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 

Abstract—Workplace charging of electric vehicles (EV) from 

photovoltaic (PV) panels installed on an office building can 

provide several benefits. This includes the local production and 

use of PV energy for charging the EV and making use of dynamic 

tariffs from the grid to schedule the energy exchange with the 

grid. The long parking time at the workplace provides the chance 

for the EV to support the grid via vehicle-to-grid technology, the 

use of a single EV charger for charging several EVs by 

multiplexing and the offer of ancillary services to the grid for up 

and down regulation. Further, distribution network constraints 

can be considered to limit the power and prevent the overloading 

of the grid. A single mixed integer linear programming (MILP) 

formulation that considers all the above applications has been 

proposed in this paper for a charging a fleet of EVs from PV. The 

MILP is implemented as a receding-horizon model predictive 

energy management system. Numerical simulations based on 

market and PV data in Austin, Texas have shown 32% to 651% 

reduction in the net cost of EV charging from PV when 

compared to immediate and average rate charging policies.  

 

NOMENCLATURE 

t, v, c – Optimization indices for time, electric vehicle (EV), 

and charger respectively  

𝑥𝑣
𝑒(𝑎𝑟)

 – ‘Average rate’ charging power of vth EV (kW) 

𝑡𝑑𝑙𝑦    –  Time delay for randomly delayed charging (h) 

𝐶𝑎𝑟 , 𝐶𝑟𝑛𝑑 , 𝐶𝑖𝑚𝑚, 𝐶𝑜𝑝𝑡- Net costs for average rate, randomly 

delayed, immediate and optimized charging from PV ($) 

𝐶𝑒𝑣  – Charging costs for entire EV fleet ($) 

𝑆𝑃𝑉  – Revenue from sales of PV power ($) 

𝑆𝑎𝑠  – Revenue from sales of regulation services ($) 

A. Optimization input parameters 

1) Electric vehicle parameters (index v) 

𝑇𝑣
𝑎, 𝑇𝑣

𝑑
 – Arrival and departure time of EV respectively (h) 

𝐵𝑣
𝑎  – State of charge of vth EV upon arrival 𝑇𝑣

𝑎 (kWh) 

𝐵𝑣
𝑑  – State of charge of vth EV at departure 𝑇𝑣

𝑑  (kWh) 

𝑑𝑣   – Charging energy demand of vth EV (kWh) 

Cp
v  – Penalty for not meeting energy demand 𝑑𝑣 by  
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departure time 𝑇𝑣
𝑑 of vth EV ($/kWh) 

𝐶𝑉2𝑋  – Battery degradation penalty paid to the EV user 

for participating in V2G services ($/kWh) 

𝐵𝑣
𝑚𝑖𝑛, 𝐵𝑣

𝑚𝑎𝑥 – Minimum and maximum possible state of 

charge (SOC) of vth EV (kWh) respectively  

𝑥𝑣
𝑢𝑏 ,  𝑥𝑣

𝑙𝑏  – Maximum charging and discharging i.e. vehicle 

to grid (V2G) power of vth EV (kW) respectively 

𝜂𝑣
𝑐ℎ ,  𝜂𝑣

𝑣2𝑥  – Efficiency of charging and discharging of the 

battery of vth EV (kW) respectively 

2) EV-PV power converter parameters (index c) 

𝑃𝑐
𝑐𝑜𝑛𝑣  – Rated power capacity of the DC/AC inverter (kW)  

𝑃𝑐
𝐸𝑉𝑟 – Rated power capacity of each EV charger in cth 

EV-PV power converter (kW)  

𝑃𝑐
𝑃𝑉𝑟 – Rated power of photovoltaic array (PV) connected 

to cth charger (kWp) 

𝜂𝑐
𝑐𝑜𝑛𝑣  – Rated efficiency of cth EV-PV charger (%) 

𝐾𝑐
𝑃𝑉 – PV scaling factor that takes into account the losses 

due to orientation and shading with respect to a 1kW 

optimally oriented PV array at car park (kW) 

𝑁𝑐
𝑐𝑜𝑛𝑛 – Maximum number of EVs that can be connected 

to the cth EV-PV power converter 

𝑁𝑐
𝑐ℎ   – Maximum number of EVs that can be 

simultaneously charged from cth EV-PV converter 

𝐾𝑣,𝑐 – Binary variable indicating connection of vth EV 

with cth charger (1,0; Connected =1) 

3) PV forecast, car park and ISO parameters (index t) 

∆𝑇   – Time step for the model predictive control (h) 

𝑉    – Number of EV in the car park at time t  

𝐶    – Number of EV-PV chargers in the car park  

𝑃𝑡
𝑃𝑉(𝑓𝑐)

 – Power generation forecast of 1kWp PV array 

installed at the workplace or car park (kW) 

𝐶𝑃𝑉   – Cost of obtaining PV energy ($/kWh) 

𝑦𝑃𝑉(𝑓𝑐)  – Maximum uncertainty in solar forecast data (%) 

𝑝𝑡
𝑒(𝑏𝑢𝑦)

, 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

 – Market clearing price for buying and selling 

electricity from the grid respectively ($/kWh) 

𝑝𝑡
𝑟(𝑢𝑝)

, 𝑝𝑡
𝑟(𝑑𝑛)

 – Market clearing price for offering reserve 

capacity for up and down regulation 

respectively ($/kW) 

𝑃𝑡
𝐷𝑁+, 𝑃𝑡

𝐷𝑁−– Distribution network capacity for drawing and 

feeding power to car park respectively (kW)  

B. Optimization variables (all are positive) 

𝐵𝑡,𝑣   – SOC of vth EV battery at time t (kWh) 

𝑃𝑡,𝑐
𝑃𝑉 – Power generated by PV system connected to the  
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cth charger at time t (kW) 

𝑎𝑡,𝑣
𝑐   – Binary variable that determines if the vth EV is 

active i.e., charging/discharging at a finite power or 

idle at time t (1,0; Active =1) 

𝑎𝑡,𝑣
𝑐ℎ_𝑣2𝑥  – Binary variable that determines if the vth EV is in 

charge or V2G mode at time t (1,0; Charge =1) 

𝑎𝑡,𝑐
𝑑_𝑓

  – Binary variable that determines if the cth charger is 

drawing or feeding power to the car park at time t 

(1,0; Draw =1) 

𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

 – Reserve power capacity offered to grid for up 

and down regulation by vth EV at time t (kW) 

𝑥𝑡,𝑣
𝑒+ ,  𝑥𝑡,𝑣

𝑒− – Charging and discharging power of vth EV at 

time t respectively (kW) 

𝑃𝑡,𝑐
𝑑𝑟𝑎𝑤, 𝑃𝑡,𝑐

𝑓𝑒𝑒𝑑
  – Power drawn and fed to car park by cth 

EV-PV charger at time t respectively (kW) 

𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑡
𝑔(𝑒𝑥𝑝)

 – Power imported and exported to grid by 

the EV car park at time t respectively (kW) 

I. INTRODUCTION 

Electric vehicles (EVs) provide a highly efficient mode of 

transportation with zero tail-pipe emission. The current 

estimate for the USA is that there will be 1.2 million EVs by 

2020 [1]. Electric vehicles are, however, sustainable only if 

the electricity used to charge them comes from sustainable 

sources. Electricity generated from a fuel mix that is largely 

dominated by fossil fuels does not eliminate the emissions but 

mostly moves it from the vehicle to the power plant [2], [3].  

While this can have environmental advantages, complete 

elimination of emissions is contingent on utilizing non-

emitting resources for electricity production. It is here that the 

phenomenal growth in the use of photovoltaic (PV) systems 

for distributed generation and its falling cost over the years 

can have a direct impact.  

EVs used to commute to work are parked at the workplace 

for long hours during the day and it is generally the time when 

the sun is shining as well. Workplaces like industrial sites and 

office buildings harbor an excellent potential for PV panels 

with their large surfaces on flat roofs. This potential is largely 

unexploited today. Energy generated from PV arrays installed 

at the workplace and as solar carports can hence be used for 

charging EVs as shown in Fig. 1. This has several benefits: 

1. EV battery doubles up as an energy storage for the PV 

2. The negative impact of large-scale PV and EV integration 

on distribution network is mutually reduced [4], [5] 

3. Long parking time of EVs paves way for implementation 

of vehicle-to-grid (V2G) technology where the EV can 

offer energy and ancillary services to the grid [6]–[8].  

4. Cost of EV charging from solar is cheaper than charging 

from the grid and net CO2 emission is zero  [2], [9]. 

A. Immediate, average rate and randomly delayed charging  

Today, when an EV arrives at the workplace and is 

connected to the electric vehicle supply equipment (EVSE), 

the EV starts charging essentially immediately at the nominal 

maximum EVSE power rating, 𝑃𝑐
𝐸𝑉𝑟. The charging continues 

at approximately constant power until the battery is nearly 

full1. This is referred to as immediate charging (IMM) or 

uncontrolled charging [10]. This is the simplest form of 

charging requiring no information from the user or 

communication infrastructure and results in the lowest 

charging time. However, IMM typically results in a huge 

demand on the grid based on the EVSE, as shown in Fig. 2.  

