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0is study is intended to focus on the major factors affecting traffic crash rates and severity levels, in addition to identifying crash-
prone locations (i.e., black spots) based on the two indicators. 0e available crash data for different road segments used for the
analysis were obtained from the Washington state database provided by the Highway Safety Information System (HSIS) for the
years 2006 to 2011. A Random Forest (RF) classifier was used to predict the outcome level of crash severity, while crash rates were
predicted by applying RF regressor. Certain features were selected for each model besides the abstraction of new features to check
if there are unobserved correlations affecting the independent variables, such as accounting for the number and weight of crashes
within 1 km2 area by implementing the Getis-OrdGi∗ index. Moreover, to calculate the collective risk (CR) score, crash rates were
adjusted to incorporate crash severity weights (cost per severity type) and regression-to-the-mean (RTM) bias via Empirical Bayes
(EB) method. Finally, segments were ranked according to their CR score.

1. Introduction

In recent years, crash rate and crash severity were the two
major indicators used to assess roadway’s traffic safety, as
well as identifying crash-prone locations. Reducing crash
rates and severity requires different strategic approaches and
policies that aim at reducing the exposure for traffic acci-
dents. Both reliable historical crash data and well-developed
prediction models are essential in the process of estimating
the impact of human and environmental-based features on
the frequency and outcome of a crash incident. A weighted
risk index or a combination of crash frequency and severity
should prove an advantage over having only crash rate as an
index of traffic hazards, without any regard to severity level
or vice versa (e.g., having an urban road segment with high
crash rate but lower levels of crash severity, and the opposite
on a rural highway segment). Predictions should also ac-
count for fluctuations and trends in crash rates. Further-
more, unobserved features and correlations (e.g., spatial
correlations between adjacent segments that can amplify a
hazardous impact) should be considered. Observed or

predicted indicators can be utilized to rank road facilities
according to their overall risk score, allowing traffic safety
agencies to distinguish which facilities have the priority in
future crash countermeasure policies.

0is article hereby introduces a collective risk (CR) score
that combines both crash rate and severity into a single
index, and in the same time, gives an account of spatial
correlations between adjacent road segments using the
Getis-Ord Gi∗ statistic and provides control over bias in
predictions of hazardous segments using the Empirical
Bayes (EB) method. So as to illustrate the process mentioned
above, Section 2 provides a brief review of related literature,
while Section 3 presents the implemented methodology to
process the given data, Section 4 lists the results with dis-
cussion, and finally, Section 5 concludes the findings of this
article.

2. Review of Literature

With regard to crash data, many researchers focused on
different factors affecting the estimation of crash rates and
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crash severity. Aside from the observed features, there are
other points that should be taken into consideration when
analysing crash data, these factors include (a) under-
reporting and source of data, as police reports count about
50% of actual property-damage-only (PDO) crashes; (b)
ordinal nature of severity data and the correlation among
neighbouring severity levels; (c) fixed parameters that re-
strict the effects of explanatory variables to be the same
across individual observations, ignoring unobserved het-
erogeneity such as in risk-taking behavior; (d) fixed severity
thresholds that lead to biased estimations of features (e.g.,
airbags implementation), affecting the likelihood of certain
severity levels due to a constrained shift in thresholds; (e)
endogeneity bias that occurs when explanatory variables
(e.g., the amount and frequency of warning signs) are af-
fected by the dependent variable (e.g., the crash rate); (f )
within-crash and crash type correlations (e.g., number of
crash-involved personnel, collision angle, cause, and re-
sponsibility, etc.) [1–3].

In addition to the combined effect of crash frequency
and severity, spatial and temporal correlations between
crash observations were also a major focus. Ma and
Kockelman [4] performed a study on speed limit’s effect on
traffic safety by clustering homogenous highway segments
from the state of Washington into crash counts by severity.
Random-effects linear model and ordered probit regression
were used for estimating crash rates and severity, respec-
tively. On the other hand, Soltani and Askari [5] used spatial
autocorrelation methods (Moran’s I and Getis-Ord Gi∗
index) for clustering hotspots in Iran. Clusters were com-
pared in three attributes; time of the crash, severity index,
and location. In comparison, Bao et al. [6] utilized the RF
technique to identify factors affecting crash severity levels
with the purpose of studying unobserved travel patterns and
spatial correlations related to crash rate distribution for
large-scale taxi GPS data from the city of New York.

