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Abstract—The benign epilepsy with spinous waves in the1

central temporal region (BECT) is the one of the most common2

epileptic syndromes in children, that seriously threaten the ner-3

vous system development of children. The most obvious feature of4

BECT is the existence of a large number of electroencephalogram5

(EEG) spikes in the Rolandic area during the interictal period,6

that is an important basis to assist neurologists in BECT diag-7

nosis. With this regard, the paper proposes a novel BECT spike8

detection algorithm based on time domain EEG sequence features9

and the long short-term memory (LSTM) neural network. Three10

time domain sequence features, that can obviously characterize11

the spikes of BECT, are extracted for EEG representation. The12

synthetic minority oversampling technique (SMOTE) is applied to13

address the spike imbalance issue in EEGs, and the bi-directional14

LSTM (BiLSTM) is trained for spike detection. The algorithm is15

evaluated using the EEG data of 15 BECT patients recorded from16

the Children’s Hospital, Zhejiang University School of Medicine17

(CHZU). The experiment shows that the proposed algorithm can18

obtained an average of 88.54% F1 score, 92.04% sensitivity, and19

85.75% precision, that generally outperforms several state-of-the-20

art spike detection methods.21

Index Terms—BECT, Spike detection, Time domain EEG22

sequence features, LSTM model23

I. INTRODUCTION24

As a common neurological disease, the incidence of epilep-25

sy in children is 10∼15 times as high as that of adults.26

Benign childhood epilepsy with centro-temporal spikes (BEC-27

T), also known as the childhood benign rolandic epilepsy,28

is the most common focal epilepsy in childhood, accounting29

for 15%∼24% of all childhood epilepsy [1, 2]. BECT has30

a low probability of having seizures. Therefore, the elec-31

troencephalograms (EEGs) recorded from the interictal period32

become the main data to help doctors analyze the condition33

of BECT patients.34
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To assist clinical analysis, EEG features appearing in epilep- 35

sy are summarized as biomarkers by neurobiologists. Epilep- 36

tiform discharge is a typical biomarker, generally including 37

spike, sharp, spike and wave complex, and sharp and wave 38

complex [3]. With the upgrade of EEG acquisition equipment, 39

more and more high-frequency EEG signals, such as ripples 40

and fast ripples, have been used as epilepsy biomarkers, 41

leading to good results [4]. The diagnosis of BECT is one 42

of the typical cases in epileptiform discharge analysis. The 43

most obvious feature of the interical EEG of BECT patients 44

is the large number of spike and sharp wave complexes in 45

the Rolandic area. On the EEG International 10-20 system 46

[5], the midtemporal and central areas have the highest dis- 47

charge amplitude [6]. The width of the spikes and sharps is 48

generally around 50-100 ms, the amplitude is mostly greater 49

than 100 µV, and are usually prominent in the background 50

activity. Since the generation mechanism and physiological 51

significance of spike and sharp are basically similar, there is 52

generally no obvious difference in waveforms except for the 53

duration. Therefore, in this paper, we uniformly use the spike 54

to refer to spike and sharp waves. 55

Traditionally, to have a better diagnosis of BECT patients, 56

neurologists have to analyze the EEG data to find the epilep- 57

tiform discharges in the millisecond level, which is extremely 58

tedious and time-consuming. With this regard, we develop a 59

novel BECT spike detection algorithm based on the time do- 60

main EEG sequence features and the enhanced long short-term 61

memory (LSTM) neural network model. The contributions of 62

the paper are three-fold: 1) two time domain EEG sequence 63

features, the smooth nonlinear energy (SNE) and morpholog- 64

ical characteristics, are extracted to characterize spikes, 2) to 65

address the imbalance issue existed between spike and non- 66

spike signals, the synthetic minority oversampling technique 67

(SMOTE) is applied to generate synthetic spike sample for 68

model learning, 3) a stacked bi-directional LSTM (BiLSTM) 69

model is designed to enhance the spike detection accuracy. 70

The effectiveness of the proposed spike detection algorithm 71

is validated by using the EEG data of 15 BECT patients 72

recorded from the Children’s Hospital, Zhejiang University 73

School of Medicine (CHZU). Experimental comparisons to 74

5 state-of-the-art (SOTA) spike detection methods are also 75

presented in the paper to demonstrate the superiority of the 76

proposed algorithm. Fig. 1 explicitly shows the flow chart of 77

the developed spike detection algorithm in the paper. 78

II. RELATED WORKS 79

As a common epilepsy biomarker, spike has broad applica- 80

tions in the auxiliary diagnosis [7, 8] and seizure prediction 81
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[9]. The earliest study can be traced back to 1972, in which82

