
Scheduling jobs using oppositional-GSO algorithm in cloud
computing environment

Sellaperumal Parthasarathy1 • Chinnasami Jothi Venkateswaran2

Published online: 20 May 2016

� Springer Science+Business Media New York 2016

Abstract Cloud computing is an emerging domain that

requires more algorithm and techniques for various pro-

cess. The scheduling process in cloud computing platform

needs a good algorithm to schedule the jobs of different

users. The main objective of this approach is to develop a

scheduling algorithm through iterative algorithm. Here, we

use oppositional group search optimization algorithm for

iterative process in cloud computing. Initially, we generate

a population that contains a group of members and the

members consist of the number of users and their respec-

tive jobs. The motto of our research is to schedule the user

given jobs efficiently. We separate the members from the

population based on the fitness function to perform dif-

ferent operations and to generate new members. We cal-

culate the fitness for the new members and iterate the

process until we get a stable best member for repeated

iteration. Then, we schedule the jobs for the users based on

the best member obtained.

Keywords Cloud computing � Scheduling � Producer
operation � Scrounger operation � Ranger operation �
Oppositional operation � Execution time

1 Introduction

Computing is being converted to a model comprising of

services that are commoditized and distributed in a manner

alike to traditional services such as water, electricity, gas,

and telephony. In such a model, users accessing services

derived from their needs without their knowledge of where

the services are hosted or how they are distributed. A

number of computing paradigms have promised to dis-

tribute this utility computing vision and these comprise

cluster computing, Grid computing, and more recently

cloud computing [1]. Cloud computing is an budding

information technology that shifts the way of IT architec-

tural solutions are put forward through moving towards the

theme of virtualization: of data storage, of local networks

(infrastructure) as well as software [2, 3]. Cloud computing

offers full scalability, reliability, high performance and

comparatively low cost feasible solution contrast to com-

mitted infrastructures. It is the application offered in the

form of service over the internet and system hardware in

the data centers that gives these services. This technology

has the potential to access a common collection of

resources on request. It offers tremendously striking to

cash-strapped IT departments that are required to deliver

superior services under pressure. If the customer builds

their own applications and run their own internal infras-

tructure, then it is known as private cloud. The integration

of both public and private clouds is known as hybrid cloud.

Cloud computing is a development based on internet and

use of computer technology [4–8]. The cloud is a figure of

speech for the Internet and is an abstraction for the mul-

tifaceted infrastructure it conceals. Cloud computing is a

method of enabling ubiquitous, convenient, on-demand

network admission to a shared pool of configurable com-

puting resources (e.g., networks, servers, storage,

& Sellaperumal Parthasarathy

parthasarathys0667@gmail.com

1 Faculty of MCA, Valliammai Engineering College, Anna

University, Chennai, India

2 Department of MCA, Presidency College, Chennai 600005,

India

123

Wireless Netw (2017) 23:2335–2345

DOI 10.1007/s11276-016-1264-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1264-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-016-1264-5&domain=pdf

applications, and services) that can be hurriedly provi-

sioned and unconfined with least management effort or

service provider interaction. It defines in three models such

as, Software as a Service (SaaS), Platform as a Service

(PaaS), Infrastructure as a Service (IaaS) [9]. In cloud

computing, each application of users will run on a virtual

operation system, the cloud systems distributed resources

among these virtual operation systems. Every application is

entirely different and is independent and has no link amid

each other whatsoever, for example, some necessitate more

CPU time to compute complex task, and some others may

need more memory to store data, etc. Resources are sac-

rificed on activities processed on each individual unit of

service. To assess direct costs of applications, every indi-

vidual’s use of resources such as CPU cost, memory cost,

I/O cost, etc. must be measured. When the direct data of

each individual resources cost has been measured, more

accurate cost and profit analysis [10].

Many cloud applications necessitate workflow process-

ing in which tasks are processed derived from their control

or data dependencies. As workflow scheduling is an emi-

nent NP-complete issue [11], many heuristic and meta-

heuristics methods have been proposed for distributed

systems like grids [12]. In cloud computing, pricing is

based on the level of quality of service (QoS) offered.

Usually, the service providers charge more prices for high

QoS. Therefore, users may not always need to complete the

workflows previous to they require. As an alternative, the

users prefer cheaper services with lower QoS that are

enough to meet their requirements [13]. The Cloud work-

flow management systems with scheduling algorithms have

been proposed by some projects. However, scheduling

workflows based on users’ QoS necessities (e.g. deadline

and budget) has been given very little awareness in these

existing Cloud workflow management systems [14, 15].

In this paper, we propose a scheduling algorithm using

heuristic search methods in cloud computing environment.

Initially, we generate a population that contains a number

of members which consist of number of users with their

request of jobs to be executed. We apply the oppositional

group search optimization (OGSO) algorithm to identify

the best schedule to process the jobs of the respective users.

