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Abstract

Porosity-dependent free vibration and dynamic stability of functionally graded nanofilms are studied according to the

nonlocal strain gradient theory. Two-scale coefficients are considered to incorporate both nonlocality and strain gradient

impacts. The nanofilm is subjected to in-plane hygro-thermal and harmonic mechanical loads. Uniform dispersion of

porosities is considered according to a power-law model for functionally graded materials. Galerkin’s approach is

employed to obtain the vibration frequencies as well as stability regions. One can see that stability regions and vibration

frequencies of a functionally graded nanofilm are significantly affected by static load parameter, dynamic load parameter,

porosities, moisture change, temperature change, and elastic substrate nonlocal strain gradient coefficients.
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Introduction

It is well-known that the mechanical performance of
functionally graded (FG) structures is significantly
influenced by the change in moisture and temperature
fields. An increment in the value of moisture and tem-
perature results in lower stiffness of FG structures.
Since FG structures are constructed from two
phases with graded properties from ceramic to metal
phase, they are different from other composite mater-
ials under combined moisture and temperature effects
called hygro-thermal loading. Actually, material com-
position of FG structures has a remarkable impact on
their behavior in hygro-thermal environment.1–8

Nanostructures constructed from FG materials9–12

have been applied as structural components in
nano-electro-mechanical systems (NEMs).13–15 For
theoretical modeling and analysis of nanostructures,
it is important to use a nonclassical elasticity theory
containing scale parameters. Actually, these scale par-
ameters can introduce size-dependency of nanostruc-
tures. One of these nonclassical theories is nonlocal
elasticity theory proposed by Eringen,16,17 which
introduces a nonlocal stress field to describe wide
range interaction between atoms. This theory has effi-
ciently employed by many researchers to examine
static and dynamic characteristics of nanostruc-
tures.18–35 Nonlocal elasticity theory is also applied

for the analysis of vibration,36–42 buckling,43–45 and
wave propagation46–48 of FG nanostructures. In all
of afore-mentioned articles, only stiffness reduction
mechanism due to nonlocality is considered.

It is well-known that in nonlocal modeling
of nanostructures, strain gradient effects have been
discarded. Thus, only stiffness-softening effects
are reported and stiffness enhancement due to strain
gradients is not observed.49 A general nonlocal strain
gradient theory (NSGT) can be introduced, while its
efficiency in the wave propagation analysis of nano-
beams is examined by Lim et al.50 This theory is
also employed by Li et al.51 for the wave propagation
analysis of FG nanobeams. Li et al.52 explored
buckling behavior of FG nanobeams under axial
mechanical load using NSGT. In another work,
Farajpour et al.53 performed buckling analysis of
nanoscale homogenous plates employing NSGT.
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 Barati and Shahverdi54 examined hygro-thermal
vibration analysis of graded double-refined-nanoplate
systems using hybrid nonlocal stress–strain gradient
theory. Also, Barati55 explored wave dispersion
behavior of FG nanobeams with the effect of poros-
ities and nonlocal strain gradient theory. Therefore, it
is of great importance to analyze the dynamic behav-
ior of FG nanoplates via NSGT.

Free vibration and dynamic stability of porous FG
nanofilms are investigated according to nonlocal
strain gradient theory. Two-scale coefficients are con-
sidered to incorporate both nonlocality and strain
gradient impacts. The nanofilm is subjected to in-
plane hygro-thermal and harmonic mechanical
loads. Uniform dispersion of porosities are considered
according to power-law model for FG materials.
Galerkin’s approach is employed to obtain the vibra-
tion frequencies as well as stability regions. One can
see that stability regions and vibration frequencies of
a FG nanofilm are significantly affected by static load
parameter, dynamic load parameter, porosities, mois-
ture change, temperature change, elastic substrate
nonlocal strain gradient coefficients. Obtained results
can be used for further investigations on nanofilms
incorporating nonlocal and microstructure-dependent
strain gradient theories.

