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Vibration analysis of nonlocal strain
gradient embedded single-layer graphene
sheets under nonuniform in-plane loads

Farzad Ebrahimi1 and Mohammad Reza Barati2

Abstract

This paper develops a nonlocal strain gradient plate model for vibration analysis of graphene sheets under nonuniform in-

plane mechanical loads. For more accurate analysis of graphene sheets, the proposed theory contains two scale param-

eters related to the nonlocal and strain gradient effects. Graphene sheet is modeled via a two-variable shear deformation

plate theory needless of shear correction factors. Governing equations of a nonlocal strain gradient graphene sheet on

elastic substrate are derived via Hamilton’s principle. Galerkin’s method is implemented to solve the governing equations

for different boundary conditions. Effects of different factors such as in-plane loading, load factor, nonlocal parameter,

length scale parameter, elastic foundation, and boundary conditions on vibration characteristics of graphene sheets are

examined.
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1. Introduction

Graphene is an actually two-dimensional atomic crystal
with exceptional electronic and mechanical properties.
Many carbon based nanostructures including carbon
nanotubes, nanoplates and nanobeams are considered
as deformed graphene sheets. In fact, analysis of gra-
phene sheets is a basic matter in the study of the nano-
materials and nanostructures. Analysis of scale-free
plates has been performed widely in the literature
employing classical theories. But, such theories are not
able to examine the scale effects on the nanostructures
with small size. Therefore, the nonlocal elasticity theory
of Eringen and Edelen (1972) and Eringen (1983) is
developed taking into account small scale effects.
Contrary to the local theory in which the stress state at
any given point depends only on the strain state at that
point, in the nonlocal theory, the stress state at a given
point depends on the strain states at all points. The
nonlocal elasticity theory has been broadly applied to
investigate the mechanical behavior of nanoscale struc-
tures (Ebrahimi and Barati, 2016a, 2016b, 2016c, 2016d).

Pradhan and Murmu (2009) examined nonlocal
influences on buckling behavior of a single-layer gra-
phene sheet subjected to uniform in-plane loadings.

Also, Pradhan and Kumar (2011) performed a vibra-
tion study of orthotropic graphene sheets incorporating
nonlocal effects using a semi-analytical approach.
Application of the Levy type method in stability and
vibrational investigation of nanosize plates including
nonlocal effects is examined by Aksencer and
Aydogdu (2011). Mohammadi et al. (2014) performed
shear buckling analysis of an orthotropic graphene
sheet on elastic substrate including thermal loading
effect. In another work, Mohammadi et al. (2013)
examined the effect of in-plane loading on nonlocal
vibrational behavior of circular graphene sheets. Also,
Ansari et al. (2011) explored the vibration response of
embedded nonlocal multi-layered graphene sheets
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accounting for various boundary conditions. Shen et al.
(2012) studied vibration behavior of a nanomechanical
mass sensor based on the nonlocal graphene sheet
model. They showed that the vibration response of a
graphene sheet is significantly influenced by the mass of
the attached nanoparticle. Farajpour et al. (2012)
examined static stability of nonlocal plates subjected
to nonuniform in-plane edge loads. Also, Ansari and
Sahmani (2013) employed molecular dynamics simula-
tions to examine biaxial buckling behavior of single-
layered graphene sheets based on nonlocal elasticity
theory. They matched the results obtained by molecular
dynamics simulations with those of a nonlocal plate
model to extract the appropriate values of the nonlocal
parameter. Static bending and vibrational behavior of
single-layered graphene sheets on a Winkler–Pasternak
foundation based on a two-variable higher order shear
deformation theory is studied by Sobhy (2014). Also,
Narendar and Gopalakrishnan (2012) carried out size-
dependent stability analysis of orthotropic nanoscale
plates according to a nonlocal two-variable refined
plate theory. They stated that the two-variable refined
plate model considers the transverse shear influences
through the thickness of the plate, hence, it is unnecessary
to apply shear correction factors. Murmu et al. (2013)
explored the influence of unidirectional magnetic fields
on vibrational behavior of nonlocal single-layer graphene
sheets resting on elastic substrate. Bessaim et al. (2015)
presented a nonlocal quasi-three-dimensional trigono-
metric plate model for free vibration behavior of micro/
nanoscale plates. Hashemi et al. (2015) studied free vibra-
tional behavior of double viscoelastic graphene sheets
coupled by a visco-Pasternak medium. Jiang et al.
(2016) conducted vibration analysis of a single-layered
graphene sheet-based mass sensor using the Galerkin
strip distributed transfer function method. Arani et al.
(2016) examined nonlocal vibration of an axially moving
graphene sheet resting on orthotropic a visco-Pasternak
foundation under a longitudinal magnetic field. Sobhy
(2016) analyzed the hygro-thermal vibrational behavior
of coupled graphene sheets by an elastic medium using
the two-variable plate theory. Also, Zenkour (2016) per-
formed transient thermal analysis of graphene sheets on a
viscoelastic foundation based on nonlocal elasticity
theory. Zhang et al. (2016a) examined free vibrational
behavior ofmagnetically affected bilayer graphene sheets.