Efforts were also made to introduce a combined index
used for ranking potential hotspots, providing a reference to
impose safety countermeasures. Da Costa et al. [7] incor-
porated crash severity in a collective risk ranking of road
segments in Australia.0e severity-weighted frequencies per
crash type (based on crash severity costs in Australia) were
adjusted for a potential RTM bias via the EB method.
Similarly, Afghari et al. [8] employed the EB method to
predict hotspots in Australia besides a joint risk model of
both crash rate and severity, stating that the latter has an
advantage over traditional count models.

Table 1 lists additional articles related to crash risk
analysis.

3. Dataset and Methodology

0e dataset from the HSIS database (years 2006 to 2011),
which covers 38 counties of Washington state, contains
accident data for each year, including crash scene charac-
teristics and conditions. Different data logs were merged
using a Visual Basic for Applications (VBA) automated MS
Excel worksheet. 0e data were then split into two groups,
the first group for building the models (years 2006 to 2009)
and the other was used as a testing sample (years 2010 and
2011). Crash data (including time, weather, and severity
level) referenced a single point on the roadway and only
account for the most severe observation, while crash scene
characteristics were collected from the homogenous seg-
ment of the roadway where the crash occurred [18]. Data
went through a preprocessing stage which involved new
categorization based on ordinal ranking for each feature, in
addition to the elimination of redundant features and ob-
servations, and finally adding new features (such as
hotspots).

3.1. Hotspots. To verify whether a crash scene or a road
segment is a part of a larger cluster of hazardous locations,
the Getis-Ord statistic Gi∗ was calculated. Additional data
for milepost coordinates were obtained from the Wash-
ington State Department of Transportation (WSDOT)
geospatial database [19]. Using crash scene milepost and the
related coordinates of that milepost, and by implementing a
VBA automated Excel worksheet, all crash observations
from the years 2006 to 2009 were incorporated in the Gi∗
statistic calculation process. 0e collected crash data cate-
gorized severity into 8 classes. However, to conform with the
crash cost data for the state of Washington [20], crash se-
verity categories were transformed into 4 severity classes
based on the KABCO ranking as shown in Table 2.

In order to incorporate crash counts into the calculation
process, all crash observations were weighted according to
their cost value (C�Cost/CostPDO). 0e study area (about
580 km× 380 km) was divided into 1 km2 cells and each
crash observation was assigned to its cell centroid. 0e G
family of statistics can be used as measures of spatial cor-
relations in many aspects, yetGi andGi∗ (i.e., local statistics)
can detect pockets of spatial links within the global study
area. In this article, the standardized local statistic Gi∗ was
chosen over the other global and local statistics for the sake
of both simplicity and efficiency in finding local clusters
since it can detect correlations within the same local area
(e.g., in the case of adjacent segments or an intersection that
are located within the same grid unit i).
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where w(dij) is the distance weight function between the
centroid of interest i and the adjacent centroid j, and xj is the
weighted value of crashes in j (i.e., 􏽐Cj), while n is the total
number of cells (or centroids) including centroid i [21]. 0e
distance was assigned to be a 1.5 km radius around centroid i
to reach centroids in corner cells (Queen neighborhoods),
while the distance function w � INT[1/(INT(0.67× dij) + 1)]
produces only two outputs, 1 for d< 1.5 (including dii � 0)
and 0 for d≥ 1.5. 0e G∗i value is already a z-statistic and can
be directly utilized to identify clusters within the grid
according to the p-value of the cell. Figure 1 shows the
clusters within the study area as cells with p< 0.01 were
considered significant crash-prone areas [22]. A hotspot
class was given for each crash observation based on their
clusters. Hotspot classes were incorporated in the modeling
process as an explanatory variable.