Steven et al. [10] tried to explore the correlation between83

spikes and seizures using the power spectrum of EEGs. Got-84

man et al. [11] decomposed EEG into half-waves and extracted85

its features for the spike detection. Qian et al. [12] used86

the cascade of the difference filter and the product operator87

to enhance the spike amplitude. Liu et al. [13] eliminated88

background noise in EEGs with a morphological filter which89

adopts adaptive Gaussian structure factor. Oikonomou et al.90

[14] established a time-varying autoregressive model based91

on the non-stationarity of EEGs, and used a Kalman filter92

to estimate the time-varying coefficients, which enhanced the93

signal-to-noise ratio. More fundamental spike detection meth-94

ods can be referred to [15–19]. In general, most spike detection95

algorithms tend to use time domain features. Although the96

frequency domain and wavelet domain features are widely97

used in the field of EEG signal processing [20, 21], their98

application in spike detection [22–25] is limited due to the99

short duration of the target waveform and high positioning100

accuracy requirements.101

Recently, machine learning based neural networks have been102

widely used for EEG analysis, such as epilepsy and seizure103

detection [26–29], spike detection [30–32], brain-computer104

interfaces [33–35], etc. Webber et al. [30] implemented spike105

detection algorithms through spike candidate selection and106

artificial neural networks (ANN) based classification. Özdamar107

et al. [31] directly adopted ANN to learn on the raw EEGs,108

and explored the influence of the feature input dimension109

and network structure parameters. Medvedev et al. [32] used110

the relative spectral power of different frequency bands as111

the features, and employed BiLSTM for spikes, ripples, and112

composite waveforms detection. Johansen et al. [36] applied113

one-dimensional convolutional neural network (CNN) to spike114

detection. Many other representative deep learning based115

spike detections can be referred to [37, 38]. Particularly, for116

childhood BECT spike detection, Wang et al. [39] developed117

a hybrid algorithm based on an adaptive template matching118

algorithm and a random forest (RF) classifier for false positives119

elimination. Besides [39], few attentions have been paid to the120

BECT spike detection.121

III. METHODOLOGY122

A. EEG Preprocessing123

Interferences, such as eye blinking, electromyogram (EMG),124

non-physiological artifacts, baseline drift, etc. (shown in Fig.125

2), usually affect the performance in scalp EEG analysis126

[40, 41]. Preliminary frequency domain filtering by a 50127

Hz IIR notch filter and a 1∼70 Hz IIR filter is applied to128

remove the power frequency noise, to reduce low-frequency129

interference such as baseline drift, and to suppress the high-130

frequency interference. Then, the following preprocessing is131

adopted.132

1) Savitzky-Golay Filtering: The Savitzky-Golay filter (S-133

G filter) is a time domain polynomial least squares filtering134

algorithm, which is effective to eliminate noise while remain135

the signal distribution characteristics unchanged. Part of the136

interference caused by electromyography and poor contact also137
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Fig. 2. The 10-20 international standard EEG recording system, the waveform
and appearance position of EEG interferences and spikes.

has high-frequency spike-like characteristics, but its amplitude 138

and duration are generally smaller than spikes. By applying 139

the S-G filter, these interferences can be smoothed under the 140

premise of not having a great impact on spikes, and the 141

influence on subsequent spike identification can be reduced. 142

Suppose the width of the filter window is n = 2m + 1, 143

the original EEG is x, and the k-order S-G filter will fit the 144

data using a k degree polynomial defined as y = a0 + a1x+ 145

a2x
2 + · · ·+ akx

k, where ai (i = 0, . . . , k) is the polynomial 146

coefficient. For all EEG segments, the following k-ary linear 147

equation can be obtained 148 y−m

...
ym

 =

 x(1) · · · xk(−m)
...

...
...

x(1) · · · xk(m)


 a0

...
ak

+

 e−m

...
em


where e is the fitting error. The matrix form is 149

Y (2m+1)×1 = X(2m+1)×kak×1 + e(2m+1)×1 (1)

where Y (2m+1)×1, X(2m+1)×k, ak×1, e(2m+1)×1 are the 150

matrix/vector forms of variables in (1). By least squares, â 151

can be estimated as â = (XTX)−1XTY , and the filtered 152

output is 153

Ŷ = Xâ = X(XTX)−1XTY . (2)

The center sequence Ŷ (0) of the filtered output is finally used. 154

In this paper, the filter window length is set to 71, and 155

the corresponding duration is 0.071 s, which is close to the 156

average duration of BECT spikes. It can ensure that the interval 157

contains enough information to minimize the impact on spikes, 158

and meanwhile ensure that the noises with a duration shorter 159

than spikes. Through experiments, the third-order filter has the 160

best overall performance and good smoothing effect on noises. 161

Fig. 3 shows the filtered EEGs obtained by frequency-domain 162

filter and S-G filter, respectively.
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Fig. 3. EEG preprocessing by the frequency domain filter and the S-G filter.
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Fig. 1. The flowchart of the proposed BECT spike detection algorithm.

2) Standardization: EEG normalization can help to reduce 164

the sensitivity of different acquisition devices. Commonly used 165

resizing methods include rescaling, mean normalization and Z- 166

score normalization. Since the scalp EEG is sensitive to exter- 167

nal interferences, using rescaling or mean normalization may 168

not have a satisfactory normalization. Since the preprocessing 169

is performed on the entire signal, the Z-score normalization is 170

the most suitable method here, defined as 171

x′ =
x− mean(x)

σ
(3)

where x is the EEG signal, mean(x) and σ are the mean and 172

variance, that can be estimated from the samples. 173

3) Data Segmentation: The EEG frame length is set to 174

be 0.2 s by considering the duration of BECT spikes. For 175

model training and validation, the pre-marked points are 176

directly divided to obtain samples, while in testing, we set 177

a 50% overlap rate to continuously divide the entire EEGs 178

into frames. The purpose is to visually analyze the detection 179

performance on real data, and also to ensure the integrity of 180

the spike waveform in the sample interval. 181

B. Data Augmentation182

Compared with the long-term EEG recordings, the duration183

of the EEG in the non-spike state is usually much longer184

than spikes. Fig. 4 shows the spike duration ratios recorded185

from 15 BECT patients in the CHZU database. As observed,186

for most patients, the proportion of spike discharge durations187

with respect to the whole recordings is less than 6%, and188

the proportion of spike of 5 patients is even less than 2%.189

This leads to a typical imbalance data learning problem. It is190

also well known that conventional machine learning models191

are generally not applicable to imbalance data, and usually192

suffer poor performance on the minority classes, resulting in193

a very low recall rate. Therefore, we recur to the SMOTE194

[42] resampling method to generate minority samples (spikes),195

where the generated spikes will be only used in model training.196

SMOTE is an improved random oversampling algorithm,197

that can effectively address the overfitting and poor gener-198

alization issues in the basic random oversampling methods.199

SMOTE overcomes these issues by exploring the nearest200
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Fig. 4. Spike discharge duration proportion in each patient’s EEG in the
CHZU database (the duration of one spike discharge is around 0.075 s).