To identify the best schedule, we first calculate the fitness

for each member in the population and we separate the

members based on best fitness, worst fitness, members

having fitness greater than the threshold and remaining

members. We then do the producer operation for the

member we obtained with best fitness and we do the

oppositional operation for the member we obtained with

worst fitness and we apply the scrounger operation for the

members which has the fitness greater than the threshold

and we apply the ranger operation for the remaining

members. After applying those operations we would get

newly formed members and iterate the process until we get

a stable producer for the repeated iterations. Then, we

schedule the job based on the stable producer we obtained.

Our paper is structured as follows: Sect. 2 shows the

motivation of our technique and Sect. 3 explains our pro-

posed technique and Sect. 4 shows the performance of our

technique compared to the existing algorithm and Sect. 5

concludes our technique.

2 Motivation of our work

Nowadays, cloud computing is an emerging field, requiring

more algorithm and techniques for various process of cloud

computing. The scheduling process in cloud computing

platform needs a good algorithm to schedule the process or

jobs requesting from various users of cloud computing

environment. The problem of job scheduling in a cloud

environment essentially consists of set of job requests to be

scheduled on a set of m computational nodes in a data

center. The resources in the cloud system are requested in

terms of virtual machines (VMs) which are nothing but the

job request. The request can be from any platform so

scheduling is indispensible one when more number of users

needs the particular jobs. Let us assume there has n number

of resources R = {R1, R2, R3, …, Rn} in cloud and N

number of users U = {U1, U2, U3, …, UN} and the users

may request m number of jobs UN = {J1, J2, J3, …, Jm}. If

two or more users request same sequence of jobs that

access same resource, then it would hamper the process and

it needs a scheduling process to schedule the jobs effi-

ciently. To schedule the users requested jobs efficiently, we

intend to develop a heuristic search-based scheduling

algorithm in cloud computing environment. Accordingly,

multiple criteria will be taken for scheduling various jobs

located in various servers. Then, the scheduling will be

done in the brokers using any one of the heuristic search

based optimization algorithm. Additionally, different jobs

with different constraints will be considered and the cloud

computing environment is simulated with the help of

Cloudsim tool.

3 Proposed scheduling algorithm in cloud
computing environment

This section delineates our proposed scheduling algorithm

using heuristic search method in cloud computing envi-

ronment. Figure 1 shows the process of a user performing a

task. There would be N number of users and each user

would give m number of jobs. A resource can be used for

only one execution of job at a time i.e. we can’t use a

resource for two jobs simultaneously. The scheduling

2336 Wireless Netw (2017) 23:2335–2345

123

broker is used to schedule each job from the users to the

respective resources to execute the job.

The scheduling of jobs from different users is an

important step to execute the jobs effectively. To schedule

each job from different users, we use OGSO algorithm as

scheduling algorithm to execute the jobs effectively. The

population of the group search optimization (GSO) algo-

rithm is known as group and each individual in the popu-

lation is called member. The GSO [16] is based on the

concept of animal scanning mechanism for resource

searching. The population of the GSO algorithm consists of

three kinds of members which are producers, scroungers

and rangers. A group contains only one member as pro-

ducer and remaining members are scroungers and rangers.

Each kind of members would do different operations to

generate a new member. We iterate the process of gener-

ating new members based on those operations. In our

oppositional-GSO algorithm, we include an opposition

operation to generate a new member with the producer

operation, scrounger operation and ranger operation. Fig-

ure 2 shows the process of our proposed technique.

Figure 2 explains as follows: Initially, we generate a

group of members which is called population. The

members contain the number of users and the jobs that the

users give to execute. We calculate the fitness values for

each member and separate the members as four categories

based on the fitness values. The first and fourth categories

contain only one member and the remaining categories

would have more than one member. The member in the

first category is based on best fitness value and the member

in the fourth category is based on worst fitness value and

the members in the second category is based on fitness

values greater than the threshold and the third category

contains remaining members. We do the producer opera-

tion for the first category and we do the scrounger opera-

tion for the second category and we do the ranger operation

in the third category and we do the opposition operation in

the fourth category. The opposition operation is an addi-

tional operation we include in the GSO process that con-

tains the producer operation, scrounger operation and

ranger operation.

3.1 Job allocation to resource

To initialize our process, we have to generate a population

that contains a group of members contained by the number

of users and the required jobs for corresponding users.

Each member in the population is generated based on the

number of users and their jobs i.e. each member would

have the number of users we set with their respective jobs.

For example we set the number of users as three and the

number of jobs requested by the users as three and the

number of members in the population as five, the sample

generated initial population is shown in Table 1.

In the Table 1, U1, U2 and U3 represents the number of

users; and M1, M2, M3, M4 and M5 represents the number

of members in the population and 1,2,3 represents the jobs

requested by the users. In this Table 1, consider there has

three resources and the job execute by the first resource is

represented by numerical value one and the job execute by

the second resource is represented by numerical value two

and the job execute by the third resource is represented as

numerical value three. We give certain execution time

interval for each jobs i.e. for the job execute in the first

resource, we set the execution time interval as three; and

for second resource, the execution time interval as two; and

for the third resource, the execution time interval as one.

For example we take the first member from the population

to execute our job allocation process. Table 2 shows the

first member of the population we generated and the

Table 3 shows each user with their respective jobs

separately.