3.2. Crash Severity. Out of 183,400 training data points
(years 2006 to 2009) and 85,160 testing observations (years
2010 and 2011), only 157,321 and 43,623 data points were
selected, respectively. Preprocessing included removing data
points with missing data, as well as the elimination of
features with low variance, Spearman Correlation ranking,
and recursive feature elimination and cross-validated se-
lection (RFECV). Figure 2 provides a description of the top-
ranked features with regard to their importance to crash
severity prediction.

Two of the most popular machine learning algorithms
supported by Python were used to fit the observed crash
severity levels and the related crash features.

3.2.1. Random Forests. Random forest is an ensemble of K
tree-structured estimators (hk) that split according to the
values of a random vector Θk sampled independently and
with the same distribution for all trees in the forest. Clas-
sification accuracy results from growing the trees and col-
lecting their votes for the most popular class y at input x. A
margin function mg(xy) measures the extent to which the
average number of votes at x, y for the right class exceeds the
average vote for any other class. 0e larger the margin, the
more confidence in the classification.

mg(x, y) � avgk I hk(x) � y( 􏼁􏼂 􏼃 − max
j≠y

avgk I hk(x) � j( 􏼁􏼂 􏼃,

(2)

PE
∗

� Px,y(mg(x, y)< 0), (3)

where I(·) is the indicator function and PE∗ is the gener-
alization error [23]. Nonetheless, given the convenience of
the Scikit-learn ensemble package [24], a random forest of
1,000 estimators was used to classify the severity levels.

3.2.2. Ordered Logit. Discrete choice models, such as the
multinomial logit and the mixed logit, were used extensively
in the transportation domain (e.g., route choice and travel
behavior) [25, 26]. However, as mentioned in Section 2, the
nature of severity data requires an ordinal classifier. Based
on the application of the generalized linear models (GLM),
the ordered logit model (OLM) scales the response values
into J ordered classes, and each response zj is confined within
θj thresholds (θj-1< zj< θj). To estimate the optimal slope

Table 1: Highlights on Crash Risk Analysis (in chronological order).

Author Domain Methodology
Chiou and fu [9] Joint models Multinomial-generalized Poisson joint model with error components.
Sugiyanto et al.
[10] Collective risk Upper Control Limit (UCL) for hotspots with equivalent accident number.

Ouni and Belloumi
[11] Risk factors Multinomial logit model to identify factors affecting severity. Ripley’s K-function and

kernel density estimation (KDE) for vulnerable road users (VRUs) clusters.

Xu et al. [12] Risk factors crash
severity

A sequential logistic regression model with random parameters for multiple collision
angles.

Feng et al. [13] Risk factors Real-time experiment on the psychological and behavioral changes of drivers in
longitudinal underpass segments.

Wen et al. [14] Spatial correlation crash
rate

A Poisson-based model with spatial conditional autoregressive priors (CAR) for crashes
within adjacent road segments.

Zeng et al. [15] Spatial correlation crash
severity

Bayesian generalized ordered logit model with CAR prior spatial term, fixed parameters,
and flexible thresholds.

Ulak et al. [16] Spatial correlation crash
rate

Getis-Ord Gi∗ and local Moran’s I distance-based spatial weights with crash prediction
accuracy index (CPAI).

Wang et al. [17] Risk factors A questionnaire-based study on risk perception among cyclists, and the major influencing
factors in the prediction of risky behaviors.

Table 2: Crash severity levels and costs in Washington state, 2010.

Category K/A B C O
Severity level Fatal/Incapacitating injury Non-incapacitating injury Possible injury No Injury/PDO
Cost (USD) 2,900,000 155,000 60,000 10,000
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vector parameters wj and thresholds θj, both prediction
errors and the sum of all penalties (for crossing each
threshold), given by the all-thresholds loss function, should
be minimized in all classes.

loss(y, z) � 􏽘

J−1

j�1
f s(j, y) θj − z􏼐 􏼑􏼐 􏼑, (4)

where f(·) is a margin penalty function, y is the predicted
range, and s(j, y) is positive if j≥ y and negative otherwise.
0e data can be fitted using the posterior probability P(y≤ j |
x), and the cumulative probability of the ordinal class follows
a logistic function [27].

P(y≤ j|x) �
1

1 + exp w
T
x − θj􏼐 􏼑

. (5)

0is procedure is implemented in the MORD library
under the all-threshold variant classifier [28].

