and the classifier family
used in each work.

In [54], Viola et al. describe a pedestrian detection system that integrates
image intensity information with motion details; in particular, the authors
combined Haar-like features with motion information that were computed
considering two consecutive frames in a video sequence. The authors applied
the face detector described in [143] and [144] to the pedestrian detection
problem, but their results on the benchmark databases show an high log-
average miss rate. Classification was performed considering a sequence of
AdaBoost classifiers.

In [56], Dalal and Triggs studied the question of feature sets for robust
visual object recognition, introducing the Histogram of Oriented Gradient
(HOG) features. After reviewing existing edge and gradient based descrip-
tors, the authors showed experimentally that grids of HOG descriptors signif-
icantly outperform existing feature sets for human detection. A linear SVM
was adopted for human detection and classification; Gaussian SVM was ex-
plored too, but run-time result does not perform better than using linear
SVM.
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In [60], the authors addressed the problem of detecting pedestrians in
static images introducing a set of features called ”Shapelet”. These are a
combination of low-level features, which consisted primarily in the gradient
responses in images, and then in a set of features automatically learned using
an AdaBoost classifier. Finally, another AdaBoost classifier was trained to
discriminate between pedestrian and non-pedestrian using Shapelet features
as input. The reported results show that the developed approach performs
better on Caltech database than on Inria one.

In [63], Maji et al. discussed that it is possible to build histogram in-
tersection kernel SVMs (IKSVMs) with a logarithmic run time complexity
considering the number of support vectors as opposed to linear used as stan-
dard approach. The authors introduced a variant of HOG features based on a
multi-level version of HOG descriptors. They showed that by pre-computing
auxiliary tables, it was possible to design an approximate classifier with con-
stant runtime and space requirements, independent of the number of support
vectors, with negligible loss in classification accuracy on various tasks.

In [64], Felzenszwalb et al. described an approach based on part model
for object detection. The authors evaluated HOG features at different levels
of resolution leading to ”HOG features pyramid”, thus allowing the detection
of parts that could be moved respect to the detection window. The authors
combined a margin-sensitive approach for data mining hard negative exam-
ples with a formalism called latent SVM which leads to a non-convex training
problem. However, a latent SVM is semi-convex and the training problem
becomes convex, once latent information was specified for the positive ex-
amples. In [72], Felzenszwalb et al. reduce the dimensionality of the dataset
used in [64] through the PCA algorithm. An improved version of the multi-
scale detection, together with PCA for dimensionality reduction, led to an
improvement of the performance on both the benchmark test sets Inria and
Caltech.

In [68], Wang et al. proposed a novel human detection approach capable
of handling partial occlusion. In details, a new feature set was introduced
considering HOG and LBP features. In order to handle partial occlusions,
two detectors were combined: the first is performed globally on the image,
while the second (part detector) is executed in ambiguous areas to refine
the detection. For each ambiguous scanning window, an occlusion likelihood
map was constructed by using the response of each block of the HOG feature
to the global detector. The occlusion likelihood map was then segmented
by Meanshift approach [149]. The segmented portion of the window with a
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majority of negative response is inferred as an occluded region. Thanks to
this this approach, based on the augmented HOG-LBP feature and the global
part occlusion handling method, they achieved very high levels of detection
rates considering linear SVM classifiers.

In [67], Dollar et al. studied the performance of ”integral channel fea-
tures” for image classification task, focusing in particular on pedestrian de-
tection. In details, multiple representation of the same input image could be
computed applying linear and non-linear transformations. Considering the
features extracted from each representation, such as local sums, histograms,
and Haar features and their different generalizations, the integral image is
then computed [150] and used as input in the classification step. Performance
was tested considering three different classifiers: AdaBoost, RealBoost and
LogitBoost. In [80], Dollar et al. also investigated the correlations between
detector responses at nearby location and scales in an application where cas-
cades help to make sliding windows object detection fast, nevertheless, com-
putational demands remain prohibitive. In particular, the authors selected
a restricted subset of features from the group reported in [67], focusing their
work on a low-level optimization, leading to an improvement at both compile
and run time as well.