Consider we have three resources to do three different

jobs. While a resource is on process, it will not take another

job to process in the specified time interval and different

jobs from same user will not get executed in same time

Fig. 1 Process of a user performing a task

Wireless Netw (2017) 23:2335–2345 2337

123

interval. Table 4 shows the job allocation to the resources

for the users in first member of the population.

Table 4 is based on the users and their required jobs of

the first member of the population we generated and it

explains as follows: the first job of the first user requests

service from the first resource, so the first three time

Fig. 2 Process of our proposed

technique

Table 1 Sample initial population generated

Users M1 M2 M3 M4 M5

U1 1 2 1 1 3

3 3 2 3 1

2 1 3 2 2

U2 2 3 1 1 1

1 2 3 2 3

3 1 2 3 2

U3 2 1 2 2 3

3 2 3 3 1

1 3 2 1 2

Table 2 First member of the

population generated
U1 1 J1

3 J2

2 J3

U2 2 J1

1 J2

3 J3

U3 2 J1

3 J2

1 J3

Table 3 Each user with their

respective jobs separately
J1 J2 J3

U1 1 3 2

U2 2 1 3

U3 2 3 1

Table 4 Sample job allocation

to resources for users
R1 R2 R3

U1 U2 –

U1 U2 –

U1 U3 –

U2 U3 U1

U2 U1 U3

U2 U1 –

U3 U2

U3

U3

2338 Wireless Netw (2017) 23:2335–2345

123

intervals of the first resource is allocated to the first user

because the first resource requires three time intervals to

execute the job. While the first user uses the first resource

in the first three time interval, the scheduling broker will

not allocate any job of the first user to any resource in the

first three time interval and also the scheduling broker will

not allocate any user’s job to the first resource while the

first resource is scheduled for some other user. After allo-

cating first job of the first user to the respective resource,

the scheduling broker will schedule the first job of the

second user. The first job of the second user requests ser-

vice from the second resource and the scheduling broker

allocated first two time interval of the second resource to

the second user because the execution time interval of the

service from second user is two. Thereafter the scheduling

broker checks the first job of the third user. The first job of

the third user requests service from the second resource and

the scheduling broker allocate the third and fourth time

interval of the second resource to the third user. The

scheduling broker then checks the second job of the first

user. The second job of the first user requests service from

the third resource. The scheduling broker allocates the

fourth time interval of the third resource because the first

user uses the first three time intervals to execute the jobs in

the first resource and the execution time interval of the

third resource is one. Similarly, the scheduling broker

allocates the jobs to the respective resources for every user.

3.2 Fitness calculation

This section explains the fitness calculation for the mem-

bers in the population generated for our technique. The

fitness is calculated based on the time intervals taken by

each resource. After allocating all the jobs requested by

each user to the respective resources, we calculate the total

time interval taken by each resource. We also include the

idle time interval which is before the last execution of a job

in a particular resource while calculating the total time

interval. It is denoted by an equation below:

TRn ¼ total time interval used by Rn

In the above equation, TRn is the total time interval taken

by nth resource. Where n varies from one to three because

used three resource for our example. In our example shown

in Table 4, the total time interval taken by the first resource

is nine and the total time interval taken by the second

resource is six and the total time interval taken by the third

resource is seven. The fitness value is then based on the

maximum time interval. It is shown by an equation below:

fit Mið Þ ¼ max TRnð Þ

where, fit(Mi) denotes the fitness value of ith member of the

population we generated and max(TRn) denotes the

maximum time interval obtained among all the resources

for the ith member. Similarly, we calculate the fitness for

all the members we generated and the best fitness is deci-

ded by minimum value i.e. a member that has fit(M) value

as small compared to other members is chosen as best

fitness. The worst fitness is based on the maximum value

i.e. a member that has fit(M) value as high compared to the

other members is considered as worst fitness. Thereafter,

we classify the members for different operations based on

the fitness. We take the member with best fitness i.e.

fit(M) value as small for producer operation and we take the

member with worst fitness i.e. fit(M) value as large for

opposition operation and we take the members that has the

fitness greater than a threshold we set for scrounger oper-

ation and we take the remaining members for ranger

operation.

3.3 Producer operation

The member that has best fitness value is chosen as pro-

ducer and the operation performed by the producer is

explained as follows: animals scan the environment to

search for food. Scanning is an essential part of search

orientation. It is a set of mechanism by which animals

move sensory receptors and sometimes their bodies or

appendages to capture information from the environment.

