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A B S T R A C T

In the real world we are confronted with many cases where the ratio of input/output data
is so important for managers, so in this regard we cannot use traditional Data Envelopment
Analysis (DEA) models to evaluate the efficiency of decision-making units (DMU) and we should
use DEA models based on ratio data. To get the corresponding benchmark for each inefficient
decision-making unit, we need to reduce and increase the inputs and outputs, respectively,
and get the unified projection of the decision maker unit on the efficiency frontier. In this
paper we present a multi-objective linear programming (MOLP) model for evaluating efficiency
based on defining the production possibility set in the presence of ratio data and to get the
corresponding benchmark to each decision-making unit DMU. We use the Zionts and Wallenius
(Z–W) interactive method to solve the MOLP model presented. Using the target setting by
manager among the solutions resulting from the MOLP problem, we choose best solution
according to the managers’ preferences as benchmark and at the end we present the results
of the research.

1. Introduction

Farrell [1] was the first researcher to make an evaluation of decision-making units (DMUs) based on two inputs and one output
sing non-parametric methods. The system proposed analyzes the performance of units. Using mathematical programming, Charnes
t al. [2] generalized Farrell’s non-parametric method for multiple inputs and outputs and introduced it as the CCR model since
t was developed by Charnes, Cooper, and Rhodes where benchmarks are calculated for the DMUs based on the optimal model
olutions. This means that if the optimal values are obtained in the radial and non-radial models CCR or BCC [3], the benchmark
f inefficient units can then be easily achieved by placing constraints on inputs and outputs. The benchmarks of an inefficient unit
an be real or virtual and these benchmarks can be used to make the final decision according to the manager’s opinion. In cases
here we have ratio data such as the ratio of staff to students at a university or the ratio of capital to debt in a financial institution,

t is obvious that traditional DEA models can no longer evaluate our units and find the benchmarks. DEA models need the inputs
nd outputs of a DMU for proper benchmarking. Because of this, several studies have been conducted in order to identify the DEA
enchmarks.

A virtual reference unit is determined for each inefficient unit by the available efficient units. The set of these units is called the
eference set. One definition of efficiency in this model is the ratio of the weighted sum of outputs to the weighted sum of inputs.
n this model, DMUs are evaluated in their best conditions, i.e. the best prices are assigned to input and output weights. What is
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important in DEA models is the use of non-Archimedean numbers for weights, which would guarantee positive input and output
weights. This may cause false inefficiency since the efficiency value does not show the actual efficiency of the units evaluated.
Moreover, when our data are in ratios, DEA models cannot provide an appropriate response. To solve this problem, Despic et al. [4]
introduced the DEA-R model for the first time by combining the DEA methodology and Ratio Analysis. In solving linear programming
problems through interactive methods, there is no need to obtain the decision-maker’s preference information before solving the
model. Meanwhile, the information is gathered during the solving process. In other words, it is not necessary for the decision maker
(DM) to state his/her overall priorities in relation to the objectives, but rather they just simply indicate their preferences from a
set of available solutions, which is easier for the DM. Developed by Zionts and Wallenius [5], the Z–W method is an interactive
multi-objective linear programming approach used to obtain a proper benchmark for inefficient units on the efficient frontier. In
this method, an additive and combined objective function is first formed using positive and arbitrary weights, and then the effective
solution is achieved by solving the problem.

DEA-R utilizes linear programming models to evaluate DMUs and find appropriate benchmarks. In cases of ratio data, the scale
fficiency is calculated by defining efficiency as a weighted sum of input-to-output ratios or vice versa. In this regard, the role of the
anager is uniquely important. However, it is obvious that the use of interactive methods, especially the Z–W method, is essential

or benchmarking in DEA-R since, firstly, data are in form of ratios, and secondly, by incorporating the manager’s preferences, we
an achieve the proper benchmarks and ensure the benchmarks are in line with the manager’s ideas. In this paper, input and output
ata are not inherently ratios, but these ratios form the criteria for assessing DMUs.

The axiom of convexity is one of the basic assumptions of the production possibility set (PPS). Emrouznejad and Amin [6]
ddressed the subject of convexity in a standard PPS. In this regard, they stated that using the basic models of standard DEA
or observations including ratio data as inputs and outputs could lead to inaccurate scale efficiencies. Therefore, they presented
odified DEA models that employ an accurate convexity of DMUs in cases where the model includes ratio variables. Olesen et al. [7]
emonstrated that using ratio data (e.g., different percentages or rates) in variable returns to scale (VRS) and constant returns to scale
CRS) models would contradict the production assumptions. If ratio measures are used, the production technology would become
on-convex. Thus, standard DEA models are no longer suitable when one of the inputs or outputs is in the form of a ratio. In another
tudy, Olesen et al. [8] introduced the new R-CRS and R-VRS production technologies, which can be considered as extensions of
tandard DEA models that allow the incorporation of ratio inputs and outputs.

The discussion about DEA-R is quite different from other performance measurement studies using ratio data. DEA-R is strictly
odeled based on ratio analysis, where the inputs and outputs of DMUs are available in a non-ratio form, but their ratios can be

omputed and form the criteria for evaluating the DMUs. Ratios such as quick ratio and leverage ratio are examples of criteria that
ould be used to evaluate companies, should the production technology be defined accordingly, as in the studies of Fernandez-Castro
nd Smith [9], Liu et al. [10], Mozaffari et al. [11].

The present paper is structured as follows. Section 2 presents literature review in different three parts, including relation between
EA and multi-objective linear programming (MOLP), benchmarking, and DEA-R models. Section 3 presents the basic concepts in
EA-R, or DEA with ratio data. In Section 4, we propose a DEA-R model with a MOLP structure used for benchmarking and provide
demonstration of the interactive Z–W method along with a stepwise implementation of the model. The algorithm proposed is

llustrated through numerical and applicatory examples in Section 5. In Section 6 we benchmark eleven Iranian clothing companies
sing DEA and DEA-R models, while finally in Section 7 the conclusive remarks are made.

. Literature review

We proposed the literature review in different three parts. The first part is a review of relation of MOLP and DEA. The second
art is a review benchmarking in DEA. We also review the recent DEA-R models in the thread part.