neighbors within the minority category to generate the syn- 201

thetic samples xnew using xnew = x + rand(0, 1) × (x̃ − x), 202

where x is the sample from the minority class, x̃ is randomly 203

selected from the K nearest neighbors of x. 204

C. Time domain Sequence Feature Extraction 205

Two time domain features, smooth nonlinear energy (SNE) 206

and morphological characteristics (MC), which can reflect 207

the characteristics of EEGs and distinguish spikes from non- 208

spikes are extracted for signal representation in this paper. The 209

dimensions of SNE and MC are consistent with that of EEG 210

segment to ensure that they can be applied for the subsequent 211

model learning. 212

1) Smooth nonlinear energy: The nonlinear energy operator 213

(NEO) was proposed by Kaiser for nonlinear speech modeling 214

[43]. NEO can characterize the instantaneous frequency and 215

amplitude of the signal, and its output is proportional to the 216

product of the amplitude and frequency of the input. 217

Let x(t) (t > 0) be a continuous time signal, NEO is 218

ψ[x(t)] = x2(t)− x(t)x′′(t) (4)

where ψ[x(t)] is the nonlinear energy (NE) and x′′(t) is the 219

second-order derivative. For a discrete signal x(n), NEO is 220

ψ[x(n)] = x2(n)− x(n− 1)x(n+ 1). (5)

To further improve the ability of NEO in characterizing non- 221

stationary signals, a smooth nonlinear energy operator (SNEO) 222

has been developed in [44] as 223

ψs[x(n)] = w(n) ∗ ψ[x(n)] (6)
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where w(n) is the triangular window function, ∗ represents224

the convolution operation, and ψs[x(n)] is the SNE.225

SNE reduces the interference through the convolution op-226

eration. As shown in Fig. 5, SNE from the spike discharge227

interval is much higher than that from the background and228

non-spike EEG. Therefore, the spike can be clearly protruded229

from a segment of EEGs by SNE.230

2) Morphological characteristics: Morphological filter is a231

nonlinear filter based on the basic mathematical morphological232

transformation. It was originally used to process binary im-233

ages. Later, Serra et al. [45] introduced the set representation234

method of functions and extended it to time sequence signal235

processing. For the signal x(n), n ∈ (0, 1, · · · , N − 1) and236

the structure element g(m), the four basic morphological237

operations of g(m) with respect to x(n) are corrosion ‘⊖’,238

expansion ‘⊕’, morphological opening ‘◦’, and morphological239

closing ‘•’, which are respectively defined as240

(x⊖ g)(n) = min[x(n+m)− g(m)] (7)
(x⊕ g)(n) = max[x(n+m)− g(m)] (8)
(x ◦ g)(n) = (x⊖ g)⊕ g (9)
(x • g)(n) = (x⊕ g)⊖ g (10)

where m = 0, . . . ,M − 1 and N ≥ M . Corrosion operation241

removes the negative phase peak and reduces the width of the242

positive phase peak, expansion operation removes the positive243

phase peak and reduces the width of the negative phase peak,244

the open operation only removes the positive phase peak, and245

the closed operation only removes the negative phase peak.246

To further improve the filtering performance, the basic247

operations mentioned above are cascaded and combined to248

better separate the target from the original signal. The mor-249

phological opening-closing operation (OC), closing-opening250

operation (CO) and open-close-closed-open average combined251

operation (OCCO) are respectively defined as252

OC[x(n)] = [(x ◦ g) • g](n) (11)
CO[x(n)] = [(x • g) ◦ g](n) (12)

OCCO[x(n)] =
1

2
{OC[x(n)] + CO[x(n)]}. (13)

OC and CO can effectively separate positive and negative puls-253

es from the signal, respectively. Due to the inverse scalability254

of the open and closed operations, a single OC or OC operation255

will cause statistical deviation. OCCO eliminates statistical256

deviations and improves the filtering performance by averaging257

OC and CO results.258

After the structure element setting, OCCO can filter out the259

spike wave-like waveform. Subtracting the result of OCCO260

from the original EEG, the characteristic sequence containing261

only the waveform of the type structure unit is262

MC(n) = x(n)−OCCO[x(n)]. (14)

The structural element used here is a positive half-wave Sine263

signal with a certain degree of similarity to the spike wave,264

defined as265

g(m) = hs sin

(
πm

ts

)
(15)

where hs is the spike amplitude, ts is the spike duration, and 266

m ∈ (0, 0.001, · · · , ts). 267

Spike Non-Spike

Fig. 5. Original EEG, smooth nonlinear energy and morphological charac-
teristics of spike and non-spike samples.
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Fig. 6. Comparisons on SNEs and MCs obtained on multiple spikes and
non-spikes from the EEGs of a BECT patient.

Fig. 5 plots the typical BECT spike and non-spike EEG 268

samples, and their corresponding SNE and MC features. As 269

observed, for both the SNE and MC features, the waveform of 270

spike is well retained, and the amplitudes of the two features 271

obtained from non-spike EEGs are apparently suppressed. 272

For further validation, we have compared the SNE and MC 273

features obtained from 139 spikes and 1455 non-spikes from a 274

BECT patient of the CHZU database in Fig. 6. For non-spike 275

EEGs, the SNE and MC features are generally around 0, while 276

on the contrary, spike EEGs show completely different SNE 277

and MC features to non-spikes. 278

D. LSTM Architecture Neural Network Classifier 279

Instead of directly adopting the SNE and MC features for 280

spike detection, we apply the LSTM neural network with 281

the stacked bi-directional structure for discriminative feature 282

learning and spike EEG detection. Conventional RNN gener- 283

ally uses simple repeating module containing only one tanh 284

layer for time series learning. LSTM modifies the repeating 285

module, designs the cell state that stores important information 286

and controls it through three gate structures, namely the forget 287

gate, input gate and output gate [46]. It can overcome the 288

gradient disappearance and explosion issues existed in tradi- 289

tional RNN. The forget gate selectively forgets the information 290

passed from the previous unit, defined as 291

ft = σ(Wf · [ht−1, xt] + bf ) (16)
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where x is the input sequence, ht−1 is the output of the292

previous block, ct−1 is the cell state of the previous memory293

unit, bf and wf are the bias and weight vectors, σ is the294

sigmoid activation function, and ft is the output, determining295

how much of the cell state from the previous moment is296

retained to the current moment unit state ct.297

The input gate of LSTM selectively records new information298

into the cell state, with the definition as299

it = σ(Wt · [ht−1, xt] + bi) (17)