The major scanning mechanism used by various animal

species is employed by producer. In s-dimensional search

space, the ith member at the zth searching bout (iteration)

has current position as yzi 2 Rs, head angle as kzi ¼

kzi1; . . .; k
z
i s�1ð Þ

� �
2 Rs�1 and head direction as Fz

i kzi
� �

¼
f zi1; . . .; f

z
is

� �
2 Rs�1 which can be evaluated from kzi through

polar to Cartesian coordinates transformation:

f zi1 ¼
Ys�1

p¼1

cos kzip

� �

f zij ¼ sin kzi j�1ð Þ

� �
� f zi1

f zis ¼ sin kzi s�1ð Þ

� �

The scanning field of the vision is generalized to a s-

dimensional space which is characterized by maximum

pursuit angle xmax [Rs-1 and maximum pursuit distance

dmax [R1. The attitude of producer yp at zth iteration is as

follows: the producer first scans at zero degree and then

scans at right hand side hypercube and then scans at left

hand side hypercube. It is shown by equations below:

yzero ¼ yzp þ r1dmaxF
z
p kzð Þ

yright ¼ yzp þ r1dmaxF
z
p kz þ r2

xmax

2

� �

Wireless Netw (2017) 23:2335–2345 2339

123

yleft ¼ yzp þ r1dmaxF
z
p kz � r2

xmax

2

� �

In the above equations yzero represents zero degree scan,

yright represents right hand side hypercube scan, yleft rep-

resents left hand side hypercube scan, r1 [R1 is a normally

distributed random number with zero mean and standard

deviation as one and r2 [Rs-1 is a random sequence in the

range (0,1). Thereafter, the producer will find the best point

with best resource i.e. with best fitness. If the best point has

a better resource than its current position, then it will move

to this point or else it will stay in its current position and

turn its head to a new angle:

kzþ1 ¼ kz þ r2cmax

The cmax in the above equation denotes the maximum

turning angle. If the producer cannot discover a better area

after a iterations, it will twist its head back to zero degree:

kzþa ¼ kz

3.4 Scrounger operation

In each search bout, a number of group members are

selected as scroungers. The scrounger will explore for the

moment to join the resource found by the producer. The

process involved in scrounger operation is area copying,

following and snatching. Area copying is the process of

searching immediate area around the producer and fol-

lowing is the process of pursuing another animal without

any searching behavior and snatching is the process of

taking resource directly from the producer. In GSO algo-

rithm the common process of area copying of the scrounger

behavior is adopted. The area copying attitude of the ith

scrounger at zth iteration is shown by an equation below:

yzþ1
i ¼ yzi þ r3 yzp � yzi

� �

The scrounger can be modeled as a random walk

towards the producer. The r3 [Rs in the above equation

denotes the uniform random sequence in the range (0,1).

3.5 Ranger operation

The group members which are less efficient foragers than

the dominant will be dispersed from the group and it is

called rangers. The rangers operation includes random

walk and systematic search strategies to discover resources

efficiently. In GSO algorithm, the random walk which is

the most efficient searching behavior for randomly dis-

tributed resources is employed by rangers. If the ith

member from the group is chosen as ranger at zth iteration,

it generates a random head angle ki which is shown by an

equation below:

kzþ1
i ¼ kzi þ r2cmax

In the above equation cmax is a maximum turning angle

and it chooses a random distance. The random distance is

shown by the equation below:

di ¼ a � r1dmax

After it chooses a random distance, it will move to a new

point which is given below:

yzþ1
i ¼ yzi þ diF

z
i kzþ1
� �

3.6 Opposition operation

The opposition operation of our proposed technique is as

follows: we convert the sequence of jobs given by the

users to opposite order. For example, consider there has

five resources to execute five different jobs and a user

gives the sequence of jobs to execute as 1, 3, 2, 5, 4, then

based on opposition operation it would be converted as 5,

3, 4, 1, 2. The formula to convert the sequence is given

below:

O ¼ total no: of resource� current job� 1ð Þ

In the above equation, O is opposition operation and the

total number of resources is five based on the aforemen-

tioned example and if we consider the current job as 2, the

calculation is as follows: 5 - (2 - 1) which is equal to 4.

Similarly, we convert for all the users in the member which

we obtained as worst fitness value. After performing all the

operations, we iterate the process i.e. we will repeat the

process until we get a stable member as producer for

repeated iterations. The scheduling broker then schedule

the jobs for each user based on the producer member we

eventually obtained. Figure 3 shows the algorithm of our

oppositional-GSO algorithm.

4 Result and discussion

This section delineates the results we obtained for our

proposed technique with comparison to the existing GSO

algorithm i.e. instead of our oppositional-GSO algorithm

we applied existing GSO algorithm [16] and genetic

algorithm (GA). We used three setups to compare the

performance: the first one is all the users’ requests same

sequence of jobs and the second setup is half users requests

same sequence of jobs and another half users request

another same sequence of jobs and the third setup is all the

users requests different sequence of jobs.