At the same time, the long parking times of EVs at 

workplace offers the flexibility in scheduling the charging in 

terms of both charging power and duration. This means that 

EVs can be charged at a much lower power than the EVSE 

nominal rating if the EV user arrival time, 𝑇𝑣
𝑎, departure time, 

𝑇𝑣
𝑑 and required energy demand, 𝑑𝑣 are known. One approach 

is the “Average Rate” (AR) charging policy [10], where the 

charging power 𝑥𝑣
𝑒(𝑎𝑟)

 is the minimum of the EVSE capacity, 

𝑃𝑐
𝐸𝑉𝑟 , and the ratio of the energy demand divided by the 

parking time of the EV1: 

𝑥𝑣
𝑒(𝑎𝑟)

= 𝑀𝑖𝑛. {
𝑑𝑣

𝑇𝑣
𝑑 − 𝑇𝑣

𝑎  , 𝑃𝑐
𝐸𝑉𝑟}  ∀ 𝑡 ∈ {𝑇𝑣

𝑎 , 𝑇𝑣
𝑑} (1) 

The advantage of the AR policy is that the charging of the 

fleet is spread throughout the day instead of being 

concentrated around the arrival time (typically early morning), 

as seen in Fig. 2. Combining the ideas of AR and IMM is 

Randomly Delayed Charging (RND): a type of charging 

where the start of the charging is delayed by a random time 

duration 𝑡𝑣
𝑑𝑙𝑦

 such that the EV reaches its desired SOC by the 

departure time [11], [12]: 

𝑡𝑣
𝑑𝑙𝑦

= 𝑅𝑎𝑛𝑑𝑜𝑚 [0  , (𝑇𝑣
𝑑 − 𝑇𝑣

𝑎) −
𝑑𝑣

𝑃𝑐
𝐸𝑉𝑟

] (2) 

Just like IMM, the charging power is fixed and equals the 

 
1 The analysis does not consider the duration in the constant-voltage (CV) 

charging mode, which occurs typically when EV battery is above 80% SOC 

and the maximum charging power is limited [42]. 

 

 

Fig. 1. EV charging powered by solar panels on roof and carport 
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rated power of the EVSE, 𝑃𝑐
𝐸𝑉𝑟. With a fleet of EV, the net 

charging profile of RND is similar to AR in the sense that the 

charging of different EV is spread-out in time throughout the 

day, instead of being concentrated at the arrival time.  

At the same time, however, IMM, RND, and AR strategies 

are not completely ‘smart’ as the consumption has no 

correlation to the variation of local renewable generation, 

distribution network capacity constraints and/or energy prices. 

B. Smart charging  

The optimal way to charge EVs is hence to schedule the 

charging by taking into consideration the EV user preferences, 

local renewable generation, distribution network and energy 

prices from the market. Fig. 2 shows an example of smart 

charging where the EV charging follows the PV generation. 

Further, EVs can have extremely fast ramp up and ramp down 

rates. Chademo and Combo EV charging standards for DC 

charging stipulate response time of 200ms for power changes 

[13]. This makes EVs ideal candidates for providing ancillary 

services in the form of regulation services to the grid [6], [7], 

[14], [15].  

Following the formulation in [15], [16], an Energy Services 

Company (ESCo) company acts as an intermediary between 

the wholesale market operated by the Independent System 

Operator (ISO) and the EV end-users. The ESCo operates at 

the workplace where employees drive to the office with an EV 

and the building has overhead PV installation or a solar 

carport. The motive of the ESCo is to schedule the charging of 

the EV and feeding of PV power to the grid in such a way that 

EV charging costs are lowered, regulation services are offered 

to the ISO and at the same time, the income from PV is 

increased. The ESCo achieves this motive by using an Energy 

Management System (EMS) to schedule the EV based 

charging on a multitude of inputs: 

1. Information from the EV user about EV type, arrival and 

departure times, the state of charge (SOC) of EV battery, 

and energy demand. 

2. Settlement point prices for buying and selling electricity 

from the grid at time t (𝑝𝑡
𝑒(𝑏𝑢𝑦)

, 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

). 

3. Clearing prices for capacity for offering reserves to the 

ISO for up and down regulation. (𝑝𝑡
𝑟(𝑢𝑝)

, 𝑝𝑡
𝑟(𝑑𝑛)

). 

4. Distribution network limits for drawing and feeding power 

between the EV car park and the grid (𝑃𝑡
𝐷𝑁+, 𝑃𝑡

𝐷𝑁−). These 

values can be adjusted to implement demand side 

management (DSM).  

5. Solar forecast information to help reduce the uncertainties 

due to variability in PV generation on diurnal and seasonal 

basis (𝑃𝑡
𝑃𝑉(𝑓𝑐)

). 

C. Literature review and overview of contributions 

Several earlier works have formulated the optimization 

problem to charge EV based on renewable generation, energy 

prices, and offer of ancillary services.  

Fuzzy logic is used to optimize the EV charging based on 

PV generation forecast and energy prices in [17]; and on V2G 

frequency regulation and grid energy exchange in [18]. The 

disadvantage is that the use of fuzzy logic without 

optimization techniques does not guarantee that the obtained 

solution is optimal.    

In [15], [16], linear programming (LP) is used to find the 

optimal EV strategy for charging and offering reserves based 

on market prices. In [19], LP is used to reduce the cost of 

charging EV from PV based on time of use tariffs and PV 

forecasting. Cost reduction of 6% and 15.2% compared to the 

base case are obtained for simulation for 12 EV powered from 

a 50kW PV system. The LP formulation in [20] and heuristic 

methods used in [21] aim to achieve the two goals: increasing 

the PV self-consumption in a micro-grid by charging of EVs 

and reducing the dependency on the grid. However, there is no 

consideration for time of use tariffs without which there is no 

incentive to achieve the two goals. In [22], LP is used for 

planning the EV charging based on renewable power 

forecasting, spinning reserve and EV user requirements in a 

micro-grid. A two-layered optimization is used for EV 

charging based on variable energy prices which results in 

increased number of EVs charged and up to 18% increased 

revenues [23]. While realistic vehicular mobility patterns are 

used, there is, however, no consideration for V2G, regulation, 

or local generation. A MILP formulation in [24], [25] is used 

for EV charging based on PV, EV user, energy prices, and 

without the offer of regulation services. 10%-171% reduction 

in net costs are obtained in [24] based on the proposed 

method. 

Stochastic programming (SP) is used in [26] to plan EV 

charging and offer regulation services based on day-ahead and 

intraday market prices. For a case study with 50 EV, cost 

reduction of 1% to 15% was achieved. A two-stage SP is 

proposed in [27] for workplace charging of EV based on PV, 

V2G and dynamic energy prices resulting in 7.2% and 6.9% 

average cost reduction.  

With respect to ancillary services, a dynamic control of EVs 

in [28], robust optimization in [29], and SP based on Markov 

decision problem in [30], are used to provide frequency 

regulation services while considering the EV user 

requirements and regulation prices.  

Earlier works have considered the different applications of 

smart charging as separate optimization problems or as a 

combination of two or three applications. The disadvantage is 

that each application gives a different optimized EV charging 

profile and all these profiles cannot be implemented on the 

same EV at the same time. A better approach is to combine 

them into one formulation, which will then yield a single 

optimized EV charging profile. The second disadvantage is 

that the above formulations do not consider the characteristics 

of the EV charging hardware. This is vital as the hardware is 

more expensive than the smart charging controller and its 

algorithms.  

The main contributions of the work reported below include: 

 Proposing an integrated model that captures charging of 

EV from PV, use of dynamic grid prices, implementation 

of V2G for grid support, using EV to offer ancillary 

services, and considering distribution network capacity 

constraints as a single mixed integer linear programming 

(MILP) formulation. The paper demonstrates that the 
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integrated formulation results in large cost savings that 

are much higher than what has been achieved earlier. This 

is due to the addition of benefits from each application, 

such that the net benefit is economically attractive.  With 

the prior approaches, the economic benefits were too 

small to warrant mass adoption of smart charging 

 The paper proposes the use of an integrated EV-PV 

converter for the combined optimization of EV charging 

and PV generation. This provides higher efficiency due to 

the direct current (DC) power exchange between EV and 

PV; leads to a lower capital cost of the power converter as 

it needs only a single DC/AC inverter to the grid; and 

removes the necessity for communication between EV 

charger and PV inverter as they are now integrated. 

 The paper shows that the benefit of V2G from energy sales 

can be far outweighed by the increased up-regulation that 

can be offered by a bidirectional EV charger when battery 

degradation costs are included in the optimization. 