Application of nonlocal elasticity theory in modeling
and simulation of graphene sheets is examined by Liew
et al. (2017). It is clear that all of the previous papers on
graphene sheets applied only the nonlocal elasticity
theory to capture small scale effects. However, nonlocal
elasticity theory has some limitations in accurate pre-
diction of mechanical behavior of nanostructures,
because nonlocal elasticity theory is unable to examine
the stiffness increment observed in experimental works

and strain gradient elasticity (Lam et al., 2003; Yan
et al., 2015). Recently, Lim et al. (2015) proposed the
nonlocal strain gradient theory to introduce both of the
length scales into a single theory. The nonlocal strain
gradient theory captures the true influence of the two
length scale parameters on the physical and mechanical
behavior of small size structures (Li et al., 2016a, 2016b
). Recently, Ebrahimi and Barati (2016e, 2016f, 2017a,
2017b) applied the nonlocal strain gradient theory in
analysis of nanobeams. They mentioned that mechan-
ical characteristics of nanostructures are significantly
affected by stiffness-softening and stiffness-hardening
mechanisms due to the nonlocal and strain gradient
effects, respectively. Most recently, Ebrahimi et al.
(2016) extended the nonlocal strain gradient theory
for analysis of nanoplates to obtain the wave frequen-
cies for a range of two scale parameters. So, it is crucial
to incorporate both nonlocal and strain gradient effects
in analysis of graphene sheets.

Based on a newly developed nonlocal strain gradient
theory, free vibration behavior of single-layer graphene
sheets under in-plane loads resting on elastic medium is
examined using a refined two-variable plate theory. The
theory introduces two scale parameters corresponding
to nonlocal and strain gradient effects to capture both
stiffness-softening and stiffness-hardening influences.
Hamilton’s principle is employed to obtain the govern-
ing equation of a nonlocal strain gradient graphene
sheet. These equations are solved via Galerkin’s
method to obtain the natural frequencies. It is shown
that vibration behavior of graphene sheets is signifi-
cantly influenced by the nonlocal parameter, length
scale parameter, in-plane loading, load factor, elastic
foundation, and boundary conditions.

2. Governing equations

The higher-order refined plate theory has the following
displacement field as:

u1 x, y, zð Þ ¼ �z
@wb

@x
� f ðzÞ

@ws

@x
ð1Þ

u2 x, y, zð Þ ¼ �z
@wb

@y
� f ðzÞ

@ws

@y
ð2Þ

u3ðx, y, zÞ ¼ wbðx, yÞ þ wsðx, yÞ ð3Þ

where the present theory has a trigonometric function
in the following form:

f ðzÞ ¼ z�
h

�
sin

�z

h

� �
ð4Þ
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Also, wb and ws denote the bending and shear trans-
verse displacement, respectively. Nonzero strains of the
present plate model are expressed as follows:
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where g(z)¼ 1�df/dz and
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Also, Hamilton’s principle expresses that:

Z t

0

�ðU� Tþ VÞ dt ¼ 0 ð7Þ

in which U is strain energy, T is kinetic energy and V is
work done by external loads. The variation of strain
energy is calculated as:

�U ¼

Z
v

�ij� "ij dV ¼

Z
v

ð�x� "x þ �y� "y þ �xy� �xy

þ �yz� �yz þ �xz� �xzÞ dV

ð8Þ

Substituting equations (5) and (6) into equation (8)
yields:

�U ¼

Z b

0

Z a

0

�Mb
x

@2�wb

@x2
�Ms

x

@2�ws

@x2

�

�Mb
y
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y
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� 2Mb
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@x@y
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xy

@2�ws
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þQyz
@�ws
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@�ws

@x

�
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ð9Þ

in which

ðMb
i ,M

s
i Þ ¼

Z h=2

�h=2

ðz, f Þ�i dz, i ¼ ðx, y, xyÞ

Qi ¼

Z h=2

�h=2

g�idz, i ¼ ðxz, yzÞ

ð10Þ

The variation of the work done by applied loads can
be written as:

�V ¼

Z b

0

Z a

0

�
N0

x

@ ðwb þ wsÞ

@x

@� ðwb þ wsÞ

@x
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y
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ð11Þ

where N0
x,N

0
y,N

0
xy are in-plane applied loads; kw and kp

are Winkler and Pasternak constants. The variation of
the kinetic energy is calculated as:

�K ¼

Z b

0

Z a

0
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in which

ðI0, I2, J2,K2Þ ¼

Z h=2

�h=2

ð1, z2, zf, f2Þ�dz ð13Þ

By inserting equations (9)–(12) into equation (7) and
setting the coefficients of �wb and �ws to zero, the fol-
lowing equations are obtained.

@2Mb
x

@x2
þ 2

@2Mb
xy

@x@y
þ
@2Mb

y

@y2
�N0

xð yÞ
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� �
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� I2r
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2.1. Nonlocal strain gradient nanoplate model

The newly developed nonlocal strain gradient theory by
Ebrahimi et al. (2016) takes into account both nonlocal
stress field and the strain gradient effects by
introducing two scale parameters. This theory defines
the stress field as:

�ij ¼ �
ð0Þ
ij � r�

ð1Þ
ij ð16Þ

in which the stresses �ð0Þij and �ð1Þij are corresponding to
strain "ij and strain gradient r"ij, respectively as:

�ð0Þij ¼

Z
V

Cijkl�0ðx, x
0, e0aÞ"

0
klðx
0Þdx0 ð17aÞ

�ð1Þij ¼ l2
Z
V

Cijkl�1ðx, x
0, e1aÞr"

0
klðx
0Þdx0 ð17bÞ

in which Cijkl are the elastic coefficients and e0a and e1a
capture the nonlocal effects and l captures the strain
gradient effects. When the nonlocal functions
�0ðx, x

0, e0aÞ and �1ðx, x
0, e1aÞ satisfy the developed con-

ditions by Eringen (1983), the constitutive relation of
nonlocal strain gradient theory has the following form
(Ebrahimi et al., 2016):

½1� ðe1aÞ
2
r2�½1� ðe0aÞ

2
r2��ij ¼ Cijkl½1� ðe1aÞ

2
r2�"kl

� Cijkl l
2½1� ðe0aÞ

2
r2�r2"kl

ð18Þ

in which r2 denotes the Laplacian operator.
Considering e1 ¼ e0 ¼ e, the general constitutive rela-
tion in equation (18) becomes:

½1� ðeaÞ2r2� �ij ¼ Cijkl ½1� l2r2�"kl ð19Þ

Finally, the constitutive relations of nonlocal strain
gradient theory can be expressed by:
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where

Q11 ¼ Q22 ¼
E

1� 
2
, Q12 ¼ 
Q11,

Q44 ¼ Q55 ¼ Q66 ¼
E

2ð1þ 
Þ

ð21Þ

where 	 ¼ ðeaÞ2 and l ¼ l2. Inserting equation (10) in
equation (23) gives:
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in which the cross-sectional rigidities are defined as
follows:

D11,D
s
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s
11

D12,D
s
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s
12

D66,D
s
66,H

s
66
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; ¼

Z h=2

�h=2

Q11 ðz
2, zf, f2Þ

1



1�
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:

9=
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As
44 ¼ As

55 ¼

Z h=2

�h=2

g2
E

2ð1þ 
Þ
dz ð26Þ

The governing equations of nonlocal strain gradient
graphene sheet in terms of the displacement are
obtained by inserting equations (25)–(27), into equa-
tions (14)–(15) as follows:

�D11½
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3. Solution by Galerkin’s method

Up to now, several numerical solution methods are
applied in analysis of small scale structures (Ansari
et al., 2016; Zhang et al., 2015, 2016b, 2016c). In this
section, Galerkin’s method is implemented to solve the
governing equations of nonlocal strain gradient graphene
sheets. Thus, the displacement field can be calculated as:

wb ¼
X1
m¼1

X1
n¼1

Wbmn�bmðxÞ�bnð yÞe
i!nt ð29Þ
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ws ¼
X1
m¼1

X1
n¼1

Wsmn�smðxÞ�snð yÞe
i!nt ð30Þ

where (Wbmn,Wsmn) are the unknown coefficients
and the functions �m and �n satisfy boundary condi-
tions. Boundary conditions based on the present plate
model are:
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Inserting equations (29) and (30) into equations
(27)–(28) and multiplying both sides of the equations
by �im�in ði ¼ b, sÞ and integrating over the whole
region leads to the following simultaneous equations as:
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The function �m for different boundary conditions is
defined by:

SS : �m xð Þ ¼ sinðlmxÞ

lm ¼
m�

a

ð35Þ

CC : �m xð Þ ¼ sinðlmxÞ � sinh lmxð Þ

� �mðcos lmxð Þ � cosh lmxð ÞÞ

�m ¼
sin lmxð Þ � sinh lmxð Þ

cos lmxð Þ � cosh lmxð Þ

l1 ¼ 4:730, l2 ¼ 7:853, l3 ¼ 10:996,

l4 ¼ 14:137, lm�5 ¼
mþ 0:5ð Þ�

a

ð36Þ

The function �n can be obtained by replacing x, m
and a, respectively by y, n and b. Setting the coefficient
matrix of the above equations leads to the following
eigenvalue problem:

ð½K� þ !2½M�Þ
Wb

Ws

� �
¼ 0 ð37Þ

where [M] and [K] are the mass matrix and stiffness
matrix, respectively. Finally, setting the coefficient
matrix to zero gives the natural frequencies. It should

be noted that calculations are performed based on the
following dimensionless quantities:

!̂ ¼ !
a2

h

ffiffiffiffi
�

E

r
, Kw ¼ kw

a4

D�
, Kp ¼ kp

a2

D�
,

D� ¼
Eh3

12ð1� v2Þ
, �N ¼ N

a2

D�

ð38Þ

4. Numerical results and discussions

This section is devoted to study the vibration behavior
of nonlocal strain gradient graphene sheets on elastic
substrate under in-plane nonuniform loads based on a
two-variable shear deformation theory. The model
introduces two scale coefficients related to nonlocal
and strain gradient effects for more accurate analysis
of graphene sheets. Material properties of the graphene
sheet are: E¼ 1 TPa, v¼ 0.19 and �¼ 2300 kg/m3. Also,
thickness of the graphene sheet is considered as
h¼ 0.34 nm. The configuration of graphene sheet
under in-plane loads is presented in Figures 1 and 2.
Natural frequencies of graphene sheet are first vali-
dated with those of molecular dynamics obtained by
Ansari et al. (2010). Results for different lengths of
graphene sheet are presented in Table 1 and a good
agreement is observed. In Table 1, it is assumed that
the graphene sheet is square and the nonlocal param-
eter is considered as 	2

¼ 1.34 nm2. Natural frequencies
of a graphene sheet are validated with those obtained
by Sobhy (2014) for various nonlocal parameters
(	¼ 0, 1, 2, 3, 4 nm2) and foundation constants ({Kw,
Kp}¼ {(0,0), (100,0), (0,20)}. Obtained frequencies via
the present Galerkin method are in excellent agreement
with those of the exact solution presented by Sobhy
(2014), as tabulated in Table 2. For comparison
study, the strain gradient or length scale parameter is
set to zero (l¼ 0).