.1. MOLP and DEA

The conventional DEA models do not incorporate the DM’s preference or value judgments. Different methods have been
eveloped to consider the DM’s preference information in the efficiency evaluation process. Allen et al. [12] have defined value
udgments as ‘‘logical constructs, in order to incorporate DM’s preference information in the process of assessing efficiency.
olany [13] proposed the goal and target setting models. Athanassopoulis [14], and Dyson and Thanassoulis [15] developed weight

estrictions models including imposing bounds on individual weights. Thompson et al. [16] proposed assurance region method. Wong
nd Beasley [17] developed restricting composite inputs and outputs, weight ratios and proportions based on the DEA models.
harnes and Cooper [18], and Charnes et al. [19] used the cone ratio concept by adjusting the observed input–output levels or
eights to apply value judgment to belong to a given closed cone. Zhu [20] integrated preference information into a modified
EA formulation. But, all the above-mentioned methods would require prior articulated preference knowledge from the DM, which

n most cases can be subjective and difficult to obtain. An another method to consider preference information, without necessary
rior judgment or target setting, is the use of an interactive decision making technique that encompasses both DEA and Linear
rogramming (MOLP). Joro, Korhonen, and Wallenius [21] showed that there are synergies from both DEA and MOLP, and showed
hat the DEA formulation is structurally similar to the reference point approach of the MOLP formulation. They used of the concept
f value efficiency analysis to incorporate preference information in DEA. Joro, Korhonen and Zionts [22] proposed an interactive
pproach to improve estimates of value efficiency in data envelopment analysis. Wong, Luque, and Yang [23] used interactive
ulti objective methods to solve DEA problems with value judgments. Yang, Wong, Xu, and Stewart [24] proposed an integrating
2
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DEA-oriented model for assessment performance and target setting using interactive MOLP methods. Hosseinzadeh Lotfi et al. [25]
developed a relationship between MOLP and DEA based on output-orientated CCR dual model. Hosseinzadeh Lotfi et al. [26]
proposed target setting in the general combined-oriented CCR model using an interactive MOLP method. Zohrehbandian [27] used
Zionts–Wallenius method to improve estimate of value efficiency in DEA. Ebrahimnejad and Hosseinzadeh Lotfi [28] developed
an equivalence relationship between the general combined-oriented CCR model and the weighted minimax MOLP formulation.
Ebrahimnejad and Tavana [29] proposed an interactive MOLP method for identifying target units in output-oriented DEA models.
Ebrahimnejad et al. [30] proposed a three-stage data envelopment analysis model with application to banking industry. Kao, Chan,
and Wu [31] proposed a multi-objective programming method for solving network DEA. Gerami [32] proposed an interactive
procedure to improve estimate of value efficiency in DEA. Soltani and Lozano [33] proposed an interactive multi objective DEA
target setting using lexicographic DDF.

2.2. Benchmarking in DEA

Benchmarking widespread used to improve a firm’s performance relative of DMUs in the DEA. DEA employed as a practical
enchmarking tool in management. The procedure of DEA-based benchmarking approaches can be concluded in the following four
teps.

1. The input/output dimensions and indexes are obtained. 2. the relevant data set of all the evaluated DMUs are considered,
nd a DEA model is selected to discriminate DMUs with superior performance and other DMUs with inferior performance. 3. By
onsidering a specific criterion, the inefficient DMUs can find rational benchmarks among the best performing DMUs or their linear
ombinations called virtual efficient DMUs. 4. The inefficient DMUs improve their performance toward those benchmarks set by
EA method. The study on benchmarking is a main research field in DEA. For example, see: Cook, Ruiz, Sirvent, and Zhu [34], Lim,
ae, and Lee [35], Lozano, Calzada-Infante [36].

Lim, Bae, and Lee [35] proposed a study on the selection of benchmarking paths in DEA. Cook, Tone, and Zhu [37] proposed
n approach based on DEA in the prior to choosing a model. Bogetoft [38] proposed the original definition of benchmarking.
e showed that benchmarking is traditionally thought of as a managerial tool that improves performance by obtaining and
pplying best documented practices in the business world, he indicated that benchmarking incorporates the identification of best-
erformance goals and the application of these goals into practice. Cook, Ruiz, Sirvent, and Zhu [34] proposed within-group common
enchmarking using DEA. Lozano and Soltani [39] proposed DEA target setting using lexicographic and endogenous directional
istance function approaches. An, Tao, and Xiong [40] proposed an agency perspective of benchmarking with data envelopment
nalysis. They propose a reimbursement scheme to motivate DMUs to realize their ‘‘best practice’’ and prove that DMUs’ best
esponses to our incentive game are just to realize their ‘‘best practice’’ when the reimbursement scheme satisfies strong monotonicity
n outputs, and these responses constitute the strong Nash equilibrium of our incentive game. José and Sirvent [41] presented
ommon benchmarking and ranking of units with DEA. Soltani and Lozano [33] proposed an interactive multi objective DEA target
etting using lexicographic DDF.

.3. DEA-R model

DEA-R models were first formulated in Despic et al. [4] as a tool that combines DEA and ratio analysis. Emrouzinejad and
min [6] proposed a new convexity assumption as well as enhancements to basic DEA models to tackle this problem. Emrouznejad
nd Amin [6] showed that the convexity assumption is not satisfied. Wei et al. [42–44] extended the theory of DEA-R models in
ew directions. They presented on relations between traditional DEA models and ratio-based DEA-R. Liu et al. [10] proposed DEA-
models without explicit inputs studied. Mozaffari et al. [45] developed DEA-R models based on the cost and revenue efficiency

oncept and the relationship between DEA and DEA-R. Olesen et al. [7,8], having demonstrated the problems with ratio data after
lassifying them, defined a production possibility set and introduced the corresponding models in constant/variable returns to scale
echnology. They discussed efficiency analysis with ratio measures and provided a positive answer to the existing debate with regard
o the use of DEA models for ratio data. They proposed a new production possibility set under VRS and CRS production technologies.
ozaffari et al. [11] introduce a DEA-R production possibility set under the assumption of constant returns to scale technology and

ropose a method for identifying DEA-R-efficient surfaces. Hatami-Marbini and Toloo [46] shown the problems with ratio data
fter classifying them, defined a production possibility set and introduced the corresponding models in constant/variable returns
o scale technology. Gerami et al. [47] proposed multi-criteria ratios for two-stage network. Finally, Gerami et al. [48] developed

novel network DEA-R model for evaluating hospital services supply chain performance. The DEA models have the properties:
n the DEA-R model, the inputs and outputs are available and are not ratio data. In DEA-R models, we use ratios of inputs to
utputs or vice versa. In contrast to DEA, efficiency is defined in DEA-R as a weighted sum of input-to-output ratios or vice versa,
definition of efficiency based on the relationship between arithmetic, geometric, and harmonic efficiency (Despic et al. [4]). In
EA-R models, pseudo-inefficiency is prevented, and the efficiency scores and the DEA and DEA-R weights have a similar behavior.

Wei et al. [42–44]).