 With a large number of EV parked at the workplace with 

long parking times, multiplexing a few EVSEs to a larger 

number of EVs is a cost-effective strategy [31]–[33]. The 

scheduling of the multiplexing is formulated in the MILP 

to reduce charging infrastructure cost.  

D. Structure of the paper 

Section II describes the layout and parameters of the EMS 

and the EV-PV car park infrastructure. In section III, the 

MILP formulation of the EMS is explained and the 

parameters, constraints and objective function are elaborated. 

Section IV uses PV generation and market data for Austin, TX 

to estimate the optimized net cost of charging an EV fleet 

from PV. The costs are compared to immediate and average 

rate charging policies to evaluate the cost reduction. Last part 

of the section delves into implementation aspects of the 

optimization: adaptability, capital cost and scalability.  

II. PRELIMINARIES AND INPUTS 

A. Layout of the EMS  

The schematic of the EV-PV charger and the EMS used by 

the ESCo to optimize the EV charging is shown in Fig. 3. 

1)  EV and user input 

Each EV arrives at the car park with a state of charge 𝐵𝑣
𝑎 at 

time 𝑇𝑣
𝑎 and is parked at one of the several EV-PV chargers. 

The EV owners provide the information to the EMS about 

their expected departure time 𝑇𝑣
𝑑 and charging energy demand 

𝑑𝑣. This means that the departure SOC of the vehicle 𝐵𝑣
𝑑 is:  

𝐵𝑣
𝑑 = 𝐵𝑣

𝑎 + 𝑑𝑣  (3) 

If the required SOC is not reached by the departure time, 

the EV owner will be compensated by the ESCo at the rate of 

Cp
v $/kWh. The users can enter the maximum and minimum 

allowed SOC of the EV (𝐵𝑣
𝑚𝑖𝑛, 𝐵𝑣

𝑚𝑎𝑥) and the maximum 

charging and discharging power (𝑥𝑣
𝑢𝑏,  𝑥𝑣

𝑙𝑏) respectively. By 

setting 𝑥𝑣
𝑙𝑏 to a non-zero value, the users can choose to 

participate in V2G services. The efficiency of the EV battery 

for charging and discharging (𝜂𝑣
𝑐ℎ ,  𝜂𝑣

𝑣2𝑥) is either obtained 

from the EV or stored in a database within the EMS for 

different EV models.  

2) EV-PV charger 

The ‘EV-PV charger’ as the term is used here means an 

integrated power converter that consists of three ports to 

connect to the EVs, PV, and the AC grid, as shown in Fig. 3 

[31], [34], [35]. Each EV-PV charger is connected to a PV 

array of rated power 𝑃𝑐
𝑃𝑉𝑟 via a maximum power point 

tracking (MPPT) DC/DC converter [36]. The output of the 

DC/DC PV converter is connected to an internal DC-link. The 

DC-link is connected to the grid via a DC/AC inverter of rated 

power 𝑃𝑐
𝑐𝑜𝑛𝑣, such that 𝑃𝑐

𝑃𝑉𝑟 ≤ 𝑃𝑐
𝑐𝑜𝑛𝑣. There are 𝑁𝑐

𝑐ℎ number 

of isolated DC/DC converters for EV charging that are 

connected to the DC-link and each have a rated power 𝑃𝑐
𝐸𝑉𝑟. 

All power exchanges between any of the three ports namely 

PV, EV, and grid are via the DC-link.  

This integrated converter provides several benefits 

compared to using separate converters for PV and EV 

connected over the 50Hz AC grid. First, direct interconnection 

of the PV and EV over a DC-link is more efficient than an AC 

interconnection [37], [38]. Second, the integrated converter 

requires one common inverter to the AC grid instead of 

separate inverters for PV and EV. This reduces the component 

count and size of the converter [31]. Third, by making the 

isolated DC/DC converter for the EV bidirectional, the EV can 

now offer V2G services via the integrated converter.  

Due to the long parking times of EVs at the workplace, it is 

economical to use a single EVSE that can be multiplexed to 

several EVs, with the possibility to charge the EVs 

simultaneously or sequentially as shown in Fig. 3 [31]–[33]. 

Therefore, 𝑁𝑐
𝑐𝑜𝑛𝑛 EVs can be connected to each EV-PV 

charger via DC isolators. The binary variable 𝐾𝑣,𝑐 = 1 

indicates the physical connection of vth EV with cth charger 

and a zero value indicates otherwise.  

Each EV-PV charger has 𝑁𝑐
𝑐ℎ number of isolated DC/DC 

converters, where 𝑁𝑐
𝑐ℎ ≤ 𝑁𝑐

𝑐𝑜𝑛𝑛. As per the EV charging 

standards [39], each EV must be connected to separate power 

converter and isolated from all power sources. This means that 

𝑁𝑐
𝑐ℎ of the total 𝑁𝑐

𝑐𝑜𝑛𝑛 EVs connected to each EV-PV charger 

can be simultaneously charged or discharged. In the simple 

case where 𝑁𝑐
𝑐ℎ = 1, 𝑁𝑐

𝑐𝑜𝑛𝑛=2 and 𝑃𝑐
𝑐𝑜𝑛𝑣 = 𝑃𝑐

𝐸𝑉𝑟, two EVs are 

connected to one EV-PV charger and one of the two can 

(dis)charge at any time up to a power of 𝑃𝑐
𝑐𝑜𝑛𝑣.  The binary 

variable 𝑎𝑡,𝑣
𝑐  indicates which of the 𝑁𝑐

𝑐𝑜𝑛𝑛 EVs connected to an 

EV-PV charger is actively (dis)charging at time t. 

∑ 𝐾𝑣,𝑐 𝑣=𝑉
𝑣=1 ≤  𝑁𝑐

𝑐𝑜𝑛𝑛  ∀ 𝑐   (4) 

∑ 𝐾𝑣,𝑐 𝑎𝑡,𝑣
𝑐𝑣=𝑉

𝑣=1 ≤  𝑁𝑐
𝑐ℎ  ∀ 𝑐   (5) 

Each EV-PV charger feeds 𝑃𝑡,𝑐
𝑓𝑒𝑒𝑑

or draws 𝑃𝑡,𝑐
𝑑𝑟𝑎𝑤power 

from the EV car park as determined by the EMS. Different 

EV-PV chargers can exchange power within the car park and 

these are ‘intra-park’ power exchanges. When the net ‘intra-

park’ energy exchanges are non-zero, the EV park imports or 

exports power with the external grid referred to as 𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 

𝑃𝑡
𝑔(𝑒𝑥𝑝)

respectively.  
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Fig. 3. (Left) Schematic of the Energy Management System for the solar powered EV parking garage. 𝑵𝒄

𝒄𝒉 of the total 𝑵𝒄
𝒄𝒐𝒏𝒏 EV connected to each EV-PV 

charger can be simultaneously charged or discharged, where 𝑵𝒄
𝒄𝒉 ≤ 𝑵𝒄

𝒄𝒐𝒏𝒏 (Right) offer of reserve power capacity 𝒙𝒕,𝒗
𝒓(𝒖𝒑)

, 𝒙𝒕,𝒗
𝒓(𝒅𝒏)

 for up and down regulation 

during charging (CH) and discharging (V2G) of EV. 

B. Trading energy and reserves in the energy market  

The ESCo uses the EMS to control the solar-powered EV 

car park for energy trading with the grid. Since 𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑡
𝑔(𝑒𝑥𝑝)

 

are small relative to the power traded in the market, the ESCo 

is a price taker and does not influence the market clearing 

prices. It uses the settlement point prices for trading power in 

the market and reserve capacity prices for offering up and 

down regulation services. Markets like the Electric Reliability 

Council of Texas (ERCOT) provide different prices for 

offering capacity reserves for up and down regulation 

(asymmetric, 𝑝𝑡
𝑟(𝑢𝑝)

≠𝑝𝑡
𝑟(𝑑𝑛)

). However, other US markets such 

as PJM trade up and down regulation as a single product 

(symmetric). In order to make the EMS flexible and work with 

both types of markets, it is designed to take different inputs for 

𝑝𝑡
𝑟(𝑢𝑝)

 and 𝑝𝑡
𝑟(𝑑𝑛)

 and allow for a requirement that up and down 

regulation quantities could be equal.  

The amount of reserves offered by the EV depends on 

whether the user enables V2G option or not, i.e., if  𝑥𝑣
𝑙𝑏=0 or 

not. When an EV is connected to a bidirectional charger and 

 𝑥𝑣
𝑙𝑏≠0, even an idle EV that is not charging can offer up and 

down regulation up to 𝑥𝑣
𝑙𝑏 and 𝑥𝑣

𝑢𝑏 respectively.  With a 

unidirectional charger, an idle EV that is not charging can only 

offer down regulation up to 𝑥𝑣
𝑢𝑏. 

Power generated by PV panels can be ramped down by 

moving out of the maximum power point of the PV array. This 

can be achieved by controlling the DC/DC converter in the 

EV-PV charger that is connected to the PV array. This PV 

power curtailment can also be offered for down-regulation 

services.  