C̃t = tanh(WC · [ht−1, xt] + bC) (18)

where it determines how much input is retained in the current300

moment unit state Ct, and C̃t is the current input unit state.301

The cell state is then updated by302

Ct = ft ∗ Ct−1 + it ∗ C̃t. (19)

Finally, the input gate will obtain the output of the current303

block based on the cell state as304

ot = σ(Wo[ht−1, xt] + bo) (20)
ht = ot ∗ tanh(Ct). (21)

Bidirectional LSTM (BiLSTM) and stacked LSTM are two305

variants of LSTM. BiLSTM contains forward and backward306

structures in a unit. Stacked LSTM uses a cascade method307

to obtain a deeper structure. At the same time, these two308

structures can also be superimposed to get a more complex309

architecture.310

In this paper, we have developed 4 types of LSTM based311

BECT spike detection models, including the basic LSTM,312

stacked LSTM, BiLSTM, and stacked BiLSTM. Each model313

follows a neural network that consists of fully connected (FC)314

layers and a Softmax layer for feature fusion and spike/non-315

spike classification. The FC neural network is designed with a316

three-layer structure, the number of neurons are 500, 250, and317

2, respectively. Fig. 7 shows the 4 LSTM network structures,318

respectively. We fully exploit the EEG signal and the SNE, MC319

features for spike detection by concatenating them in parallel320

as the input. The dimensions of EEG, SNE and MC are all321

1×200, and the final feature sequence for model learning and322

spike detection is 3× 200. The input feature dimension to the323

basic LSTM at each time step is 3× 1.324

For model learning and parameter optimization, the cross325

entropy is used as the loss function, and the adaptive moment326

estimation (ADAM) algorithm is used for parameter learning.327

ADAM combines the advantages of AdaGrad and RMSProp328

optimization algorithms, comprehensively considers the first329

and second-order moment estimation of the gradient, and330

updates the step size. The parameters are updated by331

gt = ▽θJ(θt−1) (22)
mt = β1 ·mt−1 + (1− β1) · gt (23)
vt = β2 · vt−1 = (1− β2) · g2t (24)
m̂t =

mt

(1−βt
1)
, v̂t =

vt
(1−βt

2)
(25)

θ = θt−1 − α·m̂t√
v̂t+σ

(26)
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Fig. 7. Four LSTM network based spike/non-spike classification models.

where gt is the gradient of the current time step, θt−1 is the 332

parameter to be optimized obtained at the previous time step, 333

mt and vt are the exponential moving average of the gradient 334

and the gradient square, respectively, m0 and v0 are initialized 335

to be 0, β1 and β2 are exponential decay rates, mt and vt are 336

corrected to get m̂t and v̂t, θt is the parameter updated at the 337

current time step, α is the learning rate, σ is a positive value 338

that tends to be 0 to avoid the division to be 0. 339

IV. EXPERIMENTS AND DISCUSSIONS 340

A. Database 341

We test the spike detection performance on the EEGs of 342

BECT patients recorded from the Children’s Hospital, Zhe- 343

jiang University School of Medicine (CHZU). There include 344

the EEGs of 15 children (8 males and 7 females) suffered 345

from the BECT syndrome, with the age ranging from 3 to 346

10 years old. The EEG acquisition equipment is Nicolet v32 347

with sampling frequency of 1000 Hz, and the electrodes are 348

placed according to the international 10-20 system. The EEG 349

data used in this experiment comes from the routine long-term 350

EEG monitoring of inpatients in the hospital, and the duration 351

is generally more than 10 hours. For each patient, a segment 352

of EEGs around 10 minutes, that contain the most spikes, are 353

used for testing. For instance, for patient 1, 163 spikes have 354

been acquired in the 12 minutes 18 seconds EEG segment. 355

All spikes are annotated by the help of neuroscientist from 356

CHZU. Particularly, the detailed specifications of the CHZU 357

BECT spike database are given in Table I. 358

To build the database, the patients EEG data is divided into 359

three non-overlapping segments according to the amount of 360

spikes in the time period, which are used to generate model 361

training, verification and testing samples. The spike number 362

ratio in each segment is 6:2:2. An equal amount of non- 363

spike samples will be randomly generated in their respective 364

data segments for training and verification. The time interval 365

between the center point of the generated sample and the 366

nearest peak point must be greater than 0.5 seconds. The non- 367

spike samples will be generated with the same ratio to the 368
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TABLE I
SPECIFICATIONS OF THE CHZU BECT SPIKE DATABASE.