2340 Wireless Netw (2017) 23:2335–2345

123

4.1 Experimental setup

Our experiment is done on a system that has the system

configuration as i5 processor with 4 GB RAM and our

technique is implemented in java (jdk 1.6). To setup in jobs

schedule environment and evaluate performance matrices,

a simulated environment is used. We expanded the

CloudSim toolkit [17] to simulate the proposed cloud

architecture and performed our experiments. The Cloud-

Sim toolkit supports both the system and behavior mod-

eling of cloud system components like datacenter and

supporting parameters. We initially generated a population

that has members which contains the number of users and

their requested jobs i.e. each member in a population would

have same number of users with their requested jobs in

different schedules. We used three different setups to

compare the performance of our system with the existing

one. The users in each member of the population requested

same sequence of jobs for the first setup. For example,

there have five resources and all the users requests same

sequence of five jobs from the resources, then all the

members generated in the population would be in same

sequence initially. The usage time we set for the resources

are three for first resource, two for second resource, one for

third resource, five for fourth resource and four for fifth

resource. Although, the users give same jobs to execute in

Oppositional GSO Algorithm:

Input: Members of initial population that contains user given jobs

Output: Scheduled jobs

1. Initialize population

2. For each member

3. Calculate fitness fit

4. End for

5. If ()iMfit =best

6. Do producer operation

7. Else if ()iMfit =worst

8. Do opposition operation

9. Else if ()iMfit >threshold

10. Do scrounger operation

11. Else

12. Do ranger operation

13. End if

14. For each newly generated members

15. Calculate fitness fit

16. End for

17. Repeat from step 5 to step 16 until we get a stable producer for repeated iterations.

18. Schedule the user given jobs based on stable producer we obtained.

Fig. 3 Oppositional-GSO

algorithm

Wireless Netw (2017) 23:2335–2345 2341

123

same sequence, the scheduling algorithm schedules the job

for each user to the corresponding resources. In second

setup, half of the users request same sequence of jobs and

half of the users request another same sequence of jobs i.e.

if we use ten users, five users would request same sequence

of jobs and the other five users request another same

sequence. In third setup, all the users request jobs in dif-

ferent sequence. Table 5 shows a sample initial population

generated based on third setup.

The main objective of our research is to select optimal

or best schedule for given jobs using iterative approach. A

best schedule means that satisfies both conditions like

optimal fitness function and user need. According to, we

run every initial random member or solution using iterative

based GGSO operators to update and find optimal sched-

ule. For GSO based job scheduling approach, we run 400

iterations to maps jobs, and then, we select the best

schedule out of the generated schedules. Table 5 shows the

sample population generated with ten members contains

users with different sequence of jobs i.e. based on third

setup and the best schedule obtained after applying our

technique is shown in Table 6. It shows that the best

schedule for user U0 to U9 achieved their optimal schedule

when we get best fitness at ith iteration (i = 400). The best

scheduling process is performed based on fitness function

and also it satisfied user need. For instance, if a user wants

the best schedule for U0 is [1–5] instead of [5, 3, 1, 2, 4],

he/she can get in ith (i = 1,2,,…, 400) iteration, but that

situation the fitness value will be varied. Therefore, our

proposed approach is balanced this kind of conditions

effectively.

4.2 Performance comparison

We compared the performance of our technique with the

existing GSO algorithm and GA algorithm, the perfor-

mance is compared based on two cases. In first case, the

performance is evaluated for time taken to execute the jobs

using three different setups; and in the second case, the

performance is evaluated for the total time taken to execute

using the proposed and the existing algorithms.

Table 5 Sample population generated based on third setup

Ml M2 M3 M4 M5 M6 M7 M8 M9 M10

U0 [5, 3, 1, 2,

4]

[5, 4, 3, 1,

2]

[5, 2, 4, 1,

3]

[2, 5, 3, 1,

4]

[5, 3, 4, 1,

2]

[1, 5, 3, 2,

4]

[1, 4, 5, 2,

3]

[5, 2, 4, 1,

3]

[4, 5, 3, 1,

2]

[3, 5, 4, 1,

2]

U1 [1, 5, 4, 3,

2]

[4, 1, 2, 3,

5]

[2, 3, 4, 1,

5]

[4, 3, 1, 2,

5]

[2, 3, 1, 4,

5]

[2, 1, 3, 4,

5]

[1, 4, 2, 3,

5]

[4, 3, 1, 2,

5]

[4, 3, 5, 1,

2]

[4, 2, 5, 3,

1]

U2 [5, 2, 4, 1,

3]

[1, 3, 4, 5,

2]

[3, 4, 1, 5,

2]

[4, 1, 2, 5,

3]

[5, 3, 2, 1,

4]

[2, 1, 4, 3,

5]

[4, 2, 5, 3,

1]

[4, 5, 1, 2,

3]

[3, 2, 4, 5,

1]

[4, 1, 5, 3,

2]

U3 [5, 4, 2, 1,

3]

[2, 1, 4, 3,

5]

[1, 4, 3, 5,

2]

[5, 4, 3, 2,

1]

[2, 5, 3, 4,

1]

[1, 2, 5, 3,

4]

[2, 5, 1, 4,

3]

[1, 4, 5, 2,

3]

[2, 4, 1, 5,

3]

[5, 4, 1, 3,

2]

U4 [4, 1, 5, 3,

2]

[5, 4, 2, 3,

1]

[1, 2, 3, 4,

5]

[5, 3, 1, 4,

2]

[1, 2, 5, 4,

3]

[4, 5, 3, 1,

2]

[1, 5, 3, 4,

2]

[3, 5, 1, 2,

4]

[5, 3, 1, 4,

2]

[1,4, 5, 3,

2]

U5 [3, 2, 5, 4,

1]