C. Receding horizon model predictive control 

There are two sources of variability in the EV-PV system. 

The first is the diurnal and seasonal variation in PV generation 

due to changes in weather. The EMS uses solar forecast 

information as an input to predict the PV variation. Any solar 

forecast data source can be used for the given MILP 

formulation. For example: the online short-term solar power 

forecasting [40], the autoregressive integrated moving average 

(ARIMA) models or any of the methods listed in [41].  𝑃𝑡
𝑃𝑉(𝑓𝑐)

 

is power generation forecast for an optimally orientated 1kWp 

PV array at the car park location with a maximum uncertainty 

in forecast of 𝑦𝑃𝑉
𝑓𝑐

. It is vital to recognize that all forecasting 

methods will have forecasting errors in terms of temporal and 

spatial resolution. The second variability is the variation in the 

arrival and departure patterns of the EV user and the EV 

parameters like charging powers limits, efficiency of the 

battery and SOC.   

The EMS is implemented as a receding horizon model 

predictive control with a time step ∆𝑇 to manage these two 

variations. The horizon for the model is from 00:00AM to 

23:59 PM at midnight. This means that at every time step, the 

EMS can utilize updated forecast information and input 

parameters, perform the optimization and plan the EV 

charging for the rest of the day. Hence, the receding horizon 

implementation helps in minimizing forecasting errors and 

model inaccuracies at every time step. 

III. MILP FORMULATION  

This section describes the objective function and constraints 

for the MILP formulation of the EMS. It is important to note 

that all optimization variables considered are positive.  
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A. Acceptance criteria 

When an EV arrives at the EV car park, it is connected to 

one of the C number of EV-PV chargers. As mentioned 

earlier, each EV-PV charger can have up to 𝑁𝑐
𝑐𝑜𝑛𝑛 number of 

EV connected to it. The user links to the EMS and the EMS 

instructs the user on which EV-PV charger he/she must 

connect to, based on two ‘acceptance criteria’. The first 

criteria is that the energy demand 𝑑𝑣 and parking time, 

(𝑇𝑣
𝑑 − 𝑇𝑣

𝑎) of all the EVs connected to one EV-PV charger 

must be within the power limits of the charger, (6). The 

second criteria is that the arrival SOC of the vehicle must be 

above the minimum SOC as set by the user, (7).  This is to 

ensure that constraint (21) is satisfied.  

∑ ∑ 𝐾𝑣,𝑐

𝑑𝑣

𝑇𝑣
𝑑 − 𝑇𝑣

𝑎

𝐶

𝑐=1

𝑉

𝑣=1

≤  𝑀𝑖𝑛. {𝑁𝑐
𝑐ℎ𝑃𝑐

𝐸𝑉𝑟 , 𝑃𝑐
𝑐𝑜𝑛𝑣} ∀ 𝑣, 𝑐 (6) 

𝐵𝑣
𝑚𝑖𝑛 ≤  𝐵𝑣

𝑎 ∀ 𝑣  (7) 

B. Constraints: EV and user inputs 

The EMS controls the charging power 𝑥𝑡,𝑣
𝑒+ and  discharging 

power 𝑥𝑡,𝑣
𝑒−, up and down regulation reserve capacity 

𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

 of each EV and the power extracted from the PV 

system 𝑃𝑡,𝑐
𝑃𝑉 of each charger at time t. Equations (8) and (9) are 

used to set the charging power of the EV to zero before the 

arrival (𝑡 < 𝑇𝑣
𝑎) and after the departure of the EV (𝑡 ≥ 𝑇𝑣

𝑑).  

The binary variable 𝑎𝑡,𝑣
𝑐  indicates if the EV is connected to 

the isolated DC/DC converter for charging/discharging and 

can offer regulation services or not. Since an EV cannot 

simultaneously charge and discharge, a second binary variable 

𝑎𝑡,𝑣
𝑐ℎ_𝑣2𝑥 is used to ensure that only one of the two variables 𝑥𝑡,𝑣

𝑒−, 

𝑥𝑡,𝑣
𝑒+ has a non-zero value for a given t. 𝑎𝑡,𝑣

𝑐ℎ_𝑣2𝑥 is set to 1 for 

charging and to 0 for V2G. 𝑥𝑡,𝑣
𝑒−, 𝑥𝑡,𝑣

𝑒+ have to be within the 

power limits of the power converter  𝑃𝑐
𝐸𝑉𝑟 and the charging 

and discharging power limits 𝑥𝑣
𝑢𝑏 ,  𝑥𝑣

𝑙𝑏 as set by the EV, 

respectively, as shown in equations (10)-(15).  

The maximum charging and discharging powers are also 

dependent on the SOC of the EV battery as shown in (16) and 

(17). For example, fast charging of EV battery cannot be done 

beyond 80% SOC of the battery [42]. Here, it is assumed that 

the maximum charging power linearly reduces from 𝑥𝑣
𝑢𝑏 to 

zero when the battery is charged beyond 80% SOC till 100% 

(𝑆𝑐ℎ=0.8). Similarly the maximum discharging power reduces 

linearly from  𝑥𝑣
𝑙𝑏 to zero when the battery is discharged below 

10% SOC till 0% (𝑆𝑣2𝑥=0.1). Even though the exact 

dependence of battery power on the SOC is non-linear, this is 

not considered here as it is beyond the scope of the paper and 

would prevent us from casting the problem into an MILP 

formulation.  

𝑥𝑡,𝑣
𝑒− ,  𝑥𝑡,𝑣

𝑒+  , 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

, 𝑎𝑡,𝑣
𝑐 = 0 ∀ 𝑡 < 𝑇𝑣

𝑎 (8) 

𝑥𝑡,𝑣
𝑒− ,  𝑥𝑡,𝑣

𝑒+  , 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

, 𝑎𝑡,𝑣
𝑐 = 0 ∀ 𝑡 ≥ 𝑇𝑣

𝑑 (9) 

 𝑥𝑡,𝑣
𝑒+ ≤ 𝑥𝑣

𝑢𝑏(𝑎𝑡,𝑣
𝑐 ) ∀ 𝑡, 𝑣 (10) 

 𝑥𝑡,𝑣
𝑒+ ≤ 𝑥𝑣

𝑢𝑏(𝑎𝑡,𝑣
𝑐ℎ−𝑣2𝑥) ∀ 𝑡, 𝑣 (11) 

 𝑥𝑡,𝑣
𝑒− ≤ −𝑥𝑣

𝑙𝑏(𝑎𝑡,𝑣
𝑐 ) ∀ 𝑡, 𝑣 (12) 

 𝑥𝑡,𝑣
𝑒− ≤ −𝑥𝑣

𝑙𝑏(1 − 𝑎𝑡,𝑣
𝑐ℎ−𝑣2𝑥) ∀ 𝑡, 𝑣 (13) 

 𝑥𝑡,𝑣
𝑒−,  𝑥𝑡,𝑣

𝑒+ ≤ 𝑃𝑐
𝐸𝑉𝑟 ∀ 𝐾𝑣,𝑐=1 (14) 

𝑎𝑡,𝑣
𝑐   ,   𝑎𝑡,𝑣

𝑐ℎ_𝑣2𝑥 ,    𝑎𝑡,𝑐
𝑑_𝑓

  ∈ {0,1}         ∀ 𝑡, 𝑐, 𝑣   (15) 

 𝑥𝑡,𝑣
𝑒+ ≤

−𝑥𝑣
𝑢𝑏

(1 − 𝑆𝑐ℎ)
(

𝐵𝑡,𝑣

𝐵𝑣
𝑚𝑎𝑥

− 1) ∀ 𝑡, 𝑣 (16) 

 𝑥𝑡,𝑣
𝑒− ≤

−𝑥𝑣
𝑙𝑏

𝑆𝑣2𝑥

(
𝐵𝑡,𝑣

𝐵𝑣
𝑚𝑎𝑥

) ∀ 𝑡, 𝑣 (17) 

Equations (18)-(23) are used to set the initial SOC of the 

EV battery and estimate the SOC of the battery 𝐵𝑡,𝑣 based on 

the charging and discharging efficiency (𝜂𝑣
𝑐ℎ ,  𝜂𝑣

𝑣2𝑥) and power 

(𝑥𝑡,𝑣
𝑒+ ,  𝑥𝑡,𝑣

𝑒−) respectively. At every time step of the receding 

horizon, the current time and SOC of all EVs are updated into 

the parameters 𝐵𝑣
𝑎 and 𝑇𝑣

𝑎. The EMS restricts the SOC to be 

within the limits 𝐵𝑣
𝑚𝑖𝑛, 𝐵𝑣

𝑚𝑎𝑥 as set by the EV and/or user. It is 

assumed that the net energy delivered/absorbed by the EV 

over one time period due to offer of reserves is zero [15], [16]. 