ID Gender Age Duration Spike discharge
description

Number
of spikes

1 M 9 y
3 m

12 m
18 s

Occasional discharge
in T3, T5 163

2 F 9 y
1 m

13 m
51 s

Frequent discharges
in C4, P4, T4, T6 1595

3 F 4 y
6 m

17 m
24 s

Occasionally discharges
in C3, P3, T3, T5, C4 1174

4 M 7 y
3 m

21 m
43 s

Frequent discharges
in C4, T4, T5 2033

5 M 6 y
6 m

34 m
12 s

Occasionally discharges
in C3, P3, T3, T5 1709

6 M 10 y
6 m

10 m
6 s

Occasionally discharge
in T3, T5 276

7 M 9 y
9 m

11 m
59 s

Frequent discharges
in C3, P3, T3, T5 1696

8 F 9 y
7 m

14 m
27 s

Occasionally discharge
in T3, T4 384

9 M 3 y
9 m

10 m
23 s

Frequent discharges
in the C4, T4 610

10 M 8 y
5 m

8 m
45 s

Frequent discharges
in C4, P4, T4, T6, T3 1478

11 M 6 y
5 m

15 m
51 s

Frequent discharges
in T3 481

12 F 6 y
6 m

13 m
0 s

Occasionally discharges
in C4, T4, T6 756

13 F 10 y
3 m

9 m
56 s

Frequent discharges
in T3, T5, C3, P3, T4, T6 2334

14 F 8 y
10 m

17 m
11 s

Frequent discharges
in T3, C3 1088

15 F 7 y
5 m

17 m
55 s

Frequent discharges
in T3, T5, C4, P4, T4 1809

spikes in the training dataset. While for testing, the samples369

are directly derived from the real EEGs. The specific reasons370

have been explained in Section III.A.371

B. Performance Evaluation372

The sensitivity (Sens), precision (Prec) and F1 score are373

adopted for the performance evaluation, defined as374

Sens =
TP

TP + FN
, Prec =

TP
TP + FP

, F1 =
2Prec · Sens
Prec + Sens

where TP, FP, FN represent the true positive, false positive,375

and false negative, respectively.376

It is noteworthy that unlike conventional spike detection377

algorithms that use manual labeling or candidate selection378

to obtain the testing sample for performance evaluation, the379

proposed method uses an overlapping continuous segmentation380

process to test performance. The advantage of the process is381

that it can more accurately reflect the detection performance382

of the algorithm, and at the meantime, can eliminate the383

dependence of the algorithm on the selection of candidate384

samples, which may involve a large number of complex385

threshold parameter adjustments. But it also suffers from the386

disadvantage that it is impossible to label all the generated387

samples one by one, and the automatic segmentation may388

result in incomplete waveforms. Therefore, under the premise389

of comprehensively considering the sample labeling, data390

segmentation, and actual detection application, we designed391

the following process to calculate the TP, TN, FP, and FN of392

the model through the pre-labeled spikes.393

The first step is to divide samples containing spikes into394

two categories, correct and incorrect. Due to the way in sample395

segmentation, a spike frame may be contained in two adjacent396

samples. When the classification of at least one sample is397

a spike, their results are regarded as correct, otherwise the 398

results are regarded as incorrect. In the second step, samples 399

that do not contain spike are also divided into the above two 400

categories. When these samples are classified as non-spike, 401

the results are regarded as correct, otherwise the results are 402

regarded as incorrect. The third step is to get the values of 403

TP, TN, FP, and FN, where TP is the number of samples 404

containing spikes in the database with correct results, and TN 405

is the number of samples remaining in the database. FP is the 406

number of samples with spikes in the database with incorrect 407

results, and FN is the number of samples remaining in the 408

database. For all experiments, the model is trained and tested 409

on the patient-based, namely, for each patient, a model is learnt 410

using his/her own data. 411

C. Experiment comparisons on feature input 412

The performance of the proposed algorithm on the feature 413

inputs is firstly studied in this section. To show the contribution 414

of the EEG signal and the two time domain features SNE and 415

MC on spike detection, we test all the combinations of the 416

three features, including the single feature by EEG, SNE, MC, 417

the combinations of two features by EEG+SNE, EEG+MC, 418

SNE+MC, as well as the combination of EEG+SNE+MC. 419

The stacked BiLSTM neural network is adopted as the model 420

for spike/non-spike classification. Table II lists the F1 score, 421

sensitivity, and precision obtained by all these features of the 422

15 patients. The average spike detection results are also calcu- 423

lated for comparison. As observed, the top three performance 424

rankings in all feature combinations are: EEG+SNE+MC, 425

SNE+MC, and SNE. Among them, the model trained using 426

EEG+SNE+MC achieves the best detection performance in 427

general, where it obtains the highest F1 score and precision 428

on 12 and 10 out of 15 patients, respectively, and the highest 429

average F1 score and precision. 430

On one hand, the performance of time domain sequence 431

features (SNE, MC) is better than using original EEG for 432

spike detection, which proves the effectiveness and necessity 433

of the two features extracted in the proposed algorithm. The 434

model with SNE in the feature input performs better than 435

the model with the same number of other features. On the 436

other hand, generally speaking, more feature input will result 437

in a model with better performance, which has been proved in 438

combination performance rankings. However, the performance 439

of the combination of EEG and SNE has declined compared 440

with the model input by SNE alone. This is due to the different 441

distributions of these two features. The mean value of EEG 442

is zero and has values on the positive and negative semi-axes, 443

but most of the SNE values are on the positive semi-axes. 444

Due to the inability to unify the feature distribution, the neural 445

network classifier cannot effectively use the information of the 446

feature, thus, resulting in a degraded performance. At the same 447

time, the weak representation ability of EEG is also a reason 448

for the above problems. When replacing EEG with MC, the 449

performance of the model has been significantly improved. 450

D. Experiment comparisons on LSTM architecture 451

The hyperparameters of the LSTM network usually affect 452

the detection performance, include the number of hidden layer 453
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TABLE II
F1 SCORE, SENSITIVITY, PRECISION (%) WITH DIFFERENT FEATURES

EEG SNE MC EEG
+SNE

EEG
+MC

SNE
+MC

EEG
+SNE
+MC

Patient 1
F1 68.12 89.11 86.96 81.08 78.83 89.31 92.44

Sens 92.16 97.83 98.59 83.33 94.74 97.26 96.49
Prec 54.02 81.82 77.78 78.95 67.50 82.56 88.71

Patient 2
F1 70.97 88.84 83.83 78.70 81.61 88.43 92.52

Sens 67.71 89.96 97.81 66.42 84.93 84.70 91.12
Prec 74.57 87.74 73.35 96.54 78.54 92.51 93.96