In [71], Walk et al. showed that motion features derived from optical
flow, if implemented correctly, yield substantial improvements on image se-
quences, even in presence of low-quality video sequences. The authors in-
troduce a novel feature which called ”CSS” based on the self-similarity of
low-level features capturing pairwise statistics of specially localized colour
distributions. Subsequently, the authors firstly evaluate performance of clas-
sification coupling HOG features with CSS; then, to the previous group of
features, motion information was added and then computed as a variant of
Histogram Of Flows (HOF) algorithm proposed by Dalal et al. [151]. The
latter approach consistently improved the detection performance both for
static images and video sequences, across the two different datasets. In com-
bination with HOG, these two features outperform the state-of-the-art by up
to 20 %. In [71], Linear SVM was used to classify and evaluate the perfor-
mance; then, a variant of AdaBoost algorithm (MLPBoost) was tested also
on Caltech dataset.

In [75], Bar-Hillel et al. introduced a new approach for learning part based
object detection through feature synthesis in pedestrian detection task. The
authors considered different families of features, e.g. HOG, LocalMax or
Sift, and for each iteration of their algorithm, a subset of features was used
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in the generation process, by using pruning strategy as well. In details, the
described method consists of an iterative process of feature generation and
pruning, in which basic part-based features are developed into a feature hi-
erarchy using operators for part localization, part refining and part combina-
tion. Then, feature pruning was performed by using a new features selection
algorithm for linear SVM, namely Predictive Feature Selection (PFS), based
on weight prediction.

In [73], Park et al. described a multi-resolution model that acts as a de-
formable part-based model when scoring large instances and a rigid template
with scoring small instances. Substantially, the authors demonstrated the
necessity to extract features and classify at multi-resolution stages to avoid
miss-detection. As in [64], latent SVM were used in the classification step,
and the authors demonstrated impressive results on the Caltech Pedestrian
benchmark.

In [81], Benenson et al. presented a new pedestrian detector that effi-
ciently handles different scales avoiding the resize of input images; by trans-
ferring computation from test time to training time, detection speed was
optimized and improved. When processing monocular images, the system
provides high quality detections at 50 fps. The authors also proposed a new
method for exploiting geometric context extracted from stereo images with
high fps by using a CPU+GPU machine.

In [84], Lim et al. proposed a novel approach to both learning and detect-
ing local contour-based representations for mid-level features. The features,
called sketch tokens, are learned using supervised mid-level information in
the form of hand drawn contours in images. Combining sketch tokens fea-
tures with the integral image approach proposed by Dollar et al. [67, 80] the
authors reported a slight improvement in the pedestrian detection approach,
with a classification achieved by Random Forest Algorithm.

In [85], Benenson et al. revisited the core assumptions of HOG+SVM
algorithm and showed that, by properly designing the feature pooling, feature
selection, pre-processing, and training methods, it is possible to reach high
performance in pedestrian detection. The authors described an approach
based on the multi-scale model generation introduced in [81] but, in contrast
with the algorithm proposed by Dalal et al. [56], the windows considered
for features extraction selected during learning, were composed by irregular
patterns.

In [86], Levi et al. presented a new part-based object detection algorithm
with hundreds of parts performing real-time detection based on the approach
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proposed in [75] by Bar et al.. However, due to their high computational de-
mands part-based methods are limited to several parts only and are too slow
for practical real-time implementation. The authors proposed the Acceler-
ated Feature Synthesis (AFS) algorithm and, in order to reduce the number
of locations searched for each part, introduced an algorithm for approxi-
mate nearest neighbour (KDFerns), to compare each image location to only
a subset of the model parts. Candidate part locations for a specific part are
then further reduced by using spatial inhibition, and using an object-level
”coarse-to-fine” strategy. Linear SVM was used in the classification step.