Hence, 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

 do not appear in (23) for SOC estimation. 

𝐵𝑡,𝑣 = 0 ∀   𝑡 < 𝑇𝑣
𝑎 (18) 

𝐵𝑡,𝑣 = 𝐵𝑣
𝑎 ∀ 𝑡 = 𝑇𝑣

𝑎 (19) 

𝐵𝑡,𝑣 ≤ 𝑑𝑣 + 𝐵𝑣
𝑎 ∀ 𝑡 =  𝑇𝑣

𝑑 (20) 

𝐵𝑡,𝑣 ≥  𝐵𝑣
𝑚𝑖𝑛 ∀   t ≥ 𝑇𝑣

𝑎 (21) 

𝐵𝑡,𝑣 ≤  𝐵𝑣
𝑚𝑎𝑥 ∀   t ≥ 𝑇𝑣

𝑎 (22) 

𝐵𝑡+1,𝑣 = 𝐵𝑡,𝑣 + ∆𝑇 (𝑥𝑡,𝑣
𝑒+ 𝜂𝑣

𝑐ℎ −
𝑥𝑡,𝑣

𝑒−

 𝜂𝑣
𝑣2𝑥

 ) ∀ 𝑡, 𝑣 (23) 

C. Constraints: EV–PV charger and car park 

Under normal operation, the EMS extracts maximum power 

from the PV array using MPPT as shown in right side of 

equation (24). The PV power is dependent on the scaling 

factor 𝐾𝑐
𝑃𝑉 which scales the installation characteristics (e.g. 

azimuth, tilt, module parameters) of the PV array connected to 

the charger c with respect to the 1kWp reference array used 

for the forecast data 𝑃𝑡
𝑃𝑉(𝑓𝑐)

. The EMS implements PV 

curtailment if it is uneconomical to draw PV power or if there 

are distribution network constraints for feeding to the grid. 

This means that the actual PV power extracted 𝑃𝑡,𝑐
𝑃𝑉 can be 

lower than the MPPT power of the array, as shown in (24). 

The DC-link is used for power exchanges between the three 

ports of the converter and (25) is the power balance equation 

for the EV-PV converter.  It is assumed that each of the power 

converters within the EV-PV charger operates with an 

efficiency 𝜂𝑐
𝑐𝑜𝑛𝑣. Power levels 𝑃𝑡,𝑐

𝑑𝑟𝑎𝑤, 𝑃𝑡,𝑐
𝑓𝑒𝑒𝑑

 are limited by the 

power limit of the inverter port 𝑃𝑐
𝑐𝑜𝑛𝑣. The binary variable 

𝑎𝑡,𝑐
𝑑_𝑓

 is used to ensure that only one of the two variables has a 

non-zero value for a given t as shown in (26)-(27). 

𝑃𝑡,𝑐
𝑃𝑉 ≤ 𝐾𝑐

𝑃𝑉𝑃𝑐
𝑃𝑉𝑟𝑃𝑡

𝑃𝑉(𝑓𝑐)
 ∀ 𝑡, 𝑐 (24) 

{𝑃𝑡,𝑐
𝑃𝑉 + 𝑃𝑡,𝑐

𝑑𝑟𝑎𝑤 + ∑ (𝐾𝑣,𝑐 𝑥𝑡,𝑣
𝑒−)

𝑣=𝑉

𝑣=1
} η𝑐

𝑐𝑜𝑛𝑣 

= {𝑃𝑡,𝑐
𝑓𝑒𝑒𝑑

+ ∑ (𝐾𝑣,𝑐 𝑥𝑡,𝑣
𝑒+)

𝑣=𝑉

𝑣=1
} /η𝑐

𝑐𝑜𝑛𝑣 

∀ 𝑡, 𝑐, 𝑣 (25) 

𝑃𝑡,𝑐
𝑑𝑟𝑎𝑤 ≤ 𝑃𝑐

𝑐𝑜𝑛𝑣(𝑎𝑡,𝑐
𝑑_𝑓

) ∀ 𝑡, 𝑐 (26) 

𝑃𝑡,𝑐
𝑓𝑒𝑒𝑑

≤ 𝑃𝑐
𝑐𝑜𝑛𝑣(1 − 𝑎𝑡,𝑐

𝑑_𝑓
) ∀ 𝑡, 𝑐 (27) 

The intra car-park power exchanges between different EV-
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PV chargers are related to the power exchanged with the 

external grid 𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑡
𝑔(𝑒𝑥𝑝)

 using (28). Both 𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑡
𝑔(𝑒𝑥𝑝)

 

will not be non-zero at the same time because of the way the 

objective function is formulated and because 𝑝𝑡
𝑒(𝑏𝑢𝑦)

≥ 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

 

at all times. 𝑃𝑡
𝑔(𝑖𝑚𝑝)

, 𝑃𝑡
𝑔(𝑒𝑥𝑝)

 should be within the distribution 

network capacity 𝑃𝑡
𝐷𝑁+, 𝑃𝑡

𝐷𝑁− as shown in (29)-(30). 𝑃𝑡
𝐷𝑁+, 

𝑃𝑡
𝐷𝑁− are used as a thermal proxy for all potential limitations 

in the distribution network including voltage limits, line limits, 

and transformer capacity. The values can come from the 

distribution system operator (DSO), ISO or ESco based on 

loading and voltage in the network and can be set at every 

time step in the receding horizon implementation. 

∑ (𝑃𝑡,𝑐
𝑑𝑟𝑎𝑤 − 𝑃𝑡,𝑐

𝑓𝑒𝑒𝑑
)

𝑐=𝐶

𝑐=1
= 𝑃𝑡

𝑔(𝑖𝑚𝑝)
− 𝑃𝑡

𝑔(𝑒𝑥𝑝)
 ∀   𝑡 (28) 

𝑃𝑡
𝑔(𝑖𝑚𝑝)

≤ 𝑃𝑡
𝐷𝑁+ ∀   𝑡 (29) 

𝑃𝑡
𝑔(𝑒𝑥𝑝)

≤ 𝑃𝑡
𝐷𝑁− ∀   𝑡 (30) 

Finally, the up and down regulation offered 

𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

 should be within the power limitations of the EV 

(𝑥𝑣
𝑢𝑏 ,  𝑥𝑣

𝑙𝑏) and the EV charger port 𝑃𝑐
𝐸𝑉𝑟 as shown in Fig. 3. 

From the EV-PV charger perspective, the regulation power 

offered must be within the power rating of the inverter port 

𝑃𝑐
𝑐𝑜𝑛𝑣, the power exchanged with the grid 𝑃𝑡,𝑐

𝑑𝑟𝑎𝑤, 𝑃𝑡,𝑐
𝑓𝑒𝑒𝑑

 and 

the SOC of the EV battery (like (16), (17)). This is 

summarized in equations (31)-(36). While asymmetric reserve 

offers are assumed here (𝑥𝑡,𝑣
𝑟(𝑢𝑝)

≠𝑥𝑡,𝑣
𝑟(𝑑𝑛)

), symmetric reserves 

can be achieved by including 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

=𝑥𝑡,𝑣
𝑟(𝑑𝑛)

 in the constraints. 

∑ 𝐾𝑣,𝑐 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

𝑣=𝑉

𝑣=1
+ 𝑃𝑡,𝑐

𝑓𝑒𝑒𝑑
 ≤  𝑃𝑐

𝑐𝑜𝑛𝑣 ∀ 𝑡, 𝑐, 𝑣 (31) 

∑ 𝐾𝑣,𝑐 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

𝑣=𝑉

𝑣=1
+ 𝑃𝑡,𝑐

𝑑𝑟𝑎𝑤  ≤  𝑃𝑐
𝑐𝑜𝑛𝑣 ∀ 𝑡, 𝑐, 𝑣 (32) 

 𝑥𝑡,𝑣
𝑒− + 𝑥𝑡,𝑣

𝑟(𝑢𝑝)
≤ 𝑃𝑐

𝐸𝑉𝑟(𝑎𝑡,𝑣
𝑐 ) ∀ 𝐾𝑣,𝑐=1 (33) 

( 𝑥𝑡,𝑣
𝑒− −  𝑥𝑡,𝑣

𝑒+) + 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

≤ (−𝑥𝑣
𝑙𝑏) ∀ 𝑡, 𝑣 (34) 

 𝑥𝑡,𝑣
𝑒+ + 𝑥𝑡,𝑣

𝑟(𝑑𝑛)
≤ 𝑃𝑐

𝐸𝑉𝑟(𝑎𝑡,𝑣
𝑐 ) ∀ 𝐾𝑣,𝑐=1 (35) 

 (𝑥𝑡,𝑣
𝑒+ −  𝑥𝑡,𝑣

𝑒−) + 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

≤ 𝑥𝑣
𝑢𝑏 ∀ 𝑡, 𝑣 (36) 