. Preliminaries

In this section, we first provide our defined PPS and the proposed output-oriented envelopment models in DEA-R, then we present
ur ratio-based DEA models adopted from articles by Emrouznejad and Amin [6] and Olesen et al. [8].
3
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3.1. An overview of basic concepts in DEA- R

Consider n decision-making units (DMUs) that use m inputs to produce s outputs. Let us assume that we have n DMUs
(DMUj, 𝑗 = 1,… , 𝑛), each associated with m inputs 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 ,… , 𝑥𝑚𝑗 )𝑇 and s outputs 𝑌𝑗 = (𝑦1𝑗 , 𝑦2𝑗 ,… , 𝑦𝑠𝑗 )𝑇 , 𝑗 = 1,… , 𝑛. The
production possibility set (PPS) is then introduced as follows.

𝑇 = {(𝑦, 𝑥) |𝑦 𝑐𝑎𝑛 𝑏𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥} ∈ 𝑅𝑚+𝑝
+ .

The following shows the output-oriented CCR envelopment model used to assess the efficiency of DMUs.

𝑀𝑎𝑥 𝜑

𝑠.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜, 𝑖 = 1,… , 𝑚,

𝑛
∑

𝑗=1
𝜆𝑗𝑦𝑟𝑗 ≥ 𝜑𝑦𝑟𝑜, 𝑟 = 1,… , 𝑠,

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (3.1)

In the optimal solution of model (3.1), if 𝜑* = 1, DMUo is located on the efficiency frontier and is thus efficient. Next, we consider
the model’s second phase using the 𝜃∗ value and maximizing the set of slack variables related to input and output constraints. Now,
if (𝜆1,… , 𝜆𝑛, 𝜃∗) was the optimal solution in the second phase of model (3.1), then (

∑𝑛
𝑗=1 𝜆

∗
𝑗𝑥𝑖𝑗 ,

∑𝑛
𝑗=1 𝜆

∗
𝑗 𝑦𝑟𝑗 ) would be the efficiency

projection of 𝐷𝑀𝑈𝑂, thereby separating strong and weak efficiencies [49]. In addition, this model is always feasible as 𝜃* = 1,
𝜆𝑜 = 1, and 𝜆𝑗 = 0, 𝑗 = 1,… , 𝑛, 𝑗 ≠ 𝑜, is a feasible solution. Furthermore, in any feasible solution, especially the optimal solution, we
have 𝜑* ≥1.

We define the production possibility set (PPS) in the presence of ratio data as follows:

𝑇𝑅 =

{

𝑦
𝑥

|

|

|

|

|

|

𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑦
𝑥

𝑟 = 1,… , 𝑠, 𝑖 = 1,… , 𝑚
𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛

}

(3.2)

The following postulates hold in the 𝑇𝑅 set (3.2):

• Feasibility of data observed: The inclusion principle of observations related to the ratios of 𝑦𝑟𝑗
𝑥𝑖𝑗

holds;
(

∀𝑗 = 1,… , 𝑛,
𝑦𝑟𝑗
𝑥𝑖𝑗

∈ 𝑇𝑅

)

.

• Free disposability: This principle holds in the DEA-R production possibility set (see [10]);
(

𝑖𝑓 𝛽
𝛼 ∈ 𝑇𝑅 ∀ 𝑦

𝑥 ,
𝑦
𝑥 ≤ 𝛽

𝛼 → 𝑦
𝑥 ∈ 𝑇𝑅, 𝑗 = 1,… , 𝑛

)

.

• Convexity: The convexity principle holds in the DEA-R PPS (see [10]);
(If

(

𝑦1

𝑥1

)

,
(

𝑦2

𝑥2

)

∈ 𝑇𝑅 and 𝜆 ∈ [0, 1] → 𝜆
(

𝑦1

𝑥1

)

+ (1 − 𝜆)
(

𝑦2

𝑥2

)

∈ 𝑇𝑅).

heorem 1. 𝑇𝑅 is a closed and bounded set (see [10]).

According to the above mentioned principles, in the presence of ratio data, we define the output-oriented DEA-R model under
onstant returns to scale (CRS) assumption as follows:

𝑀𝑎𝑥 𝜑

𝑠.𝑡. 𝜑
(

𝑦𝑟𝑜
𝑥𝑖𝑜

)

∈ 𝑇𝑅 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠 (3.3)

Based on the PPS defined, the above mentioned model will be presented as follows:

𝑀𝑎𝑥 𝜑

𝑠.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝜑
(

𝑦𝑟𝑜
𝑥𝑖𝑜

)

, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (3.4)

Model (3.4) is a linear programming problem introduced in DEA-R to assess technologies with CRS [42–44]. In DEA models,
efficiency is equal to the weighted sum of outputs divided by the weighted sum of inputs, and relative efficiency is defined as
the absolute efficiency divided by maximum absolute efficiencies. The following problems exist in this relation: First, what are
our reasons for defining efficiency? Secondly, use of the non-Archimedean number (𝜀) is an issue as it prevents zero weights such
that neither the nominator nor the denominator can become zero. Thirdly, the aforementioned problems may lead to the pseudo-
inefficiency in DEA. Here, the DEA-R model is useful for our purposes and it does not cause any problems. In addition, the efficiency
score in input-oriented models of DEA-R is greater than or equal to the value efficiency score in DEA. Efficiency scores are the
4
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exact equivalent of each other in DEA and DEA-R models when there is one output and multiple inputs, which can be easily proved
(see [44]).

3.2. Data envelopment analysis with ratio data

Fernandez-Castro and Smith [9] provide the following model for calculating the efficiency of unit under evaluation, ie 𝐷𝑀𝑈 𝑜 =
(

𝑥𝑜, 𝑦𝑜
)

as follows.

max
𝑠
∑

𝑟=1

𝑚
∑

𝑖=1
𝑤𝑖𝑟

(

𝑦𝑟𝑜
𝑥𝑖𝑜

)

𝑠.𝑡.
𝑠
∑

𝑟=1

𝑚
∑

𝑖=1
𝑤𝑖𝑟

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≤ 1, 𝑗 = 1,… , 𝑛, (3.5)

𝑤𝑖𝑟 ≥ 0, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

This model has been used in Meng et al. [50]. Model (3.5) also looks like a DEA model without inputs; see Mahlberg and
bersteiner [51].

If we write the dual of model (3.5), we get to model (3.6).

𝑀𝑖𝑛
𝑛
∑

𝑗=1
𝜆𝑗

𝑠.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥
(

𝑦𝑟𝑜
𝑥𝑖𝑜

)

, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠, (3.6)

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

By changing the variables �̂�𝑗 = 𝜆𝑗
𝑡 and 𝑡 =

∑𝑛
𝑗=1 𝜆𝑗 and �̂�𝑅 = 1

𝑡 in model (3.6) and converting the maximization problem to a
minimization problem, the model (3.7) is obtained as follows.