In [89], Park et al. introduced a combined approach for motion infor-
mation extraction from video sequences. Prior to features extraction, the
authors performed a weak motion stabilization by considering both camera
and object motion, and at the same time preserved non-rigid motion that pro-
vided useful information for the recognition task. The authors also described
a combined approach that used coarse-scale flow and fine-scale temporal dif-
ference features and used AdaBoost for classification.

In [93], Zhang et al. proposed a pedestrian detection algorithm intro-
ducing several efficient features based on Haar wavelets, called ”Compact
Features”. In the reported work, the authors assume that pedestrians, in
the most of cases, show a recurrent behaviour, or rather the first visible part
of each pedestrian is the upper-right (head and right part of the shoulder).
Following this approach, the authors employed a statistical model of the up-
right human body where the head, the upper body, and the lower body are
treated as separated parts and, in this way, partial occlusions were handled
allowing to reach high performances with an occlusion higher than 35 %.
The classifier used in [93] was AdaBoost.

More recently, Cao et al. proposed a pedestrian detection algorithm con-
sidering a set of features appearance constancy and shape symmetry, called
NNNF, constituted by both Non-Neighbouring (NNF) and Neighbouring Fea-
tures (NF) [152]. The proposed approach have been tested on Caltech dataset
reporting good performances compared with state-of-the-art methods.

4.1.1. 2D vs 3D

Features extraction consists in different methods that transform one or
more input images into a reduced representation that could be used as input
to classifiers. Thanks to different strategies, it is also possible to reduce the
dimensionality of these patterns allowing a faster and more accurate classi-
fication [153, 154, 155, 156, 157, 158]. For the aim of pedestrian detection,
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the extraction of features is a fundamental task and it is independent from
the acquisition technology. In such a kind of applications, pedestrian detec-
tion is performed considering RGB images in both 2D and 3D applications.
The additional information coming from the third dimension, regardless of
stereo-vision or depth cameras, is especially used for tracking pedestrians,
allowing to keep track of their position in a 3D space; this kind of approach
is used in applications of PPSs where the mutual positions of pedestrians and
the moving object (i.e. an autonomous car) are of fundamental importance
to correctly control the object.

5. Machine Learning Techniques for Pedestrian Detection

Data mining techniques, including machine learning, have been used to
learn hidden information in data in order to train automatic systems for
decision making processes in several domains [159, 160].

Since an acquired scene may contain several kinds of objects candidate
for tracking, image processing techniques often fail to filter out background
and/or objects of other classes; thus, machine learning methods may help in
discriminating pedestrian from other classes of objects in the scene. Accord-
ing to the workflows introduced in Section 1, both traditional approaches
and deep learning strategies are used for classification.

Regarding traditional approaches applied to pedestrian detection, the
dataset created from the features extracted after the processing of input
images influence the design of the classification strategy [161]. In particular,
from the input dataset point of view, several algorithms for dataset process-
ing, such as normalization or dimensionality reduction, have been developed,
and are applied to improve the classification performance [162, 163, 164].
Even from the classifiers point of view, there are several classification al-
gorithms used to perform pedestrian detection, the most of which consist
in supervised approach, such as Support Vector Machine (SVM), Artificial
Neural Network (ANN), or Boosting algorithms.

Regarding Deep Learning strategies, instead, the design of deep classi-
fiers following the workflow reported in Fig. 3, such as Convolutional Neural
Networks, the main task to address is the design of the network topology.
In fact, the number of hidden layers strongly influences the network perfor-
mance in terms of both classification accuracy and execution time. Although
a universal strategy to design a good classifier does not exists, the tradeoff
between classification performance and training time of the classifier should
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lead the design of the topology. Specifically, a number of layers too low re-
duce the training time but the model could too simple for the classification
task; on the contrary, a number of layers too high could lead to the classifier
overfitting on training data reducing the classifier performance on new data.