 (𝑥𝑡,𝑣
𝑒+ −  𝑥𝑡,𝑣

𝑒−) + 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

≤
−𝑥𝑣

𝑢𝑏

(1 − 𝑆𝑐ℎ)
(

𝐵𝑡,𝑣

𝐵𝑣
𝑚𝑎𝑥

− 1) ∀ 𝑡, 𝑣 (37) 

( 𝑥𝑡,𝑣
𝑒− −  𝑥𝑡,𝑣

𝑒+) + 𝑥𝑡,𝑣
𝑟(𝑢𝑝)

≤
−𝑥𝑣

𝑙𝑏

𝑆𝑣2𝑥
(

𝐵𝑡,𝑣

𝐵𝑣
𝑚𝑎𝑥

) ∀ 𝑡, 𝑣 (38) 

D. Objective function  

𝑀𝑖𝑛.    𝐶𝑜𝑝𝑡    =          (𝐵𝑣
𝑎 + 𝑑𝑣 − 𝐵𝑇𝑣

𝑑,𝑣)𝐶𝑣
𝑝

   (39) 

+∆𝑇 ∑ ( 𝑃𝑡
𝑔(𝑖𝑚𝑝)

𝑝𝑡
𝑒(𝑏𝑢𝑦)

− 𝑃𝑡
𝑔(𝑒𝑥𝑝)

𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

)

𝑇

𝑡=1

 

− ∆𝑇  (1 − 𝑦𝑃𝑉
𝑓𝑐

)(𝜂𝑐
𝑐𝑜𝑛𝑣)2 ∑ ∑ ∑ 𝐾𝑣,𝑐{ 𝑥𝑡,𝑣

𝑟(𝑢𝑝)
𝑝𝑡

𝑟(𝑢𝑝)

𝑉

𝑣=1

𝐶

𝑐=1

+ 𝑥𝑡,𝑣
𝑟(𝑑𝑛)

𝑝𝑡
𝑟(𝑑𝑛)

}

𝑇

𝑡=1

 

+∆𝑇 ∑ ∑ 𝑥𝑡,𝑣
𝑒− 𝐶𝑉2𝑋

𝑉

𝑣=1

𝑇

𝑡=1

        +         ∆𝑇 ∑ ∑ 𝑃𝑐
𝑃𝑉𝑟𝑃𝑡

𝑃𝑉(𝑓𝑐)
 𝐶𝑃𝑉

𝐶

𝑐=1

𝑇

𝑡=1

 

 The objective function is to minimize the total net costs 

𝐶𝑜𝑝𝑡 of EV charging, feeding PV power, and offering reserves. 

The formulation is such that the 𝐶𝑜𝑝𝑡 can be positive or 

negative. It has five components, namely: 

 The penalty to be paid to the user if the energy demand 𝑑𝑣 

is not met by the departure time 𝑇𝑣
𝑑. 𝐶𝑣

𝑝
 is EV user specific 

and the penalty can be different for each user based on EV 

battery size, tariff policy and customer ‘loyalty’ program.   

 The cost of buying and selling energy from the grid based 

on the settlement point prices 𝑝𝑡
𝑒(𝑏𝑢𝑦)

, 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

. The market 

dynamics will ensure that 𝑝𝑡
𝑒(𝑏𝑢𝑦)

≥ 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

 

 Income 𝑆𝑎𝑠 obtained from offering reserve capacity 

𝑥𝑡,𝑣
𝑟(𝑢𝑝)

, 𝑥𝑡,𝑣
𝑟(𝑑𝑛) to the ISO. (𝜂𝑐

𝑐𝑜𝑛𝑣)2 indicates the energy losses 

in the two step conversion between the EV and grid port of 

the EV-PV charger. Since the reserves offered to the grid 

have to be guaranteed and the uncertainty in the PV 

forecast is 𝑦𝑃𝑉
𝑓𝑐

, only a fraction (1 − 𝑦𝑃𝑉
𝑓𝑐

) of the available 

reserves are guaranteed and sold to the ISO. 

 EV battery capacity degrades due to the additional cycles 

caused by the V2G operation and EV user is compensated 

for this loss. Typical value of 𝐶𝑉2𝑋=4.2¢/kWh based on 

analysis in [43], [44]. The battery degradation due to 

variable power smart charging is not considered as several 

studies have shown that its effect is insignificant [45]–[47].  

 PV power that is used to charge the EV need not always be 

free of cost. If the PV is installed by a third-party, it can be 

obtained at a pre-determined contractual cost of 𝐶𝑃𝑉. 

E. MILP implementation  

The EMS engine is implemented in C# leveraging 

Microsoft Solver Foundation for algebraic modeling in 

Optimization Modeling Language (OML). MS SQL Server 

database is used to warehouse system inputs, namely the EV, 

charger, network and market data as well as the decision 

outputs that are sent to the EV-PV chargers in the field. The 

MILP formulation is solved using branch-and-bound (B&B) 

algorithm using ‘LPsolve’ open source solver. One of the main 

advantages of the B&B algorithm is that, given enough 

computation time, it guarantees global optimality despite the 

non-convex nature of the problem. The EV-PV chargers will 

be interfaced with the output database to implement the 

optimal power profiles.  

IV. SIMULATION RESULTS 

Simulations are performed to test the validity of the 

proposed MILP formulation and to quantify the reduction in 

costs of EV charging from PV with respect to AR and IMM.  

A. Simulation parameters  

Settlement point prices (SPP) and prices for reserve 

capacity (REGUP, REGDN) are obtained from the ERCOT 

day-ahead market (DAM) for Austin, Texas for 2014 for load 

zone LZ_AEN, as shown in Fig. 4. These are wholesale 

energy prices with a data resolution of 1hr. Since separate 

values for 𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

 was not available, it is assumed that 

𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

=0.98*𝑝𝑡
𝑒(𝑏𝑢𝑦)

.  

For 2014, the largest values observed for 𝑝𝑡
𝑒(𝑏𝑢𝑦)

, 𝑝𝑡
𝑟(𝑢𝑝)

, 

𝑝𝑡
𝑟(𝑑𝑛)

 were 136.47¢/kWh, 499.9¢/kWh and 31¢/kWh 

respectively while the average values were 3.9¢/kWh, 
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1.25¢/kWh, 0.973¢/kWh. It can be clearly seen than energy 

prices are normally much higher than regulation prices, but 

there are several instances where it is otherwise.  

The PV generation data is obtained from the Pecan Street 

Project database for a house in the Mueller neighborhood with 

a 11.1 kW PV system [48]. The data resolution is 1min. The 

power output is scaled down for a 1kW system for use as 

𝑃𝑡
𝑃𝑉(𝑓𝑐)

 with 𝑦𝑃𝑉(𝑓𝑐)=10%. It is assumed that the PV 

installation at the car park is owned by the workplace and 

hence 𝐶𝑃𝑉=0. 

The EV arrival and departure times and SOC requirements 

are listed in TABLE I for 6 EVs.  The EV data imitates the 

capacity of a Tesla Model S, BMW i3 and a Nissan Leaf. For 

all the EVs, 𝐵𝑣
𝑚𝑖𝑛=5kWh, 𝑥𝑣

𝑢𝑏=50kW, 𝑥𝑣
𝑙𝑏=(-10kW), 

𝜂𝑣
𝑐ℎ= 𝜂𝑣

𝑣2𝑥=0.95, Cp
v=1$/kWh, 𝐶𝑉2𝑋=4.2¢/kWh. The penalty Cp

v 

is approximately 25 times the average wholesale ERCOT 

electricity price of 3.9¢/kWh. 

There are 4 EV-PV chargers and TABLE I shows the 

connections of the 6 EVs to the 4 chargers in ‘Chr conn.’. 

10kWp PV is connected to each of chargers 1,2,4 and no PV is 

connected to charger 3. Chargers 1,4 have two EV connected 

to them. 𝑁𝑐
𝑐ℎ=1 for all chargers, which means that only one of 

the two EVs can be charged at a time for chargers 1,4. The 

following parameters are used: 𝜂𝑐
𝑐𝑜𝑛𝑣=0.96,   𝑃𝑐

𝐸𝑉𝑟=𝑃𝑐
𝑐𝑜𝑛𝑣=10 

kW, 𝑃𝑡
𝐷𝑁+ = 𝑃𝑡

𝐷𝑁− =40kW. ∆𝑇=15min for all simulation. 

B. Simulation results  

1) Average rate, randomly delayed and immediate charging  

The net costs of EV charging and PV sales for average rate 

𝐶𝑎𝑟, randomly delayed 𝐶𝑟𝑛𝑑 and immediate charging 

𝐶𝑖𝑚𝑚 are estimated using (1), (2), (40).  