Patient 3
F1 62.46 77.63 63.23 75.34 65.50 75.77 82.02

Sens 57.74 79.91 78.00 77.02 64.61 79.65 93.39
Prec 68.02 75.48 53.17 73.72 66.41 72.26 73.12

Patient 4
F1 78.99 76.05 71.84 77.94 69.71 89.46 88.99

Sens 78.03 98.11 79.16 70.92 64.08 95.61 93.60
Prec 79.97 62.09 65.76 86.51 76.43 84.05 84.80

Patient 5
F1 71.69 76.05 71.55 84.75 64.01 84.90 87.64

Sens 82.48 98.40 83.86 85.32 56.46 86.58 85.39
Prec 63.40 61.98 62.40 84.19 73.90 83.28 90.01

Patient 6
F1 66.09 89.75 74.16 76.68 68.10 89.23 89.55

Sens 81.63 99.41 91.70 98.49 74.12 92.38 97.21
Prec 55.52 81.79 62.26 62.78 63.00 86.30 83.01

Patient 7
F1 78.38 89.27 79.71 90.46 84.42 90.06 91.87

Sens 89.16 96.47 98.29 94.61 94.98 95.54 90.22
Prec 69.93 83.07 67.04 86.65 75.97 85.17 93.58

Patient 8
F1 53.94 85.68 69.40 75.46 61.59 85.43 86.60

Sens 82.01 91.32 98.82 71.56 59.40 87.15 84.83
Prec 40.18 80.70 53.48 79.80 63.94 83.77 88.44

Patient 9
F1 80.46 88.67 81.25 92.56 81.48 86.71 95.87

Sens 91.79 99.14 99.40 97.21 81.13 99.44 98.08
Prec 71.62 80.20 68.70 88.33 81.83 76.87 93.75

Patient 10
F1 63.81 71.95 61.59 82.27 77.94 74.22 81.27

Sens 91.62 92.04 95.45 89.46 85.73 94.09 94.22
Prec 48.95 59.06 45.46 76.15 71.44 61.28 71.44

Patient 11
F1 64.29 77.76 63.71 77.49 69.06 80.90 86.32

Sens 85.71 92.38 91.04 87.32 80.30 88.67 85.42
Prec 51.43 67.13 49.00 69.65 60.57 74.38 87.23

Patient 12
F1 54.12 77.94 60.32 82.27 60.25 76.92 85.27

Sens 92.32 87.16 91.47 89.46 55.75 85.61 89.42
Prec 38.28 70.49 44.99 76.16 65.53 69.83 81.49

Patient 13
F1 66.39 87.94 76.46 86.84 85.84 87.37 92.87

Sens 86.28 97.87 95.57 94.93 89.35 97.83 97.53
Prec 53.95 79.84 63.71 80.01 82.60 78.94 88.63

Patient 14
F1 47.75 82.30 80.28 80.80 77.26 87.07 89.58

Sens 84.59 97.80 94.57 98.32 82.27 93.29 87.92
Prec 33.27 71.04 69.74 68.58 72.82 81.63 91.30

Patient 15
F1 51.61 80.24 70.49 81.15 62.11 81.95 85.25

Sens 86.29 97.09 93.29 95.60 82.79 94.76 95.83
Prec 36.81 68.38 56.64 70.50 49.69 72.20 76.77

Average
F1 65.27 82.61 72.99 81.59 72.51 84.51 88.54

Sens 83.30 94.33 93.47 86.67 76.71 91.50 92.04
Prec 55.99 74.05 60.90 78.57 70.01 79.00 85.75

units, activation function, learning rate, etc, where among454

them, the hidden layer units usually play the dominant role455

in the performance. With this regard, in this section, we test456

the spike detection performance of the aforementioned four457

LSTM neural network classification models with different size458

of memory units µ = [50 : 50 : 300]. Fig. 8 shows the trend of459

F1 score of each model with respect to the memory unit size.460

All models can basically maintain stable performance when461

the memory unit size reaches 200, and continuously increasing462

the memory unit size will not significantly improve the perfor-463

mance. Compared with single-layer models, the stacked mod-464

els can achieve better recognition performance, increasing F1465

scores by 1.15% and 0.74% on the LSTM/BiLSTM network,466

respectively. But the advantage comes with the prices of more467

memory cell sizes and additional complexity. For BiLSTM and468

LSTM, the performance of the two networks using BiLSTM469

as the basis has a certain performance improvement compared 470

with the network using LSTM under different memory units. 471

The optimal performance on the single-layer model and the 472

stacked model increased by 1.1% and 0.69%, respectively. The 473

overall optimal spike detection model is the stacked BiLSTM 474

with more than 200 memory cells.
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Fig. 8. The average F1 scores of spike detection with different memory units
in the LSTM/BiLSTM models.

475

E. Experiment comparisons on SMOTE augmentation 476

In this section, the spike data augmentation method by 477

SMOTE with different scale factors on the detection per- 478

formance is studied. Particularly, the data enhancement ratio 479

increases from 0 to 30 with an interval of 5. Fig. 9 shows the 480

curves of F1 score, sensitivity, and precision. As observed, 481

without spike data augmentation, the sensitivity of the model 482

is high but the precision is low, which reflects the problem of 483

high false alarm rate of the model. After adding the syntectic 484

spikes on model training and validation, the F1 score and 485

accuracy of the model have been significantly improved, but 486

the sensitivity will first increase when the data scaling factor 487

is small, and then decrease and maintain a relatively stable 488

state when the scaling factor is higher than 15. Therefore, 489

using data augmentation can significantly improve the spike 490

detection performance and balance the false positive rate and 491

the false negative rate. The SMOTE algorithm increases the 492

amount of data to prevent the neural network model from 493

overfitting and improves the generalization performance. At 494

the same time, it adds random noise to the generated data 495

in the time domain, which improves anti-interference ability 496

of the model to a certain extent and makes the model more 497

robust. 498
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Fig. 9. The spike detection performance with respect to different spike data
enhancement factors in SMOTE.