In the following sections, the traditional approaches of machine learning
will be discussed, analysing the most common architectures employed for
pedestrian classification. Furthermore, Deep Learning strategies will be in-
troduced and discussed focusing on deep structures applied on the pedestrian
detection task.

5.1. The Traditional Approaches

As could be seen in Table 1, which reports the performance of the algo-
rithms discussed in Section 4.1, almost all the considered works for pedes-
trian detection and tracking use simple classifiers, such as Support Vectors
Machines (SVMs) or boost families.

Since the pedestrian detection and tracking tasks have an high computa-
tional cost, especially in real time applications, very often in literature are
presented classifier models with low complexity. Linear SVM and weak de-
cision trees with low depths boosted to speed up the learning phase are the
most used, since they can lead to lighter decision processes making the image
processing part the most important in the decisional process.

Even if the SVM’s design, in terms of complexity, is an automatic pro-
cedure for selecting Support Vectors [165], we present the Artificial Neu-
ral Networks (ANNs) performances on the mentioned benchmark databases
[166, 167, 168, 169, 170, 171], as the case of Zhao et al. that developed a
stereo-system for pedestrian classification [172].

In [145], Gravila and Munder developed a system, called PROTECTOR,
constituted by several processing modules, one of which consists in a neural
model that classify pedestrian based on textural features extracted from each
video frame.

In fact, thanks to suitable optimization strategies [173, 174, 175, 176]
it is possible to find the optimal topology for an ANN to classify two or
more classes in the best way and, by using a multi-objective algorithm, the
topology could be optimized, thus allowing a faster classification in various
research topic [177, 178, 179, 180, 181, 182, 183, 184, 185].
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5.2. The Deep Learning Approaches

Recent researches in Artificial Intelligence (AI) led to the spread of mod-
ern techniques of machine learning based in deep structures, as reported in
novel and innovative works, [110, 111, 114, 117, 118, 186, 187, 188].

Deep Learning strategies have been used for automatic object detection
and images segmentation and classification applications. The most diffused
DL architectures are Convolutional Neural Networks, which are able to clas-
sify images into several categories, automatically learning features through
convolutional layers that combine multiple non-linear processes.

Since the training of a CNN is very time and computation resources con-
suming, two different approaches have been found in literature for CNNs:
(i) Transfer Learning, that allow to ”re-train” a pre-trained model on dif-
ferent categories (e.g. use AlexNet to discriminate among different kind of
tumours); (ii) Feature Extractors, as CNNs are constituted by several con-
volutional layers which create different layer of features representations, it is
possible to catch each layer output and use it as input to simpler classifiers,
such as SVM or ANN.

Based on Convolutional Neural Networks, these approaches have the abil-
ity to learn effective hierarchical feature representations that characterize the
typical variations observed in visual data, including images and video, which
make them very well-suited for the most of visual classification tasks.

For pedestrian detection, Szarvas et al. used CNN to classify pedestrian
in images [189]. The authors compared their approach to classical SVM
approach with Haar features obtaining higher levels of accuracy. Then, the
CNN was used as features extractor and the computed descriptors were used
as input to a Gaussian-SVM classifier and the reported results were increased
respect to the CNN approach for classification.

Automatic features extraction in also used in the work by Zhang et al.,
where the authors used faster r-cnn for pedestrian detection [190]. The de-
veloped system was composed of two cascaded sub-systems: the first was
deputy to detect candidate regions in the image that could contain a pedes-
trian; the second sub-system, instead, was a Boosted Forest classifier for the
pedestrian classification [191, 192].

Recently, Li et al. have used neural features by applying fully convolu-
tional neural networks as features extractors [186]. In details, the authors
have tested and compared the performance of AdaBoost classifiers by using
input extracted at different levels from the network. The reported results on
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benchmark datasets are very promising (Log-average Miss Rate about 20 %)
if compared with those reported in Table 1.

