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ARTICLE INFO ABSTRACT

Over the past decades, it has been widely shown that Low Salinity Waterflooding (LSW) outperformed High
Salinity Waterflooding (HSW) in terms of higher oil recovery, particularly in combining with other conventional
Enhanced Oil Recovery (EOR) methods such as chemical flooding to benefit from their synergies. This paper
presents a novel approach to mechanistically model Hybrid Low Salinity Chemical Flooding, with: (1) devel-
opment of a hybrid EOR concept from past decades; (2) utilizing a Multilayer Neural Network (ML-NN) artificial
intelligent technique in a robust Equation-of-State reservoir simulator fully coupled with geochemistry; (3)
systematic validation with laboratory data; and (4) uncertainty assessment of the LSW process at the field scale.

Various parameters such as polymer, surfactant, and salinity can affect on the relative permeability si-
multaneously during hybrid recovery processes. To overcome this problem, the ML-NN technique was applied
for multidimensional interpolation of the relative permeability. Additionally, ML-NN was used within a Bayesian
workflow to capture the uncertainties in both history matching and forecasting stages of LSW at field scale. The
proposed model indicated good agreements with various coreflooding experiments including HSW, LSW, and
Low Salinity Surfactant flooding (LSS), where it can efficiently capture the complex geochemistry, wettability
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alteration, microemulsion phase behavior, and the synergies occurring in these hybrid processes.

1. Introduction

Chemical flooding is important in EOR for improving recovery
factor in mature reservoirs [5]. Alkaline has been used in the USA since
1929 to generate in-situ surfactant based on its reaction with acidic
components in crude oil. Surfactant-based methods, for example, sur-
factant flooding, micellar-polymer flooding, and Alkaline-Surfactant-
Polymer flooding (ASP), can effectively displace residual oil by de-
creasing oil-water interfacial tension (IFT) to ultra-low values. Polymer
is often added into a chemical slug to improve sweep efficiency both
vertically and aerially due to a higher viscosity of a polymer solution
than that of water.

LSW is an emerging attractive EOR method and numerous studies in
the past decades reported the benefits of LSW at the laboratory and field
scales. Details on the development of the LSW process can be found in
Dang et al. [6]. The recovery mechanisms of LSW are still open for
discussion; however, wettability alteration in LSW has been observed in
many coreflooding experiments. Up until now, wettability alteration is
widely accepted as the primary mechanism for the incremental oil
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production by LSW. Past experimental studies have also indicated that
LSW can alter the shape and endpoints of water and oil relative per-
meability [50,30,42,16,46]. Numerous laboratory measurements found
that the effectiveness of LSW depends on composition of formation
water, initial wettability condition, injected fluid composition, and re-
servoir rock [38,7,18,43].

Recently, hybrid EOR processes have been proposed in which LSW
is combined with chemical flooding, e.g. LSS and Low Salinity Polymer
flooding (LSP), to promote the synergies among these processes. Alagic
and Skauge [1] reported that a coreflood experiment of combined LSW
and surfactant flooding after secondary LSW help to achieve a relatively
low residual oil saturation of about 6% with the final recovery factor of
92.3%. This study also indicated that significantly higher oil recovery
about 10-13% Original Oil in Place (OOIP) was achieved when a sur-
factant solution was injected with low salinity brine compared to the
one at high salinity. Johannessen and Spildo [22] performed different
surfactant flooding with Berea sandstone at low salinity and optimal
salinity. The obtained results revealed that LSS floods gave a moderate
reduction in IFT (0.02 dynes/cm) with an ultimate recovery factor of up
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to 90% OOIP. The capillary number during surfactant flooding at op-
timal salinity was significantly higher than the one in LSS; but the final
recovery factor and residual oil saturation were relatively similar to
LSS. More importantly, all of the surfactant experiments at the optimal
salinity exhibited higher surfactant retention than LSS. Average sur-
factant adsorption was about 0.39 mg/g rock for the optimal salinity
surfactant flooding and 0.24 mg/g rock for LSS experiments. These
results are similar to the ones obtained by Glover et al. [17] in which
adsorption increases with increasing salinity. Tavassoli et al. [48] in-
dicated that surfactant retention is high at salinities associated with
Type II Winsor phase behavior where microemulsion is trapped in
pores. However, it could be remobilized by LSW and the phase behavior
reverses to Type I when the injected salinity is typically 70% of the
optimal salinity. Johannessen and Spildo [23] compared performances
of LSS (2500 ppm) and HSS (15,000-26,000 ppm) followed either by
LSP or High Salinity Polymer flooding (HSP). Both LSS and HSS were
conducted at the similar Winsor Type I phase behavior. Recovery factor
after LSW was about 56% and the LSS followed by LSP increased the
ultimate recovery factor up to 76%. On the other hand, the initial HSW
provided a recovery factor of 51% and the final recovery after HSS and
HSP was around 63% OOIP. In another study, Spildo et al. [47] at-
tempted to minimize surfactant retention at relatively low IFT. It has
been found that there were regions in the Winsor type I, where the IFT
was low (0.01 — 0.1 dynes/cm) with good solubilization ratios. Ad-
ditionally, surfactant retention in these regions was significantly lower
than that at the Type III salinity. Based on these results, they suggested
that LSS with Winsor type I could be a new strategy for low costs and
effective surfactant injection. Teklu et al. [49] reported that LSS fol-
lowed by CO, flooding could provide incremental oil recovery up to
25% beyond seawater flooding in a tight carbonate formation. Khana-
miri et al. [25] observed that tertiary LSS after LSW showed good
performance in different Berea corefloods. This enables the use of large
variety surfactants with lower adsorption that are not applicable at
higher salinities. Consequently, these advantages may result in more
cost-effective and more environmentally friendly chemical EOR im-
plementations.