Nonlocal strain gradient
nanoplate model

The proposed nonlocal strain gradient theory54 takes
into account both nonlocal stress field and the strain
gradient effects by introducing two-scale parameters.
This theory defines the stress field as

�ij ¼ �
ð0Þ
ij � r�

ð1Þ
ij ð1Þ

where the stresses �ð0Þij and �ð1Þij are corresponding to
strain "ij and strain gradient r"ij, respectively as

�ð0Þij ¼

Z
V

Cijkl�0ðx, x
0, e0aÞ"

0
klðx
0Þdx0 ð2aÞ

�ð1Þij ¼ l2
Z
V

Cijkl�1ðx, x
0, e1aÞr"

0
klðx
0Þdx0 ð2bÞ

where Cijkl are the elastic coefficients and e0a and e1a
capture the nonlocal effects and l captures the strain
gradient effects. When the nonlocal functions
�0ðx, x

0, e0aÞ and �1ðx, x
0, e1aÞ satisfy the developed

conditions by Eringen, the constitutive relation of
nonlocal strain gradient theory has the following form

1� ðe1aÞ
2
r2

� �
1� ðe0aÞ

2
r2

� �
�ij

¼ Cijkl 1� ðe1aÞ
2
r2

� �
"kl � Cijkl l

2 1� ðe0aÞ
2
r2

� �
r2"kl

ð3Þ

where r2 denotes the Laplacian operator.
Considering e1 ¼ e0 ¼ e, the general constitutive

relation in equation (3) becomes

1� ðeaÞ2r2
� �

�ij ¼ Cijkl 1� l2r2
� �

"kl ð4Þ

To consider the hygro-thermal effects equation (4) can
be written as55

1� ðeaÞ2r2
� �

�ij ¼ Cijkl 1� l2r2
� �

ð"kl � �ijT� �ijCÞ

ð5Þ

where �ij and �ij are thermal and moisture expansion
coefficients, respectively.

FG plate model based on neutral
surface position

Consider a rectangular (a� b) porous nanofilm of
uniform thickness h made of FGM as shown in
Figure 1. An FG material can be specified by the vari-
ation in the volume fractions. Due to this variation,
neutral axis of FG nanofilm may not coincide with its
mid-surface, which leads to bending-extension cou-
pling. By using neutral axis, this coupling is elimi-
nated. Based on the modified power-law model,
Young’ modulus E, density q, thermal expansion coef-
ficient c, and moisture expansion coefficient � are
described as

EðzÞ ¼ ðEc � EmÞ
z

h
þ
1

2

� �p

þ Em �
�

2
ðEc þ EmÞ

ð6aÞ

�ðzÞ ¼ ð�c � �mÞ
z

h
þ
1

2

� �p

þ �m �
�

2
ð�c þ �mÞ ð6bÞ

�ðzÞ ¼ ð�c � �mÞ
z

h
þ
1

2

� �p

þ �m �
�

2
ð�c þ �mÞ ð6cÞ

�ðzÞ ¼ ð�c � �mÞ
z

h
þ
1

2

� �p

þ �m �
�

2
ð�c þ �mÞ

ð6dÞ

where c and m denote the material properties of cer-
amic and metal phases, respectively and p is inhomo-
geneity or power-law index. Also, � is the porosity
volume fraction. The displacement field according to
the classical plate model considering exact position of
neutral surface can be expressed by

u1 x, y, z, tð Þ ¼ u x, y, tð Þ � ðz� z�Þ
@w

@x
ð7aÞ

u2 x, y, z, tð Þ ¼ v x, y, tð Þ � ðz� z�Þ
@w

@y
ð7bÞ

u3ðx, y, z, tÞ ¼ wðx, y, tÞ ð7cÞ
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where

z� ¼

R h=2
�h=2 EðzÞ zdzR h=2
�h=2 EðzÞ dz

ð8Þ

Also, u and v are in-plane displacements. According
to the present plate theory, the nonzero strains are
obtained as

"x ¼
@u

@x
� ðz� z�Þ

@2w

@x2

"y ¼
@v

@y
� ðz� z�Þ

@2w

@y2

�xy ¼
@u

@y
þ
@v

@x
� 2ðz� z�Þ

@2w

@x@y

ð9Þ

Also, the extended Hamilton’s principle
express that

Z t

0

�ðU� Tþ VÞ dt ¼ 0 ð10Þ

Here, U is strain energy, T is kinetic energy, and V is
work done by external forces. The first variation of
the strain energy can be calculated as

�U ¼

Z
V

�xx� "xx þ �
ð1Þ
xx �r "xx þ �yy� "yy

�
þ �ð1Þyy �r "yy þ �xy� �xy þ �

ð1Þ
xy �r �xy

�
dV

ð11Þ

where � are the components of the stress tensor and e
are the components of the strain tensor.