𝐶𝑎𝑟 , 𝐶𝑟𝑛𝑑 , 𝐶𝑖𝑚𝑚 = 𝐶𝑒𝑣 − 𝑆𝑃𝑉 =

 ∆𝑇 ∑ ∑  𝑥𝑡,𝑣
𝑒+𝑝

𝑡
𝑒(𝑏𝑢𝑦)/(𝜂

𝑐
𝑐𝑜𝑛𝑣)

2𝑣=𝑉
𝑣=1

𝑇
𝑡=1 − 

∆𝑇 ∑ ∑ (𝜂
𝑐
𝑐𝑜𝑛𝑣)

2
𝑃𝑐

𝑃𝑉𝑟𝑃𝑐
𝑃𝑉(𝑓𝑐)

(𝑝𝑡
𝑒(𝑠𝑒𝑙𝑙)

− 𝐶𝑃𝑉) 
𝐶

𝑐=1

𝑇

𝑡=1
 

(40) 

where 𝐶𝑒𝑣 is the EV charging costs and 𝑆𝑃𝑉 the revenues from 

PV sales. For AR, 𝑥𝑡,𝑣
𝑒+=𝑥𝑣

𝑒(𝑎𝑟)
 and for IMM and RND, 

𝑥𝑡,𝑣
𝑒+=𝑃𝑐

𝐸𝑉𝑟. With AR, RND and IMM, there is no provision to 

provide V2G, regulation services or multiplexing of chargers 

due to the absence of communication with an EMS. The peak 

power for the car park would be 60kW for IMM, 20kW for 

AR charging and between 20kW to 60kW for RND charging 

for 6 EVs based on (1). 

Fig. 5 and TABLE II shows the net costs 𝐶𝑎𝑟 , 𝐶𝑖𝑚𝑚, 𝐶𝑟𝑛𝑑 

estimated for 2014 with the corresponding mean and standard 

deviation (SD). Four vital observations can be made. First, 

there is a large variation in net costs, ranging between [1.35$, 

24.17$] and [-19.58$, 40.43$] for AR and IMM, respectively. 

This is mainly due to the varying energy prices in ERCOT. 

The costs went negative for IMM on certain days indicating 

that the ESCo was paid by the ISO. It must be remembered 

that PV sales 𝑆𝑃𝑉 for both strategies is the same as shown in 

TABLE II. Second, IMM charging was found to be better than 

AR in summer and vice versa in winter, with IMM charging 

net costs being cheaper than AR for 233 days. Third, the 

average net cost per day for 2014 for AR and IMM was found 

to be 3.79$ and 2.90$, with IMM being cheaper than AR by 

31.7%. This is because EVs are charged in morning for IMM 

when ERCOT prices are generally lower when compared to 

prices in the afternoon. Thus, for the given scenario it is found 

that IMM is better than AR. Fourth, the charging cost for 

randomly delayed charging is nearly the same as AR charging. 

This is because the process of randomly delaying the charging 

of individual EVs makes the net EV charging profile extended 

over the day, similar to AR charging.   

2) Optimized net costs  

Using the MILP formulation for the optimized charging 

(OPT) described in section III, the net costs 𝐶𝑜𝑝𝑡 are 

determined for each day of 2014 based on (39) and shown in 

Fig. 5 and TABLE II. The benefits of the MILP optimization 

can be clearly seen in the figure, where the optimized net costs 

are much lower than IMM and AR. 𝐶𝑜𝑝𝑡 range is [-42.91$, 

11.56$], which is much lower than IMM and AR. Due to the 

large penalty Cp
v=1$/kWh, EVs were always charged up to the 

required departure SOC by the departure time.  

EV charging costs 𝐶𝑒𝑣 (not net cost) are estimated 

separately for AR, IMM and OPT and shown in TABLE II. It 

can be seen that mean value of 𝐶𝑒𝑣 is not that different 

between IMM and OPT. The reason is that the objective 

function is not optimized to reduce EV charging costs alone 

but rather to increase the sale of PV power and reserves as 

well.  

The percentage reduction in net costs 𝐶%
𝑖𝑚𝑚, 𝐶%

𝐸𝑉−𝑃𝑉 is 

estimated based on AR net costs 𝐶𝑎𝑟 using (41)-(42) and shown 

in Fig. 6 for each day. 𝐶𝑎𝑟 was chosen as a reference as the 

costs do not have values close to zero or go negative.  

𝐶%
𝑖𝑚𝑚 = 100(𝐶𝑎𝑟 − 𝐶𝑖𝑚𝑚)/𝐶𝑎𝑟  (41) 

𝐶%
𝑜𝑝𝑡

= 100(𝐶𝑎𝑟 − 𝐶𝑜𝑝𝑡)/𝐶𝑎𝑟  (42) 

As can be seen, the proposed optimized charging results in a 

TABLE I 

EV AND EV-PV CHARGER DATA 

v 𝑻𝒗
𝒂 𝑻𝒗

𝒅 d 𝑩𝒗
𝒂 𝑩𝒗

𝒎𝒂𝒙 
Chr 

conn. 

𝑷𝒄
𝑬𝑽𝒓 

𝑷𝒄
𝒄𝒐𝒏𝒗 

 (h) (kWh)  (kW) 

1 900 1700 40 20 85 1 10 

2 830 1630 30 20 60 1 10 

3 930 1730 10 5 24 2 10 

4 900 1700 40 20 85 3 10 

5 830 1630 30 20 60 4 10 

6 930 1730 10 5 24 4 10 

 

 
Fig. 4. Settlement point and regulation prices from ERCOT for 2014. Values 

greater than 15c/kWh are not shown to maintain scale.  

   
𝑝𝑡

𝑒(𝑏𝑢𝑦)
                       𝑝𝑡

𝑟(𝑢𝑝)
                    𝑝𝑡

𝑟(𝑑𝑛)
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cost reduction 𝐶%
𝑜𝑝𝑡 in the range of 32% to 651%, with a mean 

of 159% with respect to AR charging. A reduction of >100% 

should be interpreted as meaning that the net cost is negative. 

That is, the EV car park receives money for the EV charging, 

sale of PV and reserves rather than having to pay overall. This 

goes to show the big potential of the integrated EV-PV-V2G-

regulation approach.   

MILP solve times were in the range of 11.2-17.3s with a 

relative MILP gap of 0.015%. The mean solve-time was 

13.05s with a standard deviation of 1.09s.  A Windows PC 

with Intel Xeon 2.4Ghz CPU and 12GB RAM was employed.   

C. Case studies 

Six case studies are performed in order to evaluate the net 

reduction in cost if only one or few of the smart charging 

applications are considered. TABLE III shows the six cases 

considered based on: the possibility for bidirectional charging 

(𝑥𝑣
𝑙𝑏=0 or not); if the EMS is provided input data for PV 

forecast (𝑦𝑃𝑉(𝑓𝑐)=0 or not) and if the objective function 

optimizes based on the energy/regulation prices or not. For the 

cases that do not optimize based on the energy/regulation 

prices, the energy prices part (in red) and/or the regulation 

prices part (in blue) is removed in the objective function, (39). 

For all the cases, the distribution network constraints, the EV 

user requirements and multiplexing of EVs is employed. Five 

sample days are considered and the percentage reduction in 

net costs with respect to AVG is estimated for all six cases, 

similar to Eqn. (42) as shown in TABLE IV. The average cost 

reduction for the five days considered is shown in the last row of the 

table.  

From TABLE IV, it can be clearly seen that as more smart 

charging applications are included in the optimization, the net 

costs reduces drastically. For example, the cost reduction goes 

from 9.29% for case 2 to 317.83%  for OPT, for day 332. In 

particular, the cost reduction for case 3 is always more than 

that for case 2 or case 1, while the cost reduction for case 4 is 

always more than case 2.  

Case 6 and OPT differ on whether V2G is possible or not 

and this results in (256.7-171.43)=85.2% reduction in net costs 

on an average for the given days, as seen in TABLE IV. 

Interestingly, it was found that no V2G energy was fed on the 

five days except for day 220 with EV3 delivering 7.42kWh. 

This means that the cost reduction was mainly due to the 

increased up-regulation power  𝑥𝑡,𝑣
𝑟(𝑢𝑝)

 that was sold to the ISO 

on all five days. This goes to show that the main benefit of 

V2G is not always in energy sales but in increased regulation 

services offered as well.  

To reiterate this point, the annual V2G energy fed to the 

grid for OPT was estimated and found to be 42.2 kWh. This is 

0.072% of the total annual demand of the EVs of 

365*80=58,400 kWh. Combined V2G sales over the year was 

13.14$ or 3.6c/day, without considering the battery 

degradation penalty of 1.77$. V2G occurred only on 7 days of 

the 365 days and 3 EVs out of 6 participated, largely 

discouraged by the battery degradation penalty, 𝐶𝑉2𝑋. 