F. Experiment comparisons to SOTA methods 499

The last experiment shows the comparisons to 5 SOTA 500

spike detection algorithms, including 1) spectral power feature 501
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method [32], 2) threshold methods based on the SNE [16] and502

MC features [13], respectively and 3) neural network classifi-503

cation method using FNN [37] and CNN [36], respectively.504

The spectral power feature method [32] uses short-time505

Fourier transform (STFT) with 0.25 s time domain resolution506

and 4 Hz frequency domain resolution to extract the spectral507

power values of 8 frequency bands of the intracranial EEG,508

namely θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), γ1 (30-56 Hz),509

γ2 (64-116 Hz), rip1 (124 -176 Hz), rip2 (184-196 Hz), rip3510

(204-236 Hz). STFT is used to obtain the sub-band spectral511

power of three time steps in the interval to be detected and its512

adjacent intervals, and merge them into a 3×8 feature matrix.513

The frequency domain features of 0.75 s EEG segment are514

obtained. Eventually, EEG segments will be divided into 4515

categories (spike, RonS, ripple, baseline). Since the detection516

objective of the paper is on the relatively low-frequency spikes517

from the scalp EEGs, comparing with intracranial EEGs, there518

is a lot of interferences in the high-frequency part. Therefore,519

only the spectral powers of the first 5 frequency bands covering520

4∼116 Hz are extracted as features for performance testing521

in this section. The neural network classifier structure and522

hyperparameter settings are consistent with the BiLSTM in523

the proposed algorithm of the paper.524

The threshold method is a traditional and widely used spike525

detection algorithm in the past. Without loss of generality, we526

used the SNE and MC as the features, and the threshold Tr527

used for detection is defined by the same way in [16] as528

Tr = c
1

N

N∑
n=1

F (n) (27)

where N is the number of samples, c is a scaling factor529

selected by trials, and F (n) is the feature sequence.530

The neural network classification method uses two common531

structures, namely the fully connected neural network (FNN)532

and CNN. As FNN is generally not suitable for too high-533

dimensional data, we resized the three-dimensional features534

(3×200) to one-dimensional (1×600) as the input of FNN. The535

CNN structure is based on [36] but with certain improvements536

to better fit for the spike detection. First, the input features537

are passed through 3 convolution kernels with 1× 40, 1× 60,538

1× 80 kernel sizes, respectively, where the step size is [1, 1].539

For further feature learning, the extracted features are then540

combined and input to 2 consecutive convolution kernels with541

the size of 3×3 and the steps of [3, 1] and [1, 1], respectively.542

Finally, a FNN is applied for spike/non-spike classification.543

The detailed network structures of FNN and CNN used in the544

paper are shown in Fig. 10.

250

2

125

(a) FNN classification model (b) CNN classification model

Fig. 10. Structures of the FNN and CNN based spike detection algorithms.

545

TABLE III
F1 SCORE, SENSITIVITY, PRECISION (%) COMPARISONS TO THE SOTA

SPIKE DETECTION ALGORITHMS.

Proposed
method

Spectral
power
feature
method

[32]

Threshold
methods

Neural network
classification

methods
SNE
[16]

MC
[13]

FNN
[37]

CNN
[36]

Patient 1
F1 92.44 71.94 80.39 78.26 47.62 68.91

Sens 96.49 92.59 98.80 97.30 35.71 95.35
Prec 88.71 58.82 67.77 65.45 71.43 53.95

Patient 2
F1 92.52 88.18 88.36 79.16 69.80 84.51

Sens 91.12 92.42 94.79 85.53 55.59 84.01
Prec 93.96 84.32 82.74 73.67 93.79 85.01

Patient 3
F1 82.02 74.31 74.18 65.38 74.31 67.80

Sens 93.39 92.64 96.05 82.23 92.64 75.46
Prec 73.12 62.04 60.43 54.26 62.04 61.56

Patient 4
F1 88.99 91.05 80.10 75.79 57.64 83.90

Sens 93.60 86.25 91.56 83.50 57.92 85.27
Prec 84.80 96.41 71.19 69.38 57.36 82.58

Patient 5
F1 87.64 84.01 85.29 70.31 71.45 72.73

Sens 85.39 96.11 91.93 71.85 60.77 72.75
Prec 90.01 74.61 79.55 68.84 86.70 72.71

Patient 6
F1 89.55 89.80 93.59 83.94 68.40 85.33

Sens 97.21 100.00 93.39 80.42 68.64 92.54
Prec 83.01 81.50 93.80 87.79 68.15 79.16

Patient 7
F1 91.87 91.32 84.42 86.49 67.91 76.56

Sens 90.22 90.82 79.71 82.79 64.59 67.94
Prec 93.58 91.83 89.72 90.54 71.60 87.69

Patient 8
F1 86.60 82.36 81.51 83.46 59.36 68.57

Sens 84.83 89.70 77.13 75.24 54.80 90.38
Prec 88.44 76.13 86.41 93.68 64.76 55.23

Patient 9
F1 95.87 92.52 88.08 86.90 81.61 90.66

Sens 98.08 98.97 87.12 80.35 79.58 91.50
Prec 93.75 86.86 89.06 94.61 83.74 89.84

Patient 10
F1 86.24 86.24 71.32 75.19 65.24 68.82

Sens 86.24 94.58 86.20 65.06 65.48 84.68
Prec 86.24 79.26 60.82 89.05 65.00 57.97

Patient 11
F1 86.32 71.30 76.71 65.29 71.43 77.55

Sens 85.42 64.06 84.42 80.61 68.84 78.08
Prec 87.23 80.39 70.29 54.86 74.22 77.03