Since occlusions are one of the most discussed problems in literature [149,
68, 82, 25, 93, 26, 193], deep learning allowed to strengthen the detection
of single parts in order to find and correctly classify occluded pedestrian
[82, 88, 116, 115].

Ouyang and Wang presented a probabilistic pedestrian detection frame-
work to solve the issue related on the inaccurate scores of part detectors
when there are occlusions or large deformations [82]. In this framework, a
deformable part-based model was used to obtain the scores of part detec-
tors and the visibilities of parts were modelled as hidden variables. In the
proposed work, a discriminative deep model based on Restricted Boltzmann
Machine (RBM) building blocks was used for learning the visibility relation-
ship among overlapping parts at multiple layers. Experimental results on
benchmark datasets showed the effectiveness of the proposed approach. An
improved version of the proposed algorithm is reported in [88] where Ouyang
et al. proposed a mutual visibility deep model that jointly estimates the
visibility statuses of overlapping pedestrians using Gaussian Mixture Model
(GMM). The visibility relationship among pedestrians was learned from the
deep model for recognizing co-existing pedestrians. Experimental results
showed that the mutual visibility deep model effectively improved the pedes-
trian detection results. In [116], the main idea is to construct multi-parts
detectors that covers several scales of different body parts and automati-
cally choose important parts for occlusion handling. At the training stage,
each part detector is learned by CNN fine-tuning approach, using a CNN
pre-trained on ImageNet Database [27]. At the testing stage, a shifting han-
dling method within a CNN is designed. This method handles the problem
that positive proposal windows usually shift away from their corresponding
ground truth bounding boxes. Moreover, the part selection is determined by
data and the effectiveness of the part pool can be fully explored.

Human body pose recognition is also a well-suited task for DL approaches
[113, 112, 115, 194, 119, 195]. Human body pose recognition in video is
a long-standing problem in computer vision with a wide range of applica-
tions. However, body pose recognition remains a challenging problem due
to the high dimensionality of the input data and the high variability of pos-
sible body poses. As reported in the previous section, traditional computer
vision-based approaches are mostly based on appearance cues such as tex-
tures, edges, colour histograms, foreground silhouettes or hand-crafted local
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features (such as histogram of gradients (HOG) [56]) rather than motion-
based features. Alternatively, psychophysical experiments have shown that
motion is a powerful visual cue capable to extract high-level information, in-
cluding articulated pose [196]. In particular, a combination of hand-crafted
features and DL classifier may be a good approach to estimate human pose.
For example, in [112], it is shown that deep learning is able to successfully
incorporate both RGB and motion features for the task of human body pose
detection in video.

However, to estimate human body pose, deep learning approach to predict
a single class label per image has to be supported by a high resolution seman-
tic segmentation output. To reach this result, Oliveira et al. [119] used the
so called ”up-convolutional networks” [115, 194]; in contrast to usual classifi-
cation, which contracts the high-resolution input to a low-resolution output,
this kind of networks can take an abstract, low-resolution input and predicts
a high-resolution output, such as a full-size image. To reach this goal, it is
possible to refine the architecture of Long et al. [115] and apply it to human
body part segmentation to use it different contexts, such as robotics.

Regarding robotics, human body parts segmentation can be a very valu-
able tool, especially when it can be applied both indoor and outdoor. For
persons who cannot move their upper body, some of the most basic actions,
such as drinking water, is rendered impossible without assistance. Robots
could identify human body parts, such as hands or harms, and interact with
them to perform some of these tasks. Other applications, such as learning
from demonstration and human robot handover can also benefit from accu-
rate human part segmentation. For a learning-from-demonstration task, one
could take advantage of the high level description of human parts, consider-
ing each of them as an explicit mapping between the human and joints of the
robot for learning control actions. A robot that needs to hand a tool to its
human counterpart must be able to detect where the hands are to perform
the task. Human body part segmentation has been considered a very chal-
lenging task in computer vision due to the wide variability of the body parts’
appearance, pose and viewpoint; self-occlusion and clothing, also, represents
very difficult problems to handle.