𝑀𝑎𝑥 �̂�𝑅

𝑠.𝑡.
𝑛
∑

𝑗=1
�̂�𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ �̂�𝑅(
𝑦𝑟𝑜
𝑥𝑖𝑜

), 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠, (3.7)

𝑛
∑

𝑗=1
�̂�𝑗 = 1, �̂�𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, �̂�𝑅 ≥ 0.

Model (3.7) is the same model DEA-R-O (3.4), which was introduced in Section 3.1. As observed, we obtained the DEA-R-O
model in two different ways to calculate the efficiency of the unit under evaluation.

4. Benchmarking in DEA-R

In this section we first propose a multi-objective linear programming problem based on DEA-R in constant returns to scale (CRS)
technology, then use the interactive Z–W method to obtain benchmarks for our DMUs on the efficiency frontier.

By defining the PPS in DEA-R, i.e. model (3.4), the following multi-objective model is proposed:

𝑀𝑎𝑥
{

𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠
}

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (4.8)

heorem 2. The Pareto-optimal solutions of model (4.8) are on the output-oriented DEA-R efficiency frontier.

roof. Model (4.8) is an 𝑚× 𝑠 objective linear programming problem. We prove that the Pareto-optimal solutions of this model are
n the output-oriented DEA-R efficiency frontier. To prove our theorem by contraction, assume that

(

𝜆∗𝑗 , 𝑓
∗
𝑖𝑟

)

is a Pareto-optimal

olution for model (4.8) that is not on the DEA-R efficient frontier. Therefore, we let 𝑓 ∗
𝑖𝑟 =

𝛽𝑟
�̃�𝑖

that is not on the efficiency frontier
be our solution.

Since 𝑓 ∗
𝑖𝑟 =

𝛽𝑟
�̃�𝑖

is not on the frontier, then ∃�̂�𝑗 ∋
∑𝑛

𝑗=1 �̂�𝑗
𝑦𝑟𝑗
𝑥𝑖𝑗

≥ 𝛽𝑟
�̃�𝑖

assuming ∑𝑛
𝑗=1 �̂�𝑗

𝑦𝑟𝑗
𝑥𝑖𝑗

= 𝛽𝑟
�̂�𝑖

is thereby
(

�̂�𝑗 ,
𝛽𝑟
�̂�𝑖

)

a feasible solution

or model (4.8), which 𝑓𝑖𝑟 =
𝛽𝑟
�̂�𝑖

is in contraction with the Pareto-optimal target value of model (4.8). Therefore, the assumption is
alse and our statement holds.
5
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o

We used the weighted sum method to solve our multi-objective problems. Assigning weights to È𝑖𝑟, which represent the priorities

f output to input ratios, model (4.9) is suggested as follows:

𝑀𝑎𝑥
𝑚
∑

𝑖=1

𝑠
∑

𝑟=1
𝑓𝑖𝑟È𝑖𝑟

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (4.9)

We now obtain the optimal solutions of model (4.9) and its projection on the efficiency frontier as follows:

𝑥∗𝑖 =
∑

𝜆∗𝑗𝑥𝑖𝑗 , 𝑦
∗
𝑟 =

∑

𝜆∗𝑗 𝑦𝑟𝑗 ,
𝑛
∑

𝑗=1
𝜆∗𝑗 = 1, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠.,

Theorem 3. Model (4.9) is always feasible

Proof. If we let 𝜆𝑜 = 0 for 𝑗 = 1,… , 𝑛, 𝑗≠ o, as well as 𝜆𝑜 = 1 and 𝑓 𝑖𝑟 =
𝑥𝑖𝑜
𝑦𝑟𝑜

for all i, r, a values, the feasible solution for model (4.9)
is then obtained, which holds for all constraints.

Theorem 4. The first constraints in model (4.9) are binding in the optimal solutions

Proof. Suppose that
(

𝜆∗1 ,… , 𝜆∗𝑛 , 𝑓
∗
11,… , 𝑓 ∗

1𝑠, 𝑓
∗
21,… , 𝑓 ∗

2𝑠,… , 𝑓 ∗
𝑚1,… , 𝑓 ∗

𝑚𝑠
)

is the optimal solution of model (4.9). By contradiction, suppose there are t and k, for which the corresponding constraints are not
binding; i.e.,

∃𝑡, 𝑘∶
∑𝑛

𝑗=1 𝜆
∗
𝑗

(

𝑦𝑘𝑗
𝑥𝑡𝑗

)

> 𝑓 ∗
𝑡𝑘

Obviously, there is 𝑓 𝑡𝑘, per which:
𝑛
∑

𝑗=1
𝜆∗𝑗

( 𝑦𝑘𝑗
𝑥𝑡𝑗

)

= 𝑓 𝑡𝑘&𝑓 ∗
𝑡𝑘 < 𝑓 𝑡𝑘,

because 𝑓 𝑡𝑘 =
∑𝑛

𝑗=1 𝜆
∗
𝑗

(

𝑦𝑘𝑗
𝑥𝑡𝑗

)

> 𝑓 ∗
𝑡𝑘. Now, we define:

𝑓 𝑖𝑟 = 𝑓 ∗
𝑖𝑟

𝑖 = 1,… , 𝑚, 𝑖 ≠ 𝑡
𝑟 = 1,… , 𝑠, 𝑟 ≠ 𝑘

It is obvious that:
(

𝜆∗1 ,… , 𝜆∗𝑛 , 𝑓 11,… , 𝑓 1𝑠, 𝑓 21,… , 𝑓 2𝑠,… , 𝑓𝑚1,… , 𝑓𝑚𝑠

)

is a feasible solution for model (4.9). Therefore, using the weight vector used to solve the problem, we will arrive at the following
equation, which is a contradiction:

𝑚
∑

𝑖=1

𝑠
∑

𝑟=1
È𝑖𝑟𝑓 𝑖𝑟 >

𝑚
∑

𝑖=1

𝑠
∑

𝑟=1
È𝑖𝑟𝑓

∗
𝑖𝑟

Therefore, this completes the proof.

4.1. Benchmarking in DEA-R via interactive methods

The first study to combine DEA and MOLP was conducted by Golany [13]. He suggested using an interactive method for
generating efficient solutions in order to determine the efficient frontier in DEA, which was somewhat similar to the weighted
Tchebychev method presented by Steuer and Choo [52]. We propose the following algorithm for finding the benchmarks in DEA-R.

Step 1. First, we write the objective function as Max {f𝑖𝑟} and select a set of weights Èℎ for the objectives of 𝑓𝑖𝑟, then we let
ℎ = 1.

Step 2. We create an objective function for the problem, as follows, and solve it in order to achieve an effective solution.