3.3. Crash Rate. 0e 157,321 observations from the years
2006 to 2009 and the 43,623 observations from the years
2010 and 2011 (i.e., data used in Section 3.2.) went through

further preprocessing to be implemented in the crash rate
prediction process. Crash observations were clustered for
each homogenous road segment, with a length of no less
than 0.16 km for convenience [29]. Since the HSIS dataset
only provides the most severe case for a single crash ob-
servation, grouping data into segments for each year makes
temporal variables (e.g., weather conditions) redundant.
19,490 segments from the years 2006 to 2009 and 7,321 from
2010 to 2011 were selected for training and testing themodel.
0e features were filtered by standardized coefficients and
Spearman Correlation rankings, as well as the embedded
RFECV method (See Figure 3).

3.3.1. Random Forest Regressor. Similar to RF classifiers, RF
regressors are formed by growing trees depending on the
random vector Θ. 0e output of the tree predictors hk is
numerical and the training set is independently drawn from
the distribution of the random vector y, x. An accurate
regression forest has a low correlation between residuals and
low error trees. 0e mean squared generalization error for
the forest Ex,y(y− avgkh(x, Θk))2 is formed by taking the
average random predictor over k trees [23]. Scikit-learn’s
regressor was used with 1,000 estimators.
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Figure 1: Clusters within the study area (Washington state).
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3.3.2. Bayesian Ridge Regression. Bayesian inference tech-
niques are considered popular machine learning tools in the
transportation field (e.g., intelligent transportation systems)
[30]. Ridge regression is a form of linear regression that
penalizes the coefficients w with the ridge coefficient α≥ 0,
hence minimizing the residual sum of squares.

min
w

‖xw − y‖
2
2 + α‖w‖

2
2, (6)

0e larger the value of α, the greater the amount of
shrinkage. Similarly, the Bayesian Ridge (BR) includes
regularization parameters during the estimation procedure,
where w has a prior p(w|λ) given by a spherical Gaussian
N(w|0, λ−1Ip). 0e numerical output y of the probabilistic
model p(y|x, w, α)� N(y|xw, α) is assumed to follow a
Gaussian distribution and both priors for α and λ are
randomly chosen from gamma distributions. w, α, and λ are
estimated during the fit of the model by maximizing the log
marginal likelihood [24]. Scikit-learn’s BayesianRidge was
used with default initial parameters.

3.4. Empirical Bayes. Traffic crashes are random events, thus
predicting the rates have some limitations due to the in-
herent characteristics of the data itself, regardless of the
methods used to collect it. 0ese limitations can introduce
bias and affect crash data reliability, especially in the long
term. Statistically, a low crash rate period will likely be
followed by a high rate period, and vice versa. 0is tendency
is known as regression-to-the-mean (RTM). Applying short-
term predictions for longer periods can cause a bias called
RTM bias (See Figure 4).

0e EB method is used to estimate the expected average
crash rate NE of an individual site (road segment or inter-
section) for a given time period T (in years) on the condition
of unchanged site features (e.g., geometric design). 0e
estimate relies on predictive modelsNP (modified for similar
characteristics or control function) combined with observed
crash rates NO.

NE � wNP +(1 − w)NO. (7)

An overdispersion parameter (i.e., a variance of classi-
fication) is needed to provide an indication of the statistical
reliability of NP. 0e lower is the overdispersion parameter,
the more statistically reliable is the model. 0is parameter is
used in the EBmethod to provide the weights w and 1 − w to
NP and NO, respectively [29]. As NP increases, NE becomes
more dependable on the NO value.

w �
NP

NP + V
. (8)

Since the crash rate model already incorporated various
variables (e.g., road features) in the fitting stage, in addition for
providing more simplicity, NP values for the study period (i.e.,
years 2006 to 2009) are taken directly from the model output
without further modifications regarding these features. Aiming
to give more importance to segments with low rates but high
severity levels (see Figure 5), both NP and NO should be con-
verted to severity-weighted rates SP and SO, respectively.