In [113] the pose estimation is formulated as a Deep Neural Network
(DNN)-based regression problem towards body joints. A cascade of such
DNN regressors which results in high precision pose estimates is presented.
The considered approach has the advantage of reasoning about pose in a
holistic fashion and has a simple but yet powerful formulation which capi-
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talizes on recent advances in Deep Learning. DNNs have shown outstanding
performance on visual classification tasks [27] and more recently on object
localization [197, 198].

6. Discussion and Future Trends

In the last decades, pedestrian detection and tracking systems gained
a considerable importance thanks to their versatility use. The study and
development of systems able to automatically interact with moving humans
have introduced the need to increase the performance of human detection
and, at the same time, improve the run-time performance.

A deep analysis of the results reported in Table 1 is necessary. Table 2
shows different metrics related to the performances of pedestrian detection
systems on Inria and Caltech datasets (mean, standard deviation, min and
max values). As could be seen, the mean value of log-average miss rate is
significantly higher for detectors on Caltech dataset than on Inria one (lower
is better) as shown in Fig. 9 (p ≤ 0.005). Conversely, the classification
performances are not specifically related to the considered classifier family
(Fig. 10), even though AdaBoost performs better than SVM on average, as
reported in Table 3.

This important result highlights that the implemented classifiers per-
form better on static images classification than videos containing more noisy
classes that could disturb the pedestrian detection. As demonstrated by the
works that have shown the best performances on Caltech dataset [93, 89],
the detection and classification of pedestrian in videos has to be supported
by sets of features that take into account motion information too.

A further analysis have been conducted by analysing the performance by
grouping classifiers and test sets; in detail, four groups have been created
which were: G1 - AdaBoost classifier on Inria; G2 - AdaBoost classifier on
Caltech; G3 - SVM classifier on Inria; G4 - SVM classifier on Caltech. The
results reported in Table 4 confirm the higher capabilities of classifiers to
discriminate pedestrians on the static images from Inria dataset, regardless
of the considered classifier families (Fig. 11)

The introduction of Deep Learning architectures, as well as the accessibil-
ity of cheaper but more powerful computers, led the scientific community to
study more performing systems for two main reasons: (i) DL architectures
may help to design more informing sets of features; (ii) DL architectures
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Table 1: Log-Average Miss Rate for some works dealing with pedestrian detection. The
implemented detector, the dataset used for training and test, and the classifier are re-
ported.

Detector Training Classifier Test Log-Average
Set Set Miss Rate

Informed Haar [93] Caltech AdaBoost Caltech 34.60%
Informed Haar [93] Inria AdaBoost Inria 14.43%

VJ [54] Inria AdaBoost Caltech 94.73%
VJ [54] Inria AdaBoost Inria 72.48%

HOG [56] Inria linear SVM Caltech 68.46%
HOG [56] Inria linear SVM Inria 45.98%

Shapelet [60] Inria AdaBoost Caltech 91.37%
Shapelet [60] Inria AdaBoost Inria 81.70%

MultiFtr+CSS [71] Inria AdaBoost Caltech 60.89%
MultiFtr+CSS [71] Inria AdaBoost Inria 24.74%

MultiFtr+Motion [71] TUD-Motion linear SVM Caltech 50.88%
HikSvm [63] Inria HIK SVM Caltech 73.39%
HikSvm [63] Inria HIK SVM Inria 42.82%
HogLbp [68] Inria linear SVM Caltech 67.77%
HogLbp [68] Inria linear SVM Inria 39.10%

LatSvm-V1 [64] Pascal latent SVM Caltech 79.78%
LatSvm-V1 [64] Pascal latent SVM Inria 43.83%
LatSvm-V2 [72] Inria latent SVM Caltech 63.26%
LatSvm-V2 [72] Inria latent SVM Inria 19.96%

ChnFtrs [67] Inria AdaBoost Caltech 56.34%
ChnFtrs [67] Inria AdaBoost Inria 22.18%