Examination of nonlocal and strain gradient effects
on vibration frequencies of graphene sheets with respect
to uniaxial dimensionless load is presented in Figure 3
when a/h¼ 10. It is clear that when l¼ 0, the natural
frequencies of a graphene sheet based on the well-
known nonlocal elasticity theory will be obtained.
However, when both 	¼ 0 and l¼ 0, the results
based on classical continuum mechanics are rendered.
It is observed that natural frequency of graphene
sheet reduces by inclusion of nonlocal parameter at a
fixed value of in-plane load. This observation indicates
that the nonlocal parameter exerts a stiffness-softening
effect which leads to lower vibration frequencies.
But, effect of the nonlocal parameter on the magnitude
of natural frequencies depends on the strain gradient
or length scale parameter. In fact, the natural fre-
quency of a graphene sheet increases with increase of
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the length scale parameter which highlights the
stiffness-hardening effect due to the strain gradients.
It should be pointed out that increase of dimension-
less load degrades the plate stiffness and natural fre-
quencies reduce until a critical point in which the

frequencies become zero. At this point, the graphene
sheet buckles and does not oscillate. However, obtained
critical loads depend on the length scale parameter.
In fact, inclusion of the length scale parameter in non-
local strain gradient theory leads to higher critical

Figure 2. Different cases of in-plane bending loads.

Figure 1. Configuration of the grapheme sheet resting on the elastic substrate.
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buckling loads compared with nonlocal theory. So, it
can be concluded that critical buckling loads obtained
by nonlocal elasticity theory are underestimated. As a
consequence, it is very important to consider both

nonlocal and length scale parameters in analysis of gra-
phene sheets.

Figure 4 shows the variation of dimensionless fre-
quency of nonlocal strain gradient graphene sheets
with respect to dimensionless load for different cases
of in-plane loads when a/h¼ 10, 	¼ 1 nm2 and
l¼ 0.5 nm2. Case-A and case-B are in-plane uniform
and sinusoidal loads, respectively. Also, case-C and
case-D are corresponding to the in-plane parabolic
loads. It is clear that the in-plane bending load degrades
the plate stiffness and affect significantly the perform-
ance of structures. Maximum and minimum buckling
loads are obtained when the graphene sheet is subjected
to case-D and case-B loads, respectively. In fact, sinus-
oidal in-plane load (case-B) has largest resultant near
the middle surface of the graphene sheet. But, parabolic
in-plane load (case-D) has smallest resultant leading to
larger critical buckling loads. It is also clear that

Table 2. Comparison of natural frequency of a graphene sheet for various nonlocal and foundation parameters (a/h¼ 10).

Kw¼ 0, Kp¼ 0 Kw¼ 100, Kp¼ 0 Kw¼ 0, Kp¼ 20

	 Sobhy (2014) Present study Sobhy (2014) Present study Sobhy (2014) Present study

0 1.93861 1.93861 2.18396 2.18396 2.7841 2.78410

1 1.17816 1.17816 1.54903 1.54903 2.31969 2.31969

2 0.92261 0.92261 1.36479 1.36479 2.20092 2.20092

3 0.78347 0.78347 1.27485 1.27485 2.14629 2.14629

4 0.69279 0.69279 1.22122 1.22122 2.11486 2.11486

Table 1. Comparison of natural frequency of a graphene sheet

with molecular dynamics (MD) simulation (a/b¼ 1, 	2
¼ 1.34

nm2).

a (nm) MD simulation Present study

10 0.0595014 0.05926

15 0.0277928 0.02816

20 0.0158141 0.01624

25 0.0099975 0.01063

30 0.0070712 0.00731

Figure 3. Variation of dimensionless frequency versus dimensionless uniaxial uniform load for different elasticity theories (a/h¼ 10,

	¼ 1nm2, and �¼ 0.5 nm2): (a) SSSS, (b) SSCC.
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making the graphene sheet more rigid by increasing the
number of clamped edges leads to higher natural fre-
quencies. Therefore, the SSCC boundary condition
gives larger buckling loads compared with SSSS one
for all types of loadings.