𝑀𝑎𝑥
𝑚
∑

𝑖=1

𝑠
∑

𝑟=1
Èℎ
𝑖𝑟𝑓𝑖𝑟

𝑆.𝑡.
6
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a

𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜆𝑗 = 1 , 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛, (4.10)

𝑚
∑

𝑖=1

𝑠
∑

𝑟=1
Èℎ
𝑖𝑟 = 1, 𝛾ℎ𝑖𝑟 > 0, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠.

Step 3. We gather the optimal solutions of model (4.10) in the set 𝐹 1 and assign the non-basic variable. Solve the model (4.10)
by considering the positive weights Èℎ

𝑖𝑟 > 0. Because the model (4.10) is a linear programming problem and each optimal solution
of it is an optimal Pareto solution of the multi-objective model (4.8) (Steuer and Choo [52]).

So assuming that
(

𝜆∗1 ,… , 𝜆∗𝑛 , 𝑓
∗
11,… , 𝑓 ∗

1𝑠, 𝑓
∗
21,… , 𝑓 ∗

2𝑠,… , 𝑓 ∗
𝑚1,… , 𝑓 ∗

𝑚𝑠
)

is an optimal solution of the linear programming model (4.10). Obviously, any optimal solution of the model (4.10) can be divided
into basic and non-basic solution. It should be noted that in the non-degeneracy state, all the basic variables are positive and the
other non-basic variables are at the zero level. Therefore, at this stage, only non-basic variables are considered. Variables (NBVs)
to the set q1; furthermore, we set the index of non-basic variables to NBV.

Step 4. In order to calculate 𝜔𝑘𝑙, 𝑘 = 1,… , 𝑚×𝑠 for the entry of non-basic variable 𝑞𝑙 into the base, the following problem should be
solved for the non-basic variables 𝑞𝑙. Solving the model (4.10) and separating the basic and non-basic variables, and then solve the
models (4.11a), (4.11b) for the basic variables. Simplicity, we can first find the non-basic variables among the non-basic variables
in between

(

𝜆∗1 ,… , 𝜆∗𝑛
)

and solve the following model for 𝑗 ∈ 𝑁𝐵𝑉 that NBV is a set of all non-basic variables.

𝑀𝑎𝑥 {𝜆𝑗 ∶ 𝑗 ∈ 𝑁𝐵𝑉 }

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠, (4.11a)

𝑛
∑

𝐽=1
𝜆𝑗 = 1 , 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

Similarly, we can select non-basic variables from among the non-basic variables
(

𝑓 ∗
11,… , 𝑓 ∗

1𝑠, 𝑓
∗
21,… , 𝑓 ∗

2𝑠,… , 𝑓 ∗
𝑚1,… , 𝑓 ∗

𝑚𝑠
)

, and we solve the following model for (𝑖, 𝑟) ∈ 𝑁𝐵𝑉 , where NBV is a set of all non-basic
variables.

𝑀𝑎𝑥 {𝑓𝑖𝑟 ∶ 𝑖𝑟 ∈ 𝑁𝐵𝑉 }

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑓𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠, (4.11b)

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

Considering that the models (4.11b), (4.11a) may have the alternative optimal solution, so in this case we can find the variable
corresponding to the optimal solution obtained from the models (4.11a), (4.11b) which has a larger value. Because only the
maximum of that non-basic variable is important.

We suppose that the optimal solutions of model (4.11a) or (4.11b) are obtained as follows:

𝐹
′1 =

(

𝑓
′1
11 , 𝑓

′1
12 ,… , 𝑓

′1
1𝑠 , 𝑓

′1
21 , 𝑓

′1
22 ,… , 𝑓

′1
2𝑠 ,… , 𝑓

′1
𝑚1,… , 𝑓

′1
𝑚𝑠

)

⋮

𝐹
′𝑁 =

(

𝑓
′𝑁
11 , 𝑓

′𝑁
12 ,… , 𝑓

′𝑁
1𝑠 , 𝑓

′𝑁
21 , 𝑓

′𝑁
22 ,… , 𝑓

′𝑁
2𝑠 ,… , 𝑓

′𝑁
𝑚1 ,… , 𝑓

′𝑁
𝑚𝑠

)

.

So if we consider the index corresponding to the non-basic variable that the maximum corresponding to the model (4.11a) as
𝑞𝑙 = 𝜆∗𝑗1 , 𝑗1 ∈ 𝑁𝐵𝑀 , in this case, the model (4.11a) has a larger objective function value than the model (4.11b). We show

𝜔𝑙 =
(

𝜔𝑘𝑙
)

𝑚×𝑠 =
(

𝜔1𝑙 ,… , 𝜔𝑚×𝑠𝑙
)

= 𝐹 1 − 𝐹 ′1

𝜆∗𝑗1
, (4.12a)

Similarly, we consider the index corresponding to the non-basic variable that the maximum corresponding to the model (4.11b)
s 𝑓 ∗

𝑖1𝑟1
, 𝑞𝑙 =

(

𝑖1, 𝑟1
)

∈ 𝑁𝐵𝑀 .In this case, the model (4.11b) has a larger objective function value than the model (4.11a). We show

𝜔𝑙 =
(

𝜔𝑘𝑙
)

𝑚×𝑠 =
(

𝜔1𝑙 ,… , 𝜔𝑚×𝑠𝑙
)

= 𝐹 1 − 𝐹 ′1

𝑓 ∗
𝑖1𝑟1

, (4.12b)

Step 5. Now we solve the linear program (4.13) for the non-basic variable 𝑞𝑙 , 𝑙 ∈ 𝑁 .

𝑀𝑖𝑛
𝑚×𝑠
∑

𝜔𝑘𝑙È𝑘

𝑘=1

7
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ℎ

4

𝑆.𝑡.
𝑚×𝑠
∑

𝑘=1
𝜔𝑘𝑗È𝑘 ≥ 0, 𝑗 ∈ 𝑁, 𝑗 ≠ 𝑙,

𝑚×𝑠
∑

𝑘=1
È𝑘 = 1,

È𝑘 ≥ 0, 𝑘 = 1,… , 𝑚 × 𝑠. (4.13)

Step 6.When solving the problem in step 4, if the minimum objective function becomes negative, 𝑞𝑙 , 𝑙 ∈ 𝑁 is an effective variable,
and if this minimum objective function becomes non-negative, the 𝑞𝑙 variable will not be effective. The variable is ineffective if every
𝜔𝑘𝑙, 𝑘 = 1,… , 𝑚 × 𝑠 is positive.

Step 7. For every affecting variable 𝑞𝑙 , 𝑙 ∈ 𝑁 , the DM is asked whether he/she consents to the available alternatives of 𝜔𝑘𝑙,
𝑘 = 1,… , 𝑚 × 𝑠 among the objectives.