Substituting equations (8) and (10) into equa-
tion (12) yields

�U ¼

Z a

0

Z b

0

Nxx
@�u

@x
þ
@w

@x

@�w

@x

� 	
�Mb

xx

@2�w

@x2

�

þNyy
@�v

@y
þ
@w

@y

@�w

@y

� 	
�Mb

yy

@2�w

@y2

þNxy
@�u

@y
þ
@�v

@x
þ
@w

@x

@�w

@y
þ
@w

@y

@�w

@x

� �

� 2Mb
xy

@2�w

@x@y

	
dydx

ð12Þ

in which

Nxx ¼

Z h=2

�h=2

ð�0xx � r�
ð1Þ
xx Þdz ¼ Nð0Þxx � rN

ð1Þ
xx

Nxy ¼

Z h=2

�h=2

ð�0xy � r�
ð1Þ
xy Þdz ¼ Nð0Þxy � rN

ð1Þ
xy

Nyy ¼

Z h=2

�h=2

ð�0yy � r�
ð1Þ
yy Þdz ¼ Nð0Þyy � rN

ð1Þ
yy

Mb
xx ¼

Z h=2

�h=2

zð�0xx � r�
ð1Þ
xx Þdz ¼Mbð0Þ

xx � rM
bð1Þ
xx

Mb
yy ¼

Z h=2

�h=2

zð�0yy � r�
ð1Þ
yy Þdz ¼Mbð0Þ

yy � rM
bð1Þ
yy

Mb
xy ¼

Z h=2

�h=2

zð�0xy � r�
ð1Þ
xy Þdz ¼Mbð0Þ

xy � rM
bð1Þ
xy

ð13Þ

where

N
ð0Þ
ij ¼

Z h=2

�h=2

ð�ð0Þij Þdz, N
ð1Þ
ij ¼

Z h=2

�h=2

ð�ð1Þij Þdz

Mbð0Þ
ij ¼

Z h=2

�h=2

zð�bð0Þij Þdz, Mbð1Þ
ij ¼

Z h=2

�h=2

zð�bð1Þij Þdz

ð14Þ

Figure 1. Configuration of nanoporous inhomogeneous nanoplate on elastic substrate.
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 in which (ij¼ xx, xy, yy). The first variation of the
work done by applied forces can be written as

�V ¼

Z a

0

Z b

0

N0
x

@w

@x

@�w

@x
þN0

y

@w

@y

@�w

@y

�

þ 2�N0
xy

@w

@x

@w

@y
� kww�w

þ kp
@w

@x

@�w

@x
þ
@w

@y

@�w

@y

� ��
dydx

ð15Þ

where N0
x,N

0
y,N

0
xy are in-plane applied loads; kw and

kp are Winkler and Pasternak constants. The first
variation of the kinetic energy can be written in the
following form

�K ¼

Z a

0

Z b

0

I0
@u

@t

@�u

@t
þ
@v

@t

@�v

@t
þ
@w

@t

@�w

@t

� ��

� I1
@u

@t

@�w

@x@t
þ
@w

@x@t

@�u

@t
þ
@v

@t

@�w

@y@t
þ
@w

@y@t

@�v

@t

� ��

þ I2
@w

@x@t

@�w

@x@t
þ
@w

@y@t

@�w

@y@t

� �	
dydx

ð16Þ

in which

ðI0, I1, I2Þ ¼

Z h=2

�h=2

ð1, z� z�, ðz� z�Þ2Þ�ðzÞdz ð17Þ

By inserting equations (12) to (16) into equation (10)
and setting the coefficients of �u, � v, �w to zero, the
following Euler–Lagrange equations can be obtained