Patient 12
F1 85.27 79.14 81.19 59.92 59.66 70.52

Sens 89.42 85.56 86.02 94.35 55.78 67.39
Prec 81.49 73.61 76.86 43.90 64.12 73.94

Patient 13
F1 92.87 92.30 84.17 79.76 79.03 89.12

Sens 97.53 97.54 78.01 82.31 75.03 86.39
Prec 88.63 87.59 94.40 77.35 83.49 92.03

Patient 14
F1 89.58 87.21 85.38 77.82 62.84 77.90

Sens 87.92 89.15 83.08 84.15 74.12 69.11
Prec 91.30 85.35 87.81 72.37 54.54 89.26

Patient 15
F1 85.25 80.43 78.29 63.77 76.53 85.41

Sens 95.83 96.33 79.33 73.61 80.27 87.93
Prec 76.77 69.04 77.27 56.24 73.13 83.03

Average
F1 88.54 84.14 82.20 75.43 67.52 77.89

Sens 92.04 91.11 87.17 81.29 65.98 81.92
Prec 85.75 79.18 79.01 72.80 71.60 76.07

Table III shows the result comparisons to aforementioned 546

SOTA spike detection algorithms. To have a fair comparison, 547

the testing data division and the performance index calcula- 548

tions are the same to the previous experiments. As observed, 549

the proposed algorithm can offer the highest F1 score on 550

11 out of 15 patients, the highest precision on 9 out of 15 551

patients. Meanwhile, for all patients, the proposed algorithm 552

achieves the highest performance. Among all the 5 compared 553

SOTA spike detection methods, the spectral power feature 554

method has achieved good results on the database. Its average 555

sensitivity is almost consistent with the proposed algorithm, 556

but the average F1 score and precision are lower than the 557

proposed algorithm. It is noted that the single sample duration 558

of spectral power feature method (0.75 s) is longer than that 559
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of the proposed algorithm (0.2 s), meaning that the proposed560

algorithm can locate spikes more accurately with a better561

resolution. The frequency domain features used in this method562

are obtained through STFT. To improve the positioning ability563

of the algorithm, the time domain resolution of the STFT564

needs to be increased, which will result in a decrease in565

frequency resolution. Therefore, the spectral power of each566

frequency band cannot be accurately extracted, which may567

lead to the loss of accuracy. Generally speaking, unless using568

high sampling frequency EEG, it is impossible to further569

improve the spike location ability of the proposed algorithm.570

The two threshold methods have achieved promising results571

on some patient data with obvious spike. However, there are572

low-amplitude spikes in real data. The waveform is similar to573

a typical spike but the peak amplitude is slightly higher than574

normal EEGs. The existence of a large number of such spikes575

makes the selection of the threshold very difficult, resulting576

in performance degradation. While for the two mainstream577

neural network classifiers, neither FNN nor CNN can achieve578

satisfactory results. Unlike LSTM, these two neural networks579

are unable to make good use of the time series information580

contained in the EEG signals. In the other words, LSTM is581

more effective in time series data learning. From the results,582

it is also observed that all methods suffered performance583

fluctuations among different patients. The reason behind is584

the existence of the aforementioned low-amplitude spikes.585

The features used in the proposed algorithm as well as in586

the compared SOTA methods are insufficient in characterizing587

such spikes.588

CNN classification 
method

True spike

FNN classification 
method

Threshold method
base on MC

Threshold method
base on SNE

Spectral power
feature method

Proposed method

CNN classification 
method

True spike

FNN classification 
method

Threshold method
base on MC

Threshold method
base on SNE

Spectral power
feature method

Proposed method

Fig. 11. Screenshot on the real-time spike detection performance on the
CHZU database, where the green color represents false negatives, the blue
color represents false positives, and the red color indicates the true positive.

Particularly, Fig. 11 shows a screenshot on the real-time589

detection performance obtained from the CHZU database,590

where comparisons between the proposed algorithm and the591

5 SOTA methods are presented. The testing EEG segment592

includes 13 true spike discharges, and different colors are used593

to annotate the detection results, where the green, blue and red594

colors represent the false negatives, the false positives, and the595

true positive, respectively. As depicted, the proposed method596

successfully detects the all the EEG frames containing the597

16 true spike discharges without false alarms. The compared598

frequency domain feature method, the threshold method using599

the MC EEG feature, and the CNN classification method600

have high sensitivity, but also suffer some false alarms in the601

EEG frames adjacent to the spike discharge frames. For the602

threshold method using the SNE EEG feature and the FNN603

classification method, both of them have problems of high 604

false positive and false negative rates. It is also observed that 605

the spike detection resolution of the frequency domain feature 606

method is lower than other methods, making it not suitable 607

for accurate spike localization. 608

V. CONCLUSIONS 609

This paper proposed a novel BECT spike detection algorith- 610

m composed of time domain EEG sequence features extraction 611

and neural network classifier based on LSTM architecture. 612

Aiming at the problem of data imbalance in spike detection, 613

the SMOTE algorithm has been applied in the proposed 614

algorithm for the spike sample augmentation. Based on the 615

characteristics of the scalp EEG and spikes, two time-domain 616

EEG sequence features that are effective in characterizing 617

spikes have extracted. These features are fused for spike 618

representation and a stacked BiLSTM has been developed 619

for spike/non-spike classification. The effectiveness of the 620

proposed algorithm has been verified on the EEG database of 621

15 BECT patients recorded from the CHZU. The comparison 622

experiments shown that the algorithm has higher detection 623

sensitivity, precision and F1 score, and has stronger robustness 624

than many SOTA spike detection methods. In the future, more 625

attentions will be paid to enhancing the algorithm’s anti- 626

interference ability and recognition ability on low-amplitude 627

spikes. Meanwhile, more effective algorithms on addressing 628

the spike data imbalance and exploring the impact of data 629

augmentation on the overall recognition ability will be studied. 630
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