(i) If all solutions are ‘‘No’’ for the affecting variables, we stop going further and vector Èℎ determines the most effective weight
for the optimal function and thus, the problem is assumed to be solved. Otherwise,

(ii) For each ‘‘Yes’’ solution, we form the following inequality:
𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 ≤ −𝜖

𝜀 is a positive and sufficiently small number. The reason behind the formation of this inequality is that the maximum value
of ∑𝑚×𝑠

𝑘 𝜔𝑘𝑙𝛾𝑘 is always smaller than zero when there is a suitable exchange.
(iii) For each ‘‘No’’ solution, we form the following inequality:

𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 ≥ 𝜖

iv. For each indifferent solution, we form the following equality:
𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 = 𝜖

Step 8. We find a practical solution to the following restrictions:
𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 ≤ −𝜖 for a ‘‘𝑌 𝑒𝑠’’ solution

𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 ≥ 𝜖 for a ‘‘𝑁𝑜’’ solution

𝑚×𝑠
∑

𝑘
𝜔𝑘𝑙𝛾𝑘 = 𝜖 for each indifferent solution (4.14)

𝑚×𝑠
∑

𝑘=1
È𝑘 = 1, È𝑘 ≥ 0, 𝑘 = 1,… , 𝑚 × 𝑠.

𝛾𝑘𝑠 obtained from the above mentioned system provides us with new weights in order to solve the existing problem. Now we let
= ℎ + 1 and proceed to the second stage.

The following model is suggested for cases where we only have access to a ratio of input to output data:

𝑀𝑖𝑛
{

𝑔𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠
}

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜇𝑗

(𝑥𝑖𝑗
𝑦𝑟𝑗

)

≤ 𝑔𝑖𝑟 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜇𝑗 = 1 , 𝜇𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (4.15)

Model (4.15) is an input-oriented multi-objective programming problem.

.2. Benchmarking in DEA-R via interactive methods

We define the production possibility set (PPS) in Output-oriented BCC model in DEA-R as follows:

𝑇𝑅−𝑉 𝑅𝑆 =

{

𝑦
𝑥

|

|

|

|

|

|

𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑦
𝑥
,

𝑛
∑

𝑗=1
𝜆𝑗

(

1
𝑥𝑖𝑗

)

= 1
𝑥
, 𝑟 = 1,… , 𝑠, 𝑖 = 1,… , 𝑚,

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛

}

(4.16)

By defining the PPS in DEA-R, i.e. model (4.16), the following multi-objective model is proposed:

𝑀𝑎𝑥
{

𝑄 , 𝑃 , 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠
}

𝑖𝑟 𝑖

8
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m
M

5

p

a

Table 1
The inputs and outputs of four DMUs.

DMU1 DMU2 DMU3 DMU4

𝐼1 2 2 8 2
𝐼2 3 5 5 4
𝑂 4 4 2 5

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜆𝑗

( 𝑦𝑟𝑗
𝑥𝑖𝑗

)

≥ 𝑄𝑖𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠,

𝑛
∑

𝑗=1
𝜆𝑗

(

1
𝑥𝑖𝑗

)

= 𝑃𝑖, 𝑖 = 1,… , 𝑚,

𝑛
∑

𝑗=1
𝜆𝑗 = 1, 𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛. (4.17)

Obviously, model (4.17) is always possible by considering the following vector.
𝜆𝑗 = 1 for 𝑗 = 1,… , 𝑛, j ≠ o, as well as 𝜆𝑜 = 1 and 𝑄𝑖𝑟 =

𝑦𝑟𝑜
𝑥𝑖𝑜

for all i, r, 𝑃 𝑖 =
1
𝑥𝑖𝑜

for all i.
Similarly, DEA-R model in Form BCC based on the MOLP structure is as follows, in which the input to output ratios are defined.

𝑀𝑖𝑛
{

𝑔𝑖𝑟, 𝑏𝑟, 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠
}

𝑆.𝑡.
𝑛
∑

𝑗=1
𝜇𝑗

(𝑥𝑖𝑗
𝑦𝑟𝑗

)

≤ 𝑔𝑖𝑟 𝑖 = 1,… , 𝑚, 𝑟 = 1,… , 𝑠

𝑛
∑

𝑗=1
𝜇𝑗

(

1
𝑦𝑟𝑗

)

= 𝑏𝑟, 𝑟 = 1,… , 𝑠, (4.18)

𝑛
∑

𝑗=1
𝜇𝑗 = 1, 𝜇𝑗 ≥ 0, 𝑗 = 1,… , 𝑛.

Model (4.18) is an input-oriented multi-objective programming problem in input-oriented BCC model in DEA-R.
Model (4.17) and (4.18) can be used to find the suitable target in technology VRS. Therefore, finding the target of the proposed

odel is not in line with this article because it requires a detailed discussion of other technologies and their comparison. References
ozaffari et al. [11] and Song et al. [53] can be used for this purpose.

. Numerical example

In this section, we illustrate the algorithm proposed with an example. Consider four DMUs with two inputs and one output as
resented in Table 1.

According to the first and second steps of the interactive Z–W method, the input-oriented model (4.15) is first formed using the
rbitrary weights È1 = 1 and È2 = 0:

𝑀𝑖𝑛 {(−1) 𝑔11 − (0) 𝑔21}

𝑠.𝑡. 2
4
𝜇1 +

2
4
𝜇2 +

8
2
𝜇3 +

2
5
𝜇4 +𝐻1 = 𝑔11

3
4
𝜇1 +

5
4
𝜇2 +

5
2
𝜇3 +

4
5
𝜇4 +𝐻2 = 𝑔21

𝜇1 + 𝜇2 + 𝜇3 + 𝜇4 = 1,

𝜇𝑗 ≥ 0, 𝑗 = 1, 2, 3, 4, 𝐻1,𝐻2 ≥ 0.

Step 3. Solving the model leads to the basic solutions 𝜇4 = 1, 𝑔11 = 0.8 and 𝑔12 = 0.4 and the non-basic solutions 𝜇3 = 0, 𝜇2 =
0, 𝜇1 = 0, 𝐻1 = 0 and 𝐻2 = 0.

Step 4. To solve the linear programming problem in model (4.15) we obtain the optimal solutions using the General Algebraic
Modeling System (GAMS) program as follows:
9
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r

i

Table 2
Benchmarking with Z–W Method in DEA-R.