@Nx

@x
þ
@Nxy

@y
¼ I0

@2u

@t2
� I1

@3w

@x@t2 ð18Þ

@Nxy

@x
þ
@Ny

@y
¼ I0

@2v

@t2
� I1

@3w

@y@t2 ð19Þ

@2Mb
x

@x2
þ 2

@2Mb
xy

@x@y
þ
@2Mb

y

@y2

� NT þNH
� 


r2w� kwwþ kpr
2w

¼ I0
@2w

@t2
þ I1

@3u

@x@t2
þ

@3v

@y@t2

� �
� I2r

2 @2w

@t2

� � ð20Þ

where N0
x ¼ N0

y ¼ NT þNH,N0
xy ¼ 0 and hygro-

thermal resultant can be expressed by

NT ¼

Z h=2

�h=2

EðzÞ

1� v
�ðzÞ ðT� T0Þ dz

NH ¼

Z h=2

�h=2

EðzÞ

1� v
�ðzÞ ðC� C0Þ dz

ð21Þ

in which C ¼ �Cþ C0 and T ¼ �Tþ T0 are uniform
moisture and temperature changes; C0 and T0 are ref-
erence moisture and temperature.

The classical and nonclassical boundary conditions
can be obtained in the derivation process when using
the integrations by parts. Thus, we obtain classical
boundary conditions at x¼ 0 or a and y¼ 0 or b as

Specify wb or
@Mb

xx

@x
þ
@Mb

xy

@y

 !
nx þ

@Mb
yy

@y
þ
@Mb

xy

@x

 !
ny ¼ 0

Specify
@wb

@n
orMb

xxn
2
x þ nxnyM

b
xy þMb

yyn
2
y ¼ 0

ð22Þ

where @ ðÞ
@n ¼ nx

@ ðÞ
@x þ ny

@ ðÞ
@y ; nx and ny are the x and y

components of the unit normal vector on the nano-
plate boundaries, respectively and the nonclassical
boundary conditions are

Specify
@2wb

@x2
or Mbð1Þ

xx ¼ 0

Specify
@2wb

@y2
or Mbð1Þ

yy ¼ 0

ð23Þ

Based on the NSGT, the constitutive relations of
presented FG nanofilm can be stated as

ð1� 	r2Þ

�x

�y

�xy

�yz

�xz

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

¼
EðzÞ

1� v2
ð1� lr2Þ

1 v 0 0 0

v 1 0 0 0

0 0 ð1� vÞ=2 0 0

0 0 0 ð1� vÞ=2 0

0 0 0 0 ð1� vÞ=2

0
BBBBBB@

1
CCCCCCA

�

"x � ��T� ��C

"y � ��T� ��C

�xy

�yz

�xz

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

ð24Þ

Integrating equation (24) over the plate’s cross-
sectional area, one can obtain the force-strain and
the moment-strain of the nonlocal FG plates can be
obtained as follows

ð1� 	r2Þ

Nx

Ny

Nxy

9>=
>;

8><
>: ¼ Að1� lr2Þ

1 v 0

v 1 0

0 0 ð1� vÞ=2

0
B@

1
CA

�

@u

@x
@v

@y

@u

@y
þ
@v

@x

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

ð25Þ
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ð1� 	r2Þ

Mb
x

Mb
y

Mb
xy

9>=
>;

8><
>: ¼ Dð1� lr2Þ

�

1 v 0

v 1 0

0 0 ð1� vÞ=2

0
B@

1
CA
�
@2w
@x2

�
@2w

@y2

�2
@2w

@x@y

9>>>>>>=
>>>>>>;

8>>>>>><
>>>>>>:

ð26Þ

in which

A ¼

Z h=2

�h=2

EðzÞ

1� v2
dz, D ¼

Z h=2

�h=2

EðzÞðz� z�Þ2

1� v2
dz

ð27Þ

The governing equations in terms of the displace-
ments for a NSGT nanofilm can be derived by sub-
stituting equations (25) and (26), into equations (18)
to (20) as follows