Sit � Mit 􏽘

J

j�1
PitjCj, (9)

where Pitj is the probability of crash severity j occurring on
segment i in year t, Cj is the cost for severity level j, andMit is
the total number of crash predictions or observations in
segment i and year t. When SP is calculated, P is taken di-
rectly from the classifier probability predictions, while for
SO, P is simply taken as the ratio mj/NO.
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Finally, NE is modified to estimate the collective risk
(CR) by predicting the weighted crash rate SF for future year
t∗ (i.e., the year 2010 or 2011) [7].

w �
􏽐

T
t�1, SPit

􏽐
T
t�1 SPit + 􏽐

T
t�1 SPit − SOit( 􏼁

2/T
, (10)
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t�1 SPit

w 􏽘
T

t�1
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T
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Table 3: F1-score for models and each severity class.

Dataset
With random features Without random features

Random forest Ordered logit Random forest Ordered logit
Class Model Class Model Class Model Class Model

No Injury/PDO 0.72
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4. Results and Discussion

Crash severity was found to be correlated to some unob-
served random features such as weather conditions and
collision points. 0ese features were needed to be drawn
from a suitable distribution to be used in the model’s testing
stage. Both weather and road surface conditions follow a
Gaussian distribution, while the collision point follows a
Beta distribution (with α� 0.2 and β� 0.4). AADTwas taken
as an average from the years 2006 to 2009. Crash severity
results are summarized in Table 3.

It can be seen that both methods could not produce
accurate results. Furthermore, predictions were biased to-
wards no Injury/PDO severity class (largest number of
observations). However, the RF method generated more
correct predictions in the higher severity classes; therefore,
class probabilities shall be taken from the RF output. In-
corporating the random features did not affect the overall
performance of the model; hence, only AADT and median
width can be used to predict severity class. Figure 6 illus-
trates the results of crash rate models.

RF regressor gave more accurate predictions for crash
rates, while the BR model had underdispersed results. 0us,
RF predictions are selected to be used as NP and NF values,
respectively. EB weights for SP indicate that predicted values
have less importance to the estimated crash rate (see
Figure 7).

Since not all segments had crash observations during
both periods (i.e., years 2006–2009 and 2010–2011), only
3,649 and 2,647 segments from the years 2010 and 2011,
respectively, were ranked according to their CR values. 0e
top 5 ranked segments are listed in Table 4.

CR ranking indicates a local cluster on route 5 in the
city of Seattle. Nevertheless, only 9 segments were included
in the top 100 ranks of both actual and predicted rankings.
0e predictions of the year 2011 showed a slight im-
provement in accuracy for the top 1000 segments (see
Figure 8). 0is can be understandable since the EB method
is more effective in long-term estimates rather than the
short-term. Severity weights also have a role in some bias
towards crash clusters.

5. Conclusion

Machine learning algorithms introduce simple alternatives
to the conventional regression models by providing both
reasonable estimations and a user-friendly interface. In other
words, it does not require comprehensive statistical
knowledge. Random Forest accuracy for regression and
classification outperformed traditional models (i.e., linear
and logistic estimators). Yet, a multistage algorithm that
combines RF and other models might produce better results
and should be further investigated. Annual average daily
traffic was a major factor in predicting both crash severity
and frequency among some road features. On the other
hand, random and temporal variables had a very small
impact. 0e Empirical Bayes method demonstrated signif-
icant control over predicted crash rates, keeping it in a
reasonable range. Although CR rank predictions were rel-
atively poor in terms of reliability, having a collective risk
estimate exhibits more potential to identify hotspots or
localized clusters of safety hazards, thanks to the combi-
nation of frequency and severity of crashes. Attention should
be paid to severity weights (i.e., considering an alternative to

Table 4: Segment ranking according to their CR values.

2010 2011
Segment Predicted CR rank Observed CR rank Segment Predicted CR rank Observed CR rank
5–162.91 1 237 5–162.91 1 317
5–172.85 2 279 5–166.52 2 208
5–163.43 3 2 5–161.33 3 219
5–164.43 4 5 5–153.86 4 293
5–148.23 5 392 5–164.43 5 172
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the cost index C) and the screening method (e.g., using road
segments instead of grid cells) to avoid allocating large
weights on outliers, especially when reported data points are
related to the most severe case and there is only one ob-
servation per segment.
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