Step Benchmark in DEA
model (3.1)

Benchmark in DEA-R
model (4.15)

Step 1 DMU1 (3.1) DMU4 (3.4)
Step 2 DMU4 DMU1

So, the solutions for 𝜇1, 𝜇2 and 𝜇3 are
(

𝑔11 = 0.5, 𝑔12 = 0.75, 𝜇1 = 1
)

,
(

𝑔11 = 0.5, 𝑔12 = 1.25, 𝜇2 = 1
)

and
(

𝑔11 = 4, 𝑔12 = 2.5, 𝜇3 = 1
)

,
espectively; moreover, vector 𝜔𝑗 is obtained as follows:

𝜔1 = (0.1,−0.05), 𝜔2 = (0.1, 0.45), 𝜔3 = (3.6, 1.7).
Step 4. Therefore, 𝜇2 and 𝜇3 are not effective and thus we solve the following problem for the 𝜇1 variable:

𝑀𝑖𝑛 0.1È1 − 0.5È2

𝑠.𝑡. È1 + È2 = 1

Step 5. The solutions obtained are È1 = 0 and È2 = 1 and the optimal weights are thereby achieved.
Table 2 shows that if we solve the problem using the weights obtained by the Z–W method, the CCR model, DMU1 is found as

a benchmark, while in step 1, the DMU4 was designated as our benchmark.

6. Case study

In this section, we consider 11 Iranian clothing companies, each using three inputs to produce three outputs. There are two
scenarios in relation to input and output data: (1) input and output data are available, in which case models (3.1), (3.5), (3.7), and
(4.15) will evaluate the units; and (2) only a ratio of inputs and outputs are available, which prompts us to use model (4.15) for
benchmarking.

In all eleven companies, inputs included current debt, total debt in 2014, and current expenses in the second quarter of 2014.
Outputs included assets related to the second quarter of 2014, total assets during the year, and benefits obtained in 2014. During
the process of evaluation, all eleven companies participating in the first stage refused to disclose their input and output data and
provided only the following ratios:

𝑂1
𝐼1

,
𝑂1
𝐼2

,
𝑂1
𝐼3

,
𝑂2
𝐼1

,
𝑂2
𝐼2

,
𝑂2
𝐼3

,
𝑂3
𝐼1

,
𝑂3
𝐼2

,
𝑂3
𝐼3

,

The ratios are defined in the following manner. The 𝑂1
𝐼1

ratio represents the current ratio, 𝑂2
𝐼1

indicates the quick ratio, and 𝑂2
𝐼2

is defined as the assets ratio. Other ratios are also defined and clear. Meanwhile, in the second stage, the government collected the
information regarding the companies’ input and output data by enforcement of respective laws. Table 3 summarizes the input and
output data of the eleven companies.

Table 3 shows that current liabilities, total debt and current expenses are considered as input. In DEA, DEA-R models, the selection
of inputs and outputs is done in a way that we can reduce the inputs and increase the outputs. They are larger than the original
units. Inputs are usually factors whose level of reduction is desirable for the decision maker, and this increases the efficiency of the
unit under evaluation.

We can provide a similar interpretation for the outputs.
In models in the input, oriented by reducing the input components in the numerator and increasing the level of output

components in the denominator, we can reduce the fraction used in the model. We consider components as input that their reduction
is desirable for the decision maker and we can increase the efficiency of the unit under evaluation.

We consider outputs as current assets, total assets and previous profit. In the proposed models, because the goal is to increase
output, so increasing assets and profits can be important. On the other hand, according to the appraisal manager of clothing
companies, it is based on the liquidity ratio, which defines the ratio of assets to debt.

In the proposed model (4.8) which is based on output to input ratios (liquidity ratio). The goal is to increase the ratio
𝑥𝑖𝑗
𝑦𝑟𝑗

, 𝑖 = 1,… , 𝑚, 𝑟 = 1, 1,… , 𝑠. In this regard, we seek to increase outputs (assets) and decrease inputs (costs and liabilities). Therefore,
in general, the selection of inputs and outputs with the aim of reducing and increasing them in order to increase the liquidity ratios
of companies.

It is obvious that traditional DEA models cannot obtain the benchmarks in the first stage; however, in the case of ratio data,
i.e., when data are presented as the input–output ratio 𝑂

𝐼 , the proposed models can specify the benchmarks with the help of the
nteractive method.

Considering the arbitrary weights È1 = {1, 1, 1, 0, 1, 0, 1, 0, 1}, model (4.10) is as follows in the GAMS program:
10
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Table 3
Input and output data of the 11 companies.

DMU Current Debt Total Debt Current Expenses Current Assets Total Assets Earnings Before Interest

𝐼1 𝐼2 𝐼3 𝑂1 𝑂2 𝑂3

1 1245 7500 89 205 350000 97
2 1381 6300 93 210 810000 89
3 1582 4200 98 151 510000 35
4 1283 9700 95 162 210000 44
5 1951 2100 41 137 360000 13
6 1764 3100 42 146 210000 19
7 2010 2500 28 151 420000 81
8 1725 7650 86 185 840000 35
9 1836 8950 3 225 950000 97
10 1912 1200 72 230 870000 94
11 1121 1382 51 200 850000 90

Table 4
Optimal solutions obtained by the 3rd step of
the Z–W Method.
𝐹11 0.18
𝐹12 758.25
𝐹13 0.08
𝐹21 0.14
𝐹22 615.05
𝐹23 0.07
𝐹31 3.92
𝐹32 1.67E+04
𝐹33 1.76

Table 5
4th step of the Z–W Method.

Max 𝜆1 Max
𝜆2

Max
𝜆3

Max
𝜆4

Max
𝜆5

Max
𝜆6

Max
𝜆7

Max
𝜆8

Max
𝜆9

Max
𝜆10

𝐹11 0.16 0.15 0.1 0.13 0.07 0.08 0.08 0.11 0.12 0.12
𝐹12 281.12 586.53 322.38 163.68 184.52 119.05 208.96 486.96 517.43 455.02
𝐹13 0.08 0.06 0.02 0.03 0.01 0.01 0.04 0.02 0.05 0.05
𝐹21 0.03 0.03 0.04 0.02 0.07 0.05 0.06 0.02 0.03 0.19
𝐹22 46.67 128.57 121.43 21.65 171.43 67.74 168 109.8 106.15 725
𝐹23 0.01 0.01 0.01 0 0.01 0.01 0.03 0 0.01 0.08
𝐹31 2.3 2.26 1.54 1.71 3.34 3.48 5.39 2.15 6.62 3.19
𝐹32 3932.58 8709.68 5204.08 2210.53 8780.49 5000 1.50E+04 9767.44 2.79E+04 1.21E+04
𝐹33 1.09 0.96 0.36 0.46 0.32 0.45 2.89 0.41 2.85 1.31

Table 6
5th step of the Z–W Method.
𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9 𝜔10