Effect of the Winkler–Pasternak foundation on
vibration frequencies of nonlocal strain gradient

graphene sheets is plotted in Figure 5 at a/h¼ 10,
	¼ 1 nm2, and l¼ 0.5 nm2. It is clear that vibration
behavior of the graphene sheet depends on the values of
both Winkler and Pasternak parameters. In fact, the
Pasternak layer provides a continuous interaction
with the graphene sheet, while the Winkler layer has a
discontinuous interaction with the graphene sheet.

Figure 5. Variation of dimensionless frequency versus dimensionless load for different formulation parameters (a/h¼ 10, 	¼ 1 nm2,

and �¼ 0.5 nm2): (a) Case-A, (b) Case-B.

Figure 4. Variation of dimensionless frequency versus dimensionless load for different cases of edge loading (a/h¼ 10, 	¼ 1 nm2,

and �¼ 0.5 nm2): (a) SSSS, (b) SSCC.
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Increasing Winkler and Pasternak parameters leads to
larger frequencies by enhancing the bending rigidity of
the graphene sheets. But, the Pasternak layer shows
more increasing effect on natural frequencies compared
with the Winkler layer. It is found that increasing foun-
dation parameters yields larger critical buckling loads.

In fact, higher values of foundation parameters lead to
postponement in buckling of graphene sheets.

Figure 6 depicts the variation of dimensionless fre-
quency versus dimensionless in-plane load for different
side-to-thickness ratios (a/h) at Kw¼ 25, Kp¼ 5, 	¼ 1
nm2, and l¼ 0.5 nm2. In Figure 6, uniform and sinus-
oidal in-plane loads are considered. It is seen that gra-
phene sheets with higher side-to-thickness ratios have
larger vibration frequencies. Accordingly, graphene
sheets with higher side-to-thickness ratios have a
higher critical buckling load.

Effect of loading type on the variation of dimension-
less frequency of graphene sheets with respect to the
length scale parameter is plotted in Figure 7 when
N¼ 6, Kw¼ 25, Kp¼ 5, and 	¼ 1 nm2. As the resultant
of in-plane load increases, effect of applied load in x
direction becomes more important. This leads to a sig-
nificant decrease in plate stiffness and natural frequen-
cies. At a fixed length scale parameter, obtained
frequencies by different loadings obey the following
form: case-D> case-C> case-A> case-B. Also, for all
types of loading, increase of length scale parameter
leads to enlargement of the natural frequency of the
graphene sheet. This is due to a significant increment
in plate stiffness by the strain gradient effect.

5. Conclusions

In this paper, nonlocal strain gradient theory is
employed to investigate free vibration behavior of
single-layer graphene sheets under in-plane

Figure 7. Variation of dimensionless frequency versus length

scale parameter for different edge loadings (Kw¼ 25, Kp¼ 5,

	¼ 1 nm2, and N¼ 6).

Figure 6. Variation of dimensionless frequency versus dimensionless load for different side-to-side thickness ratios (Kw¼ 25, Kp¼ 5,

	¼ 1 nm2, and �¼ 0.5 nm2): (a) Case-A, (b) Case-B.
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nonuniform loads resting on elastic medium using a
refined two-variable plate theory. The theory intro-
duces two scale parameters corresponding to nonlocal
and strain gradient effects to capture both stiffness-
softening and stiffness-hardening influences.
Hamilton’s principle is employed to obtain the gov-
erning equation of a nonlocal strain gradient gra-
phene sheet. These equations are solved via
Galerkin’s method to obtain the natural frequencies.
It is observed that the natural frequency of the gra-
phene sheet reduces with increase of the nonlocal
parameter. In contrast, natural frequency increases
with increase of the length scale parameter which
highlights the stiffness-hardening effect due to the
strain gradients. Also, increase of temperature
degrades the plate stiffness and natural frequencies
reduce until a critical point in which the frequencies
become zero. It is seen that nonlocal strain gradient
theory provides larger critical buckling loads than
nonlocal elasticity theory. In fact, considering strain
gradient effects leads to postponement in buckling of
the grapheme sheets. Also, when the in-plane load
resultant reduces, vibration frequencies will increase.
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