A 1� lr2
� 
 @2u

@x2
þ
1� v

2

@2u

@y2
þ
1þ v

2

@2v

@x@y

� �

þ 1� 	r2
� 


�I0
@2u

@t2
þ I1

@3w

@x@t2

� �
¼ 0

ð28Þ

A 1� lr2
� 
 @2v

@y2
þ
1� v

2

@2v

@x2
þ
1þ v

2

@2u

@x@y

� �

þ 1� 	r2
� 


�I0
@2v

@t2
þ I1

@3w

@y@t2

� �
¼ 0

ð29Þ

�D 1� lr2
� 
 @4w

@x4
þ 2

@4w

@x2@y2
þ
@4w

@y4

� �

þ 1� 	r2
� 


�I0
@2w

@t2
� I1

@3u

@x@t2
þ

@3v

@y@t2

� ��

þ I2r
2 @2w

@t2

� �
� NT þNH
� 


r2w� kwwþ kPr
2w

�
¼ 0

ð30Þ

Solution procedure

In this section, Galerkin’s method is implemented to
solve the governing equations of nonlocal strain gra-
dient based FG nanofilms. Thus, the displacement
field can be calculated as

u ¼
X1
m¼1

X1
n¼1

Umn
@XmðxÞ

@x
Ynð yÞe

i!nt ð31Þ

v ¼
X1
m¼1

X1
n¼1

VmnXmðxÞ
@Ynð yÞ

@y
e i!nt ð32Þ

w ¼
X1
m¼1

X1
n¼1

WmnXmðxÞYnð yÞe
i!nt ð33Þ

where (Umn, Vmn, Wmn) are the unknown coefficients
and the functions Xm and Yn satisfy the boundary
conditions. The classical and nonclassical boundary
conditions based on the present plate model are

w ¼ 0,

@2w

@x2
¼
@2w

@y2
¼ 0

@4w

@x4
¼
@4w

@y4
¼ 0

ð34Þ

By substituting equations (31) to (33) into equa-
tions (28) to (30), and using the Galerkin’s method,
one obtains

½M�f €�g þ ½½K� þN0ðtÞ½G��f�g ¼ 0 ð35Þ

where their components are presented in the
Appendix. Also, [M], [K], and [G] denote the mass,
stiffness, and geometric stiffness matrices, respect-
ively, and f�g is the displacement vector (f�g¼
{Umn, Vmn, Wmn}).

Considering periodic axial excitation compressive
load N0ðtÞ ¼ �½�þ � cosð$tÞ�Ncr, which consists of
static and dynamical components, the governing
equation can be expressed by

½M�f €�g þ ½½K� � f�þ � cosð$tÞgNcr½G��f�g ¼ 0 ð36Þ

where $ and Ncr denote excitation frequency and
buckling load respectively; � and � denote the static
and dynamic load factors respectively. To calculate
the dimensionless excitation frequency, the following
relation is adopted

� ¼ $a

ffiffiffiffiffi
�c
Ec

r
ð37Þ

The instability boundaries considering periodic
coefficients of the Mathieu–Hill type can be formed
by periodic T0 and 2T0 in which T0¼ 2p /$. It is
reported that the boundaries of instability regions
with period T0 are less important compared to those
with period 2T0. The solution with respect to period
2T0 can be obtained by the following equation

½½K� �Ncrf�� 0:5�g½G� � 0:25$½M��f�g ¼ 0 ð38Þ

The nontrivial solution of equation (38) gives

det

½ �K� � ð0:5�ÞNcr½G�

�ð0:25$Þ½M�

( )
0

0
½ �K� þ ð0:5�ÞNcr½G�

�ð0:25$Þ½M�

( )
�����������

�����������
¼ 0

ð39Þ
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 in which ½ �K� ¼ ½K� � �Ncr½G�. For a given value of �,
the plots of eigenfrequency X with respect to � provide
stability regions of the nonlocal FGM nanoplates.
Also, non-dimensional parameters are defined as

Kw ¼
kwa

4

Dc
, Kp ¼

kpa
2

Dc
, Dc ¼

Ech
3

12ð1� v2cÞ
ð40Þ

Finally, setting the coefficient matrix to zero gives
the natural frequencies. The function Xm for simply-
supported boundary conditions is defined by

Xm xð Þ ¼ sinðlmxÞ

lm ¼
m


a

ð41Þ

The function Yn can be obtained by replacing x, m,
and a, respectively by y, n, and b.