[4, 5, 3, 2,

1]

[1, 3, 2, 4,

5]

[1, 2, 3, 4,

5]

[5, 3, 2, 4,

1]

[4, 5, 3, 2,

1]

[3, 5, 1, 2,

4]

[5, 4, 3, 1,

2]

[4, 5, 1, 2,

3]

[3, 2, 4, 5,

1]

U6 [5, 3, 1, 2,

4]

[4, 2, 5, 3,

1]

[1, 3, 4, 5,

2]

[1, 3, 4, 5,

2]

[4, 1, 5, 2,

3]

[4, 1, 5, 3,

2]

[1, 5, 3, 2,

4]

[5, 2, 1, 3,

4]

[4, 5, 1, 3,

2]

[5, 4, 2, 1,

3]

U7 [1, 2, 4, 5,

3]

[1, 2, 5, 4,

3]

[2, 1, 4, 5,

3]

[4, 3, 5, 2,

1]

[2, 4, 1, 3,

5]

[5, 2, 1, 3,

4]

[1, 2, 3, 5,

4]

[1, 3, 2, 5,

4]

[4, 3, 1, 2,

5]

[2, 1, 5, 3,

4]

U8 [2, 3, 5, 4,

1]

[2, 5, 1, 3,

4]

[1, 3, 2, 5,

4]

[2, 5, 4, 3,

1]

[4, 5, 1, 2,

3]

[4, 3, 5, 1,

2]

[1, 4, 2, 3,

5]

[3, 1, 2, 4,

5]

[5, 3, 2, 1,

4]

[5, 3, 2, 1,

4]

U9 [4, 3, 5, 1,

2]

[1, 5, 4, 2,

3]

[4, 1, 2, 5,

3]

[1, 2, 4, 5,

3]

[5, 1, 4, 2,

3]

[2, 3, 1, 5,

4]

[4, 1, 2, 5,

3]

[3, 2, 1, 4,

5]

[3, 1, 5, 2,

4]

[2, 3, 1, 4,

5]

Table 6 Best scheduled jobs
Users Best schedule

U0 [5, 3, 1, 2, 4]

U1 [1, 4, 3, 2, 5]

U2 [3, 5, 1, 2, 4]

U3 [5, 3, 2, 1, 4]

U4 [3, 5, 1, 2, 4]

U5 [4, 3, 2, 1, 5]

U6 [2, 1, 3, 4, 5]

U7 [1, 5, 2, 3, 4]

U8 [2, 1, 5, 3, 4]

U9 [2, 1, 5, 3, 4]

2342 Wireless Netw (2017) 23:2335–2345

123

4.2.1 Performance based on execution of jobs

In this section, the performance is compared based on the

time taken to execute the scheduled jobs using three dif-

ferent setups as follows:

4.2.1.1 Performance based on first setup This section

shows the performance comparison of our technique and

the existing techniques based on the first setup which is all

the users request same sequence of jobs. We evaluated the

execution time of scheduled jobs for different number of

iterations.

Figure 4 shows the performance comparison of our

technique with the existing algorithms for the first setup.

Here when we set the iteration as hundred, the time taken

to execute the scheduled jobs for our technique is 45 s and

for the GSO technique it is 68 s and for GA technique it is

63 s. This shows that our technique scheduled the jobs

better which obtained less execution time than the existing

technique. When we set the iteration as two hundred, our

technique executed the jobs in 44 s and the GSO technique

executed the jobs in 45 s and the GA technique executed

the jobs in 49 s. When we set the iteration as three hundred,

the execution time of scheduled jobs is 44 s for our pro-

posed technique and it is 45 s for the GSO technique and it

is 49 s for the GA technique. When the iteration is four

hundred, the proposed and GSO techniques executed the

scheduled jobs in 44 s and the GA algorithm executed the

jobs in 48 s.

4.2.1.2 Performance based on second setup This section

shows the performance of our technique compared to the

existing techniques based on the second setup which is half

of the users request same sequence of jobs and another half

request another same sequence of jobs. We evaluated the

performance for different iterations.

Figure 5 shows the performance of our technique com-

pared to the existing GSO and GA techniques based on

second setup. Here when the iteration is hundred, the

execution time for the scheduled jobs using our technique

is 50 s and it is 62 s using GSO technique and it is 63 s

using GA technique. When the iteration is two hundred, the

execution time of scheduled jobs using our proposed

technique is 44 s and the execution time using the GSO

technique is 50 s and it is 58 s using GA technique. When

we set the iteration as three hundred, our technique exe-

cuted the jobs in 44 s and the GSO technique executed the

jobs in 45 s and the GA technique executed the jobs in

56 s. When the iteration is four hundred, the execution time

is 44 s using our proposed technique and it is 45 s using the

GSO technique and it is 56 s using the GA technique.

4.2.1.3 Performance based on third setup This section

shows the performance of our technique compared to the

existing GSO and GA techniques based on the third setup

which is all the users request jobs in different sequence.

The performance of both the techniques is evaluated for

different iterations.