D. Inferences  

The large cost reduction is a hence result of aggregating the 

multi-aspect PV, EV, energy market problem into a single 

MILP formulation. This results in the sale of PV and V2G 

power when prices are high, buying of EV charging power 

TABLE II 

EV CHARGING COSTS, PV SALES AND NET COSTS - MEAN, SD ($) 

 [Mean, SD] AR RND IMM OPT 

𝑆𝑃𝑉 4.41, 2.81 4.41, 2.81 4.41, 2.81 - 

𝐶𝑒𝑣 8.21, 3.21 8.17, 3.13 7.32, 3.87 7.30, 1.92 

𝐶𝑎𝑟 , 𝐶𝑖𝑚𝑚, 𝐶𝑜𝑝𝑡 3.79, 2.13 3.75, 2.07 2.90, 4.20 -1.53, 3.92 

𝐶%
𝑖𝑚𝑚, 𝐶%

𝑜𝑝𝑡
(%)   31.72, 61.26 158.63, 87.88 

 

 
Fig. 5. Cost of charging the EV fleet by average rate, immediate and the 

proposed optimized charging strategy (top); zoomed view (bottom)  

 
Fig. 6. Percentage reduction in the net cost for the proposed charging strategy 

and immediate charging with respect to average rate charging.  

 

TABLE III 

CASE STUDIES CONSIDERING DIFFERENT SMART CHARGING APPLICATIONS 

Case 
Bidirectional 

V2G 

Energy  

prices 

Regulation 

services 

PV  

forecast 

IMM/AVG No No No No 

Case 1 No No  Yes No 

Case 2 No Yes No No 

Case 3 No Yes Yes No 

Case 4 No Yes No Yes 

Case 5 Yes No  Yes Yes 

Case 6 No Yes Yes Yes 

OPT Yes Yes Yes Yes 

 

TABLE IV 

REDUCTION IN NET COSTS (%) WITH RESPECT TO AVG FOR DIFFERENT CASES  

Day Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 OPT 

33 13.60 6.42 20.76 7.62 11.49 22.26 31.62 

83 38.83 12.81 57.71 19.75 30.90 65.81  96.73 

153 74.95 38.51 99.14 53.80 45.10 112.84 186.47 

220  239.96 205.76 355.53 244.61 451.93 376.11 650.83 

332 243.91 9.29 255.63 19.56 256.58 280.15  317.83 

Avg. 122.25 54.56 157.76 69.07 159.20 171.43 256.70 
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when prices are low and continuous sale of regulation 

services. The current MILP formulation is such that IMM, 

AR, RND or any of the cases will be a special case of 

optimized charging OPT as dictated by the PV forecast and 

market prices. Second, the sharing of a single charger to 

charge several EVs results in a reduction of charging 

infrastructure cost. While these costs have not be included in 

the estimate, they can be up to 15,000$ for 10kW chargers 

with 𝑁𝑐
𝑐𝑜𝑛𝑛=4.  

Third, as with any forecasting and modeling, there will be 

small but finite errors in the PV forecasting and inaccuracies 

in the modeling of the EV and charger. The impact of the 

modeling and forecasting error is that it will lead to reduced 

revenues than what is estimated. It is also why only a fraction 

(1 − 𝑦𝑃𝑉
𝑓𝑐

) of the available reserves are guaranteed and sold to 

the ISO. The receding horizon approach that responds to 

changes in model parameters, including solar PV forecast, is 

hence used to reduce the impact of these errors. The impact of 

the errors can be further reduced with smaller time steps than 

15min.  

E. Implementation aspects  

In this section, the practical aspects of implementing this 

optimization are analyzed.  

1) Adaptability  

It must be kept in mind that even though wholesale DAM 

prices and small EV fleet have been used in this simulation, 

the formulation is generic to be used with large EV fleet, real-

time market (RTM) and retail electricity prices as well. The 

parameters listed in the nomenclature section can be adapted 

for different markets, PV, EV types and to different smart 

charging scenarios as highlighted by the six case studies.   

2) Capital cost and sharing of benefits  

The capital cost of building the proposed EV-PV integrated 

charging facility will be cheaper than a non-integrated system 

due to four reasons: 

1. The integrated bidirectional EV-PV charger costs the same 

as the sum of the cost of buying a similarly rated solar 

inverter and unidirectional EV charger [35]. The benefit of 

integration is the bidirectional operation of EV at no 

additional cost, a smaller converter as it needs only one 

DC/AC inverter to the AC grid and no communication 

hardware needed between the EV and PV system.   

2. The multiplexing system will allow the connection of a 

single charger to several EVs. This will drastically reduce 

the EV charging infrastructure cost by a factor proportional 

to how many cars are multiplexed to one charger.  

3. The use of rolling horizon implementation as opposed to 

stochastic optimization to handle forecasting errors and 

uncertainties simplifies the formulation and reduces the 

computational complexity; hence less powerful and 

cheaper hardware can be used. 

4. The integrated scheduling of EV-PV-V2G-regulation 

reduces the net costs on an average by 158% and this could 

provide a revenue stream to recover the capital cost.  

  The EV-PV car park has several players involved namely 

the owner of PV and parking area, the ESCo, the ISO EV user 

and in a general scenario, the charge-point operator (CPO), e-

mobility service provider (eMSP) and the DSO. The capital 

investment of the EV-PV charging facility and the benefit of 

the net cost reduction will ultimately have to be shared 

amongst all these parties. This will be dependent on the 

contractual business agreement between the parties.  

3) Scalability 

Similar to any MILP problem, the problem size will grow 

exponentially with the number of EV. At the same time, 

different parking locations are decoupled by their EV, PV and 

distribution constraints and hence the model dimension is 

naturally limited to the size of a single parking lot, about 5 to 

1000 EVs. Thus, the MILP's dimensionality is limited to 

problem sizes that are tractable by the current technology and 

therefore fairly scalable. Further, the receding horizon 

implementation makes the problem more scalable in terms of 

computational complexity when compared to stochastic 

optimization.  

Stochastic optimization is an alternative to the receding 

horizon approach. But we did not consider it here for two 

reasons. First, the given problem has a lot of stochastic 

variables, making it computationally intensive and hence less 

scalable. This is especially a problem as the number of EV 

grows to above 50 in a parking lot. The MILP formulation 

with receding horizon approach makes it computationally 

easier. Second, stochastic optimization requires generation of 

probabilistic data for all inputs and creating different scenarios 

for PV, EV and market. Due to limited EV penetration, there 

is insufficient data now on EV and EV user patterns creating 

lots of dimensions of uncertainty. If such limited data is used 

as input, it is difficult to get reliable and useful results. 

4) Interaction with de-regulated energy markets  

With upto 1000 EVs and 10kW EV charger, the total car 

park is handling 10MW power at maximum, considering no 

multiplexing. This is small in relation to the power scales in 

the energy market. Hence, no perturbations will be observed 

on the market prices and no feedback on prices would be 

required for this system. At the same time, the net car park 

power can be occasionally lower than the minimum bid 

required by ISOs to participate in regulation services (for 

example, 0.1MW for PJM, 0.1MW for ERCOT and typically 

1MW in other ISOs). It is expected that ISOs around the world 

would lower the minimum bid requirements in the future to 

allow EVs to participate in ancillary services.  

V. CONCLUSIONS  

EV charging from PV can be controlled to achieve several 

motives – to take advantage of time of use tariffs, provide 

ancillary services or follow the PV production. However, the 

common approach is that each of these applications is solved 

as separate optimization problems resulting in inconsistent 

charging profiles. This is impractical, as a single EV cannot be 

controlled at the same time with different charging profiles. 

Further, the economic befits of this approach are too small to 

warrant mass adoption of smart charging. Hence it is vital to 

make a single problem formulation that bundles several 

applications together so that one optimal EV charging profile 
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with cumulated benefits is obtained.  

In this paper, an MILP formulation has been proposed for 

charging of an EV fleet from PV that has several application 

built into one - charging of EV from PV, using time of use 

tariffs to sell PV power and charge EV from the grid, 

implementation of V2G for grid support, using EV to offer 

ancillary services in the form of reserves and considering 

distribution network capacity constraints. The scheduling of 

the connection of a single EVSE to several EV has been 

included in the formulation. This provides the ability to share 

the EVSE amongst many EVs resulting in substantial 

reduction in the cost of EV infrastructure. 

The MILP optimization has been implemented as a receding 

horizon model predictive control and operates with a fixed 

time period. Using 2014 data from Pecan Street Project and 

ERCOT market, simulations were performed for an EV fleet 

of six connected to four chargers. The formulation of five 

applications into one resulted in large reductions in the net 

costs in the range of 32% to 651% with respect to average rate 

charging. The net costs were far lower than those for 

immediate and randomly delayed charging, highlighting the 

benefits of the proposed smart charging algorithm.  

Using six case studies, it has been shown that when several 

smart charging applications are combined together, it results in 

huge cost savings. Further, for the scenario simulated, it was 

observed that a large portion of the V2G revenues came from 

increased regulation services offered rather than from V2G 

energy sales due to the battery degradation penalty. The MILP 

formulation is generic, scalable and can be adapted to different 

energy and ancillary markets, EV types, PV array installations 

and EVSE.  
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