Figure 2. Variation of dimensionless frequency of porous nanofilms versus nonlocal parameter for different strain gradient par-

ameters (a/h¼ 20, �T¼ 50, �C¼ 1%, Kw¼ 25, Kp¼ 10): (a) p¼ 0.5; (b) p¼ 1; (c) p¼ 5.

Table 1. Comparison of the nondimensional fundamental

natural frequency FG nanofilms with simply-supported bound-

ary conditions (p¼ 5).

a/b¼ 1 a/b¼ 2

a/h m

Natarajan

et al.36 Present

Natarajan

et al.36 Present

10 0 0.0441 0.0439 0.1055 0.1045

1 0.0403 0.0401 0.0863 0.0856

2 0.0374 0.0372 0.0748 0.0742

4 0.0330 0.0329 0.0612 0.0608

20 0 0.0113 0.0112 0.0279 0.0277

1 0.0103 0.0102 0.0229 0.0227

2 0.0096 0.0095 0.0198 0.0197

4 0.0085 0.0084 0.0162 0.0161
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 Numerical results and discussions

This section is concerned with the dynamic modeling
and analysis of harmonically loaded porous FG nano-
films in hygro-thermal environments according to the
nonlocal strain gradient theory. Therefore, both non-
locality of stress field as well as strain gradients are
considered. The correctness of the obtained vibration
frequencies via present plate model are verified with
those of first-order shear deformation theory obtained
by Natarajan et al.36 using finite element method and
the results are tabulated in Table 1. It is noticeable
that presented Galerkin’s solution can accurately pre-
dict vibrational behavior of FG nanoplates. The
length of nanoplate is assumed as a¼ 50 nm. Also,
material properties of nanoplate (alumina and alumi-
num) are considered as

. Ec ¼ 380Gpa, �c ¼ 3800 kg=m3, vc ¼ 0:3, �c¼ 7�
10�6�C�1, �c¼ 0.001 (wt%H2O)�1

. Em ¼ 70Gpa, �m ¼ 2707 kg=m3, vm ¼ 0:3, �m¼
23� 10�6�C�1, �m¼ 0.44 (wt%H2O)�1

A study on the variation of natural frequency of
hygro-thermally affected FG nanofilms with respect
to nonlocal and strain gradient parameters is con-
ducted in Figure 2 when a/h¼ 20, �T¼ 50, �C¼
1%, n¼ 0.05, Kw¼ 25, and Kp¼ 10. It is clear that
natural frequency of FG nanofilm reduces with the
increase of nonlocal parameter for every value of
strain gradient parameter. But, vibration frequency
increases at a fixed nonlocal parameter and inhomo-
geneity index. Due to the lack of a strain gradient
parameter in previous vibration analyses of nano-
films, only the softening effect due to nonlocality
was concluded. Therefore, the material instability
and heterogeneous deformation due to strain gradient
could not be considered within the framework of the
nonlocal elasticity theory.

Figure 3. Variation of dimensionless frequency of porous nanoplates versus moisture percentage for various power-law indices (a/

h¼ 20, �T¼ 100, m¼ 0.2, �¼ 0.1): (a) Kw¼ 0, Kp¼ 0; (b) Kw¼ 10, Kp¼ 0; (c) Kw¼ 10, Kp¼ 5.
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Figure 4. Dimensionless frequency of the nanoplate versus dynamic load factor for different gradient index and porosity volume

fractions (a/h¼ 20, �¼ 0.2, Kw¼ 0, Kp¼ 0): (a) p¼ 1; (b) p¼ 2.