Figure 6 shows the comparison of our technique and the

existing GSO and GA techniques based on third setup for

different iterations. Here when we set the iteration as

Fig. 4 Performance comparison for first setup

Fig. 5 Performance comparison for second setup

Fig. 6 Performance comparison for third setup

Wireless Netw (2017) 23:2335–2345 2343

123

hundred, the execution time for the scheduled jobs using

our technique is 45 s and the execution time for the

scheduled jobs using GSO technique is 50 s and it is 55 s

using GA technique. The execution time of the scheduled

jobs using the proposed and the GSO algorithms is 45 s and

it is 56 s using GA algorithm when the iteration is two

hundred. The time taken to execute the scheduled jobs

using the proposed and the GSO technique is 45 s and it is

55 s using GA algorithm. When we set the iteration as four

hundred, the execution time is 44 s using our technique and

it is 45 s using GSO technique and it is 63 s using GA

technique. The reason of sharp rise with GA algorithm

between 300 and 400 iterations is that the chromosome

random selection was very worst case (range) between 300

and 400 iteration. But, when we increase the iteration

above than 400, the result will be stable. Overall, as we can

see from Fig. 6, the OGSO based proposed algorithm can

generates schedules better makespan than GA based

approach, and better makespan than GSO based method.

4.2.2 Performance based on total time for execution

In this section, the performance based on the total execu-

tion time of each algorithm is compared by varying the

resources used. Figure 7 shows the total execution time

comparison of algorithms.

Here, when we used two resources, the total execution

time of algorithm based on the proposed technique is 91 s

and it is 107 s based on GSO algorithm and it is 145 s

based on GA algorithm. As we can see from Fig. 7, the

OGSO based proposed algorithm can generates schedules

with up to approximately 50 % less performance than GA

based approach, and approximately 15 % less performance

than GSO based method in terms of execution time. When

the resource used is three, the total execution time based on

the proposed technique is 109 s and it is 143 s based on

GSO algorithm and it is 175 s based on GA algorithm. The

OGSO based proposed algorithm can generates schedules

with up to approximately 11 % less performance than GA

based approach, and equal rate with GSO based method in

terms of execution time. When the resource used is four,

the total execution time based on the proposed technique is

175 s and it is 180 s based on GSO algorithm and it is

225 s based on GA algorithm. The OGSO based proposed

algorithm can generates schedules with up to approxi-

mately 3 % less performance than GSO based approach

and approximately 29 % less performance than GA in

terms of execution time. The total execution time based on

the proposed technique is 233 s and it is 279 s based on

GSO algorithm and it is 356 s based on GA algorithm

when the resource used is five. The OGSO based proposed

algorithm can generates schedules with up to approxi-

mately 18 % less performance than GSO based approach

and approximately 53 % less performance than GA in

terms of execution time.

5 Conclusion

In this paper we have proposed a scheduling algorithm

which is oppositional-GSO algorithm using heuristic

search methods in cloud computing environment. Here,

initially we generated a population that contains a group of

members with their respective jobs. We calculated the fit-

ness for each member and based on the fitness we applied

different operations such as producer operation, scrounger

operation, ranger operation and oppositional operation to

generate a new schedule. We iterated the process and we

chose a best member to schedule the user requested jobs

and to execute it. We compared our proposed algorithm

with the existing GSO algorithm and GA algorithm in

terms of time taken to execute the scheduled jobs and total

execution time of the algorithms. We set three different

setups to evaluate the performance of our technique in

terms of time taken to execute the scheduled jobs. The

performance comparison showed that in most cases our

algorithm obtained less execution time than the existing

algorithms in terms of time taken to execute the scheduled

jobs and total time taken to process the algorithms. This

implies that our technique scheduled the jobs of the users

better than the existing algorithms and our technique took

less time to finish the whole process compared to the

existing techniques.

References

1. Buyyaa, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I.

(2009). Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility.

Journal Future Generation Computer Systems, 25(6), 599–616.Fig. 7 Total time taken to execute the algorithms

2344 Wireless Netw (2017) 23:2335–2345

123

2. Leavitt, N. (2009). Is cloud computing really ready for prime

time? Computer, 42, 15–20.

3. Weinhardt, C., Anandasivam, A., Blau, B., & Stosser, J. (2009).

Business models in the service world. IT Professional, 11, 28–33.

4. Chen, S., He, T., Wong, H. Y. S., Lee, K.-W., & Tong, L. (2011).

Secondary job scheduling in the cloud with deadlines. In IPDPS

workshops 2011.

5. Armstrong, P., Agarwal, A., Bishop, A., Charbonneau, A., Des-

marais, R., Fransham, K., et al. (2010). Cloud scheduler: A

resource manager for distributed compute clouds. Distributed,

Parallel, and Cluster Computing.

6. Maguluri, S. T., Srikant, R., & Ying, L. (2012). Stochastic models

of load balancing and scheduling in cloud computing clusters. In

INFOCOM, 2012.

7. Bitam, S. (2012). Bees life algorithm for job scheduling in cloud

computing. In The second international conference on commu-

nications and information technology, 2012.