FeatSynth [75] Inria linear SVM Caltech 60.16%
FeatSynth [75] Inria linear SVM Inria 30.88%
MultiResC [73] Caltech latent SVM Caltech 48.45%
CrossTalk [80] Inria AdaBoost Caltech 53.88%
CrossTalk [80] Inria AdaBoost Inria 18.98%
VeryFast [81] Inria AdaBoost Inria 15.96%

SketchTokens [84] Inria AdaBoost Inria 13.32%
Roerei [85] Inria AdaBoost Caltech 48.35%
Roerei [85] Inria AdaBoost Inria 13.53%

AFS+Geo [86] Inria linear SVM Caltech 66.76%
DBN-Isol [82] Inria DeepNet Caltech 53.14%

DBN-Mut [88] Inria DeepNet Caltech 48.22%
ACF+SDt [89] Caltech AdaBoost Caltech 37.34%
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Figure 9: Box plot of the Log-Average Miss Rate for the different detectors applied on
Inria and Caltech Test Sets (*p ≤ 0.05 **p ≤ 0.01 ***p ≤ 0.001)

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 10: Box plot of the Log-Average Miss Rate for the different detectors applied on
Inria and Caltech Test Sets (*p ≤ 0.05 **p ≤ 0.01 ***p ≤ 0.001)
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Figure 11: Box plot of the Log-Average considering four couples of Classifier and Test
Set. G1 - AdaBoost classifier on Inria; G2 - AdaBoost classifier on Caltech; G3 - SVM
classifier on Inria; G4 - SVM classifier on Caltech (*p ≤ 0.05 **p ≤ 0.01 ***p ≤ 0.001)
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Table 2: Metrics for Log-Average Miss Rate evaluation considering performances on Inria
and Caltech datasets.

Log-Average Miss Rate
Dataset Mean Std Min Max

Inria 33.33 % 21.22 13.32 % 81.70 %
Caltech 60.94 % 16.13 34.60 % 94.73 %

Table 3: Metrics for Log-Average Miss Rate evaluation considering performances of the
AdaBoost and SVM classifiers.

Log-Average Miss Rate
Algorithm Mean Std Min Max

AdaBoost 44.40 % 28.21 13.32 % 94.73 %
SVM 53.43 % 16.84 19.96 % 79.78 %

performance at execution time are faster than traditional models of machine
learning.

The computer vision systems adopted to perform pedestrian detection
differ based on the acquisition sensor; in particular, 2D sensors limit the
task of pedestrian detection to a bi-dimensional space. On the other side,
stereo-cameras and depth sensors are able to track pedestrians in the 3D
space.

Moreover, some of the works reported in this survey make use of markers;
the kind of marker, as well as the aim of each work and the desired level
of accuracy to be reach, strongly influence the computer-vision system for
images acquisition.

Table 4: Metrics for Log-Average Miss Rate evaluation considering performances on Inria
and Caltech datasets.

Log-Average Miss Rate
Group Mean Std Min Max

G1 30,81 % 26,62 13,32 % 81,70 %
G2 59,69 % 22,47 34,60 % 94,73 %
G3 37,10 % 9,93 19,96 % 45,98 %
G4 64,32 % 10,04 48,45 % 79,78 %
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Since human tracking is applied in multiple scenarios, the literature re-
ports a very large variety of configurations for the vision system but, at
the same time, the classifiers used to discriminate humans, or pedestrians,
among the multitude of objects in the scenes, are limited to the simpler clas-
sifiers, such as SVM or decision trees. Artificial Neural Networks are quite
used, but very limited respect to the previous models, besides recent works
demonstrated their versatility in different domains [199, 200, 201, 202].

The most difficult step in the design of pedestrian detection system con-
cerns with the features extraction, as it is necessary to extract powerful
descriptor that have to help to discriminate pedestrian. Thanks to the intro-
duction on Deep Learning structures, the previous step could be bypassed
since deep architecture, such as CNNs, could automatically create their own
representation of features.