Figure 5. Dimensionless frequency of the nanofilm versus dynamic load factor for different moisture percentage rises and static load

factors (a/h¼ 20, p¼ 1, n¼ 0.2, Kw¼ 0, Kp¼ 0, m¼ 0.2, �¼ 0.1): (a) �¼ 0.1; (b) �¼ 0.2; (c) �¼ 0.3.
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 In Figure 3, dimensionless frequency of FG nanofilm
with respect to moisture change is plotted for a variety
of material gradient index and elastic substrate coeffi-
cients. It is well-known that an increment in moisture
value results in lower stiffness of nanofilm. Accordingly,
magnitude of vibration frequency diminishes with the
increase of moisture value. However, an influence of
moisture change relies on the magnitude of material
gradient index. Actually, a FG nanofilm is more
affected by the moisture change at larger magnitudes
of material gradient index because of higher portion of
metal phase. Actually, moisture expansion coefficient of
ceramic phase is significantly smaller than that of metal
phase. Thus, higher portion of ceramic phase yields
lower impact of moisture on the nanofilm. One can
also see that elastic substrate can enhance the mechan-
ical performance of FG nanofilm leading to larger
vibration frequencies. In fact, both Winkler and
Pasternak coefficients of elastic substrate yields bigger
frequencies regardless of the moisture change.

Dynamic frequency of a periodically loaded FG
nanofilm with respect to dynamic load parameter is
plotted in Figure 4 for different porosity volume frac-
tions when m¼ 0.2, �¼ 0.2, Kw¼ 0, and Kp¼ 0. It is
well-known that the dispersion of porosities in the
material structures degrades the nanofilm stiffness lead-
ing to lower vibration frequencies. However, the
instability region becomes smaller with the increase
of porosity volume fraction. In other words, stability
boundary is wider at lower values of porosity volume
fraction. Therefore, porosities inside the material have
a major role on unstable region and should be con-
sidered in dynamic analysis of nanofilms.

In Figure 5, impacts of temperature, moisture, and
static load parameter on stability regions of

harmonically loaded porous FG nanofilms are pre-
sented when a/h¼ 20, p¼ 1, n¼ 0.2, Kw¼ 0, Kp¼ 0,
m¼ 0.2, and l¼ 0.1. It can be observed in the figure
that when the moisture percentage increases, the
dynamic buckling boundaries are degraded. It
means that the parametric instability can be enhanced
by the moisture change. However, the starting point
(�¼ 0) is reduced with the increase of moisture per-
centage. The reason is that the existence of humidity
field diminishes the bending rigidity of the FG nano-
films leading to the reduction in the frequencies.
According to this figure, when the static load factor
rises, the boundaries of dynamic instability region
reduce at a fixed nonlocal parameter. This is due to
the fact that compressive static load degrades the
flexibility of the FG nanofilm, and leads to smaller
excitation frequencies. One can see that the instability
region of FGM nanofilms becomes closer to the origin
by increasing the magnitude of static load factor.

Figure 6 examines the variation of dimensionless
frequency of the nanofilm versus dynamic load
factor for different side-to-thickness ratios at p¼ 1,
n¼ 0.2, Kw¼ 10, Kp¼ 5, m¼ 0.2, l¼ 0.1, �T¼ 50,
and �C¼ 0.5%. It is well known that the nanofilm
becomes more flexible at larger values of side-to-
thickness ratio. It is observed that stability boundaries
are wider at smaller values of side-to-thickness ratio.
Also, starting point (�¼ 0) or natural frequency of
porous FG nanofilm reduces with the increase of
side-to-thickness ratio.

Conclusions

This paper was concerned with the dynamic modeling
and analysis of harmonically loaded porous FG nano-
films in hygro-thermal environments according to the
nonlocal strain gradient theory. Therefore, both non-
locality of stress field as well as strain gradients were
considered. The classical plate model was employed for
modeling of FG nanofilm. Nonlocal parameter gave
smaller frequencies, while strain gradient parameter
gave larger frequencies for FG nanofilm. A significant
change was observed in the stability boundaries of FG
nanofilm due to the variation of moisture and tempera-
ture. However, the effect of moisture change on the
dynamic behavior of FG nanofilm depends on the
value of material gradient index. Also, increasing por-
osity volume fraction led to lower stiffness and vibra-
tion frequency of FG nanofilm.
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Figure 6. Dimensionless frequency of the nanofilm versus

dynamic load factor for different side-to-thickness ratios (p¼ 1,

n¼ 0.2, Kw¼ 10, Kp¼ 5, m¼ 0.2, �¼ 0.1, �T¼ 50, �C¼ 0.5%).
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