0.02 0.03 0.08 0.05 0.11 0.1 0.1 0.07 0.06 0.06
477.13 171.72 435.87 594.57 573.73 639.2 549.29 271.29 240.82 303.23
0 0.02 0.06 0.05 0.07 0.07 0.04 0.06 0.03 0.03
0.11 0.11 0.1 0.12 0.07 0.09 0.08 0.12 0.11 −0.05
568.38 486.48 493.62 593.4 443.62 547.31 447.05 505.25 508.9 −109.95
0.06 0.06 0.06 0.07 0.06 0.06 0.04 0.07 0.06 −0.01
1.62 1.66 2.38 2.21 0.58 0.44 −1.47 1.77 −2.7 0.73
12767.42 7990.32 11495.92 14489.47 7919.51 11700 1700 6932.56 −11200 4600
0.67 0.8 1.4 1.3 1.44 1.31 −1.13 1.35 −1.09 0.45

According to the third step of the interactive Z–W Method, the solutions can be obtained as in Table 4.
Step 4. For non-basic variables, we solve model (4.8). The solutions for non-basic variables 𝜆𝑙 and 𝑙 = 1,… , 10 are obtained as

in Table 5.
Step 5. The value of 𝜔1 can be calculated using Eq. (4.9) and the optimal solutions provided in Table 6. For instance, for 𝜔1 we

have:
𝜔1 =

(

𝜔11, 𝜔21,… , 𝜔91
)

= ( 0.18−0.161 , 758.25−281.12
1 , . . . , 1.76−1.09

1 ) = (0.02, 477.13, . . . ,0.67)
Related data are presented in the first column of Table 6. The rest of 𝜔1 values are obtained in the same manner (see Table 6).
Step 6. As can be seen, all non-basic variables except 𝜆7, 𝜆9, and 𝜆10 are ineffective because all corresponding 𝜔𝑘𝑙 values are

positive. Thus, we solve the suggested models for these 3 variables. The following table is drawn for 𝜔7, 𝜔9 and 𝜔10 (see Table 7).
11
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b
T
C

Table 7
6th step of the Z–W Method.

𝜔7 𝜔9 𝜔10

Objective function
coefficients

−0.172 −11200 −109.95

È1 0 0 0
È2 0 0 0
È3 0 0 0
È4 0 0 0
È5 0.002 0 1
È6 0 0 0
È7 0 0 0
È8 0 1 0
È9 0.998 0 0

In Table 8, a comparison of CCR efficiency scores and benchmarks in DEA and DEA-R models is shown. Therefore, DMU11 may
e a target for most DMUs.
able 8
CR efficiency scores and benchmarks in DEA and DEA-R models.
DMU CCR efficiency in DEA

model (3.1)
CCR efficiency in DEA-R
model (3.4)

Benchmark in DEA-R
model (4.10)

Benchmark in DEA-R
model (4.15)

DMU1 0.9704 0.9691 DMU11 DMU11
DMU2 0.8523 0.8518 DMU11 DMU11
DMU3 0.5350 0.5348 DMU11 DMU11
DMU4 0.7177 0.7070 DMU11 DMU11
DMU5 0.7438 0.6560 DMU11, DMU7 DMU9, DMU10
DMU6 0.7386 0.6260 DMU11, DMU7, DMU9 DMU11, DMU10, DMU9
DMU7 1.0 1.0 DMU7 DMU7
DMU8 0.6422 0.6421 DMU11 DMU11
DMU9 1.0 1.0 DMU9 DMU9
DMU10 1.0 1.0 DMU10 DMU10
DMU11 1.0 1.0 DMU11 DMU11

Step 7. If we assume that the manager’s response to exchange 𝜔9 is ‘‘Yes’’ and his/her response to 𝜔10 and 𝜔7 is ‘‘No’’, then the
following model is solved.

𝑀𝑎𝑥 0.002 È5 + 0.998 È9

𝑠.𝑡 0.002 È5 + 0.998 È9 ≥ 𝜀
È5 ≥ 𝜀
È6 ≤ −𝜀
È9 = 1 + È8 + È7 + È6 + È5 + È4 + È3 + È2 + È1
Step 8. Therefore, È11 = 0.5, È22 = 0.5 and the rest of È𝑖𝑟 values equal to zero. Furthermore, considering the objective function’s

value, the optimal weight is equal to 0.001. Moreover, if the manager’s response is ‘‘Yes’’ to exchanging 𝜔10 and ‘‘No’’ for 𝜔7 and
𝜔9, the optimal weights of È11 and È32 would be 0.998 and 0.001, respectively. Now, based on the value of the objective function
(0.001), the rest of È𝑖𝑟 values will equal to zero.

The first column shows that CCR efficiency scores in DEA models are greater than or equal to their corresponding scores in
DEA-R models (second column). Benchmarks were obtained for all DMUs using DEA and DEA-R models in the GAMS program, as
presented in the third and fourth columns, respectively. For instance, DMU11 is a benchmark for decision-making units {1, 2, 3, 4,
6, and 11} in both DEA and DEA-R with this unit once again being selected as a benchmark in the first step using the Z–W method.
Finally, in the seventh step, where the manager’s first answer (Yes) was taken into account and model (4.11a) and (4.11b) was
solved, DMU10 is specified as the benchmark. However, if we apply the second assumption for manager’s response (No) to model
(4.11), we arrive at DMU9 as our benchmark (See Table 9).

However, in cases that we have both ratio and volume data simultaneously, the convexity constraint needs to be revised.
Therefore, in this paper, we attempted to evaluate the DMUs via the interactive Z–W method (see Table 9).

7. Conclusion

Generally, in DEA and DEA-R models, when there are several inputs and one output and/or vice versa, the scale efficiencies are
equal to each other. Also, there are no weight restrictions due to the use of the non-Archimedean number 𝜀 and because of this,
pseudo-inefficiency might occur in DEA. DEA models based on Ratio Analysis are generally appropriate for ratio data. Moreover,
several features of DEA are similar to DEA-R. When solving multi-objective linear programming problems via interactive methods,
there is no need to gather any information from the decision-makers (DMs) prior to model solving. The required information is
collected during the solving process. The Z–W method is an interactive multi-objective linear programming approach that can be
used to obtain proper benchmarks for inefficient units on the efficient frontier. In this paper we used the Z–W method to obtain
12
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Table 9
Benchmarking based on the Z–W Method.

Algorithm Step Step 1 Step 2 Step 3

Benchmark in DEA-R DMU11 DMU10 DMU9

different benchmarks based on DEA-R models rather than DEA models. It was demonstrated that by increasing the number of
constraints in the DEA-R model, certain computational problems arose in the interactive method. For future research, we can use
other methods of MOLP problem solving with the objective to decrease the amount of computations. We also suggest determining
the Malmquist Productivity Index in DEA-R and making a comparison of optimized weights and their relationships in the production
possibility set.
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