Following the previous conclusions, in order to design novel applications
for pedestrian detection, several aspects hat to be considered. First, it is nec-
essary to design the desired degree of accuracy to be reached; this influences
the technology of the acquisition system: an RGB camera could be sufficient
to detect pedestrian in 2D space, using background subtraction if it is pos-
sible crate a simple model of the background; or feature-based approaches
to classify pedestrians are to be considered: linear and non-linear classifiers,
such as SVM or ANNs, may be considered in cascade to the previous step,
or a Deep Learning strategy may be implemented using, for example, Con-
volutional Neural Networks. In this latter case, there is no need to extract
features, but an efficient strategy for objects detection in the image has to
be implemented. In any case, a powerful approach may consist in the combi-
nation of the two proposed strategies; in details, deep architectures may be
used to extract features (even at different levels of abstraction) to be used as
input to simple learner for pedestrian classification.

The necessity to track pedestrian in the 3D space imposes the use of
depth cameras, or stereo-cameras. This combination is necessary when both
the presence and the movements of pedestrian control one or more automatic
machine in the real world, such as drones or autonomous vehicles. In some
cases, for example in controlled indoor environment, it is necessary ”to help”
the tracking system with markers. These scenarios are the most common
approach in applications that involve drones (even if scientific community is
taking the lead of marker-less strategies) or research purposes, such as the
study of crowded places tracking and analysing the pedestrian trajectories.

For clinical purposes, instead, the use of multiple markers placed on hu-
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man body is strongly recommended to accurately track human body parts. In
fact, there are only few works that track people without any kind of support
for clinical purposes.

6.1. Future Works

The future of pedestrian detection concerns with the improvement of
performance of both detectors and classifiers. In fact, improving the speed
of pedestrian detection has been an active area in recent years. For example,
in [81], Benenson et al. proposed a method reaching speeds of 100 to 135
FPS for detection in a 480x640 image, although the levels of accuracy are
still low. Other researchers have focused specifically on speeding up Deep
Neural Networks [198, 203, 204], but with no real-time solutions. In [205],
Angelova et al. presented a new real-time approach to object detection that
exploits the efficiency of cascade classifiers with the accuracy of deep neural
networks.

Excellent performance of Deep Networks in classification tasks are found
in literature, and their ability to operate on raw pixel input without the need
to design special features is very appealing. However, deep nets are notori-
ously slow at inference time. In this work, the authors proposed an approach
that cascades deep nets and fast features, that is both very fast and very
accurate. They applied it to the challenging task of pedestrian detection.
Their algorithm runs in real-time at 15 frames per second. The resulting
approach achieves a 26.2 % average miss rate on the Caltech Pedestrian de-
tection benchmark, which is competitive with the very best reported results.
The importance of pedestrian real-time detection is particularly relevant in
advanced driver assistance systems (ADASs), and pedestrian protection sys-
tems (PPSs) [76]. As a future work, it could be interesting to find the best
trade-off between accuracy and frames per second in different environmental
conditions and contexts (e.g. Human-Aware Navigation to detect falls [206]).

7. Conclusion

In this work, a survey on pedestrian detection and tracking system have
been presented. Recent adoption of Deep Learning methodologies and in
particular of Convolutional Neural Networks for pedestrian detection and
tracking deserved a dedicated state-of-the-art survey. The analysed works
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highlight the need to investigate how modern approaches to pedestrian de-
tection work and a comparison with the features-based approaches on bench-
mark datasets has to be done.

However, the reported works show encouraging results in automatic pedes-
trian detection, but further architectures need to be implemented and tested.
In particular, for pedestrian detection, the most successful way seems to con-
sist in the combination of Deep Learning with classical Machine Learning
models because this seems to imply high levels of accuracy and less com-
putation respect to hand-designed features and classification. Moreover, it
will be interesting to compare the performance to this task of optimal ANNs
topologies with SVM.
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