8. Sun, A., Ji, T., Yue, Q., & Xiong, F. (2011). IaaS public cloud

computing platform scheduling model and optimization analysis.

International Journal of Communications, Network and System

Sciences, 4(12).

9. Tayal, S. (2011). Tasks scheduling optimization for the cloud

computing system. International Journal of Advanced Engi-

neering Sciences and Technologies, 5(2), 111–115.

10. Brimson, J. A. (1991). Activity accounting: An activity-based

costing approach. New York: Wiley.

11. Yu, J., & Buyya, R. (2008). Workflow scheduling algorithms for

grid computing. In Xhafa, F., & Abraham, A. (Eds.), Meta-

heuristics for scheduling in distributed computing environments.

ISBN: 978-3-540-69260-7. Berlin: Springer.

12. Liu, K. (2009). Scheduling algorithms for instance intensive

cloud workflows. Ph.D Thesis, Swinburne University of Tech-

nology, Australia, 2009.

13. Le, K., Chen, J., Jin, H., & Yang, Y. (2009). A min–min average

algorithm for scheduling transaction incentive grid workflows. In

7th Australasian symposium on grid computing and e-research

(AusGrid), Australia (pp. 41–48).

14. Zhangjun, W., Xiao, L., Zhiwei, N., Dong, Y., & Yun, Y. (2011).

A market-oriented hierarchical scheduling strategy in cloud

workflow systems. Journal of Supercomputing, 63(1), 256–293.

15. Ke, L., Hai, J., Jinjun, C., Xiao, L., Dong, Y., & Yun, Y. (2010).

A compromised-time-cost scheduling algorithm in SwinDeW-C

for instance-intensive cost-constrained workflows on cloud

computing platform. International Journal of High Performance

Computing Applications, 1–16.

16. He, S., Wu, Q. H., & Saunders, J. R. (2009). Group search

optimizer: An optimization algorithm inspired by animal

searching behavior. IEEE Transactions on Evolutionary Com-

putation, 13(5), 973–990.

17. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F.,

& Buyya, R. (2011). CloudSim: A toolkit for modeling and

simulation of cloud computing environments and evaluation of

resource provisioning algorithms. Software—Practice and Expe-

rience, 41(1), 23–50.

Sellaperumal Parthasarathy
obtained his Bachelor’s degree in

Mathematics from Bharathidasan

University. He obtained his B.Ed.

degree in Education from the

department of Education, Anna-

malai University, Annamalaina-

gar. Then he obtained hisMaster’s

degree M.C.A from the Depart-

ment of Computer Applications,

Bharathidasan University, in

1998. He received his M.Phil.

degree from the Department of

Computer Science, Manonma-

niam Sundaranar University, Tir-

unelveli in 2008. He received his M.Tech. degree from the Department of

ComputerScience andEngineering, PRISTUniversity,Thanjavur in2010.

He received his Professional M.B.A. degree from the Department of

Management,Manonmaniam Sundaranar University, Tirunelveli in 2011.

He has also obtained EMC Academic Associate in Cloud Infrastructure

and Services. Currently, he is a Assistant Professor at the Faculty of

M.C.A., Valliammai Engineering College, Anna University. His special-

izations include Scheduling in Cloud Computing.

Dr. Chinnasami Jothi Venka-
teswaran received the B.Sc.

degree in Chemistry from the

Madurai Kamaraj University, in

1985, the M.Sc. degree in

Computer Applications from the

Alagappa University, in 1988,

the M.Phil. degree in Computer

Science from the Bharathidasan

University in 1995, the

PGDGISM degree in Geo-

graphic Information System

Management from the Univer-

sity of Madras in 2004 and the

Ph.D. degree in Computer Sci-

ence from the Alagappa University in 2006. From 1989 to 1998, he

worked as a Senior Lecturer in the Department of B.Sc.-Computer

Science at Government Arts College, Karur – 5. He is currently an

Associate Professor in the Department of M.C.A. at Presidency col-

lege, Chennai – 5 from 1998. His research interests are in Data

Mining and Software Engineering. Dr. C. Jothi Venkateswaran is a

Key resource person for Government and Government Aided edu-

cational institutions and departments for their strategic planning and

sustainable academic development. He is serving as an Expert

member to design the course curriculum, board of studies, various

inspection commissions, Single Window System of Admissions as

well as Research project guide and Examiner in Computer Science

and Applications discipline. He also extends his service to the

Directorate of Collegiate Education, Government of Tamil Nadu as

Special Officer (Computers).

Wireless Netw (2017) 23:2335–2345 2345

123

	Scheduling jobs using oppositional-GSO algorithm in cloud computing environment
	Abstract
	Introduction
	Motivation of our work
	Proposed scheduling algorithm in cloud computing environment
	Job allocation to resource
	Fitness calculation
	Producer operation
	Scrounger operation
	Ranger operation
	Opposition operation

	Result and discussion
	Experimental setup
	Performance comparison
	Performance based on execution of jobs
	Performance based on first setup
	Performance based on second setup
	Performance based on third setup

	Performance based on total time for execution

	Conclusion
	References