Although LSS has been considered as a promising method for EOR,
most studies published in the literature were based on coreflooding
experiments. Several approaches were proposed to model chemical
EOR processes [4,37,14,35,27,26,41,15] and LSW [21,13,6,9,2,28];
however, the capability of a reservoir simulator to mechanistically
model a hybrid EOR process (e.g., LSS) is limited. After the benefits of
hybrid low salinity chemical flooding were confirmed in the laboratory,
a few preliminary numerical studies have been conducted to simulate
1D LSS coreflooding experiments. Skauge et al. [45] used an extended
black oil model and a research chemical flooding simulator to capture
the incremental oil recovery by LSW and LSS. Wettability alteration
based on relative permeability modification was assumed as the sole
mechanism for the underlying hybrid recovery process. In fact, as em-
phasized in one of the conclusions drawn from this study, the me-
chanisms behind LSS are far more complex than the pure wettability
alteration. Tavassoli et al. [48] presented an approach for modeling LSS
by coupling UTCHEM and IPHREEQC software. UTCHEM - a research
chemical flooding simulator developed at the University of Texas was
used to simulate surfactant flooding, whereas IPHREEQC - a geo-
chemical package developed by U.S. Geological Survey was used for
modeling reactive flow. The mass conservative equations were solved in
UTCHEM transferred to IPHREEQC to calculate a new equilibrium
state. It was recognized from the previous studies that the UTCHEM and
IPHREEQC’s coupling can be computationally expensive [35]. More
importantly, the simultaneous effects of salinity and surfactant on re-
lative permeability modeling were not addressed in this work. Dang
et al. [10,11] simulated the benefits of a hybrid ASP flooding process by
combining secondary low salinity waterflooding with tertiary ASP
flooding using an Equation-of-State reservoir simulator and the results
indicated that hybrid ASP flooding provided 10% incremental oil
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recovery over the conventional high salinity ASP flooding. However,
LSW and chemical flooding slugs were injected sequentially, and,
therefore, the interactions among low salinity brine, surfactant solu-
tion, and reservoir rock were neglected.

To adequately quantify the effectiveness of hybrid low salinity
chemical flooding in both laboratory and field scales, it is important to
develop a comprehensive model that can capture different recovery
mechanisms from macroscopic to microscopic scales for the underlying
process. The modeling approach must also be able to capture complex
phenomena occurring in a hybrid recovery method, e.g., various
parameters (salinity, surfactant and polymer) that can simultaneously
affect relative permeability curves during a course of low salinity che-
mical flooding. The new development of artificial intelligence can play
an important role to overcome these issues [3,31-33]. This paper pre-
sents a new approach for mechanistically modeling hybrid EOR pro-
cesses using artificial intelligence based on the Multilayer Neural Net-
work (ML-NN) technique. This helps to capture important physics and
address the multi-dimensional challenge of relative permeability in-
terpolation.

2. Modeling hybrid LSS flooding

The combination of LSW and surfactant flooding, called Hybrid low
salinity surfactant flooding, is a multi-mechanistic process because it
incorporates different recovery mechanisms in a single recovery
method, such as wettability alteration of LSW, a IFT reduction of sur-
factant flooding, and improved sweep efficiency of polymer flooding.

To model complex hybrid EOR processes, it is important to take into
account important physics that occur in chemical EOR and LSW as well
as the complicated interactions among different chemicals, brine, rock,
and crude oil (Fig. 1). Nghiem et al.’s model [40] was applied to si-
mulate complex geochemical reactions occurred in hybrid low salinity
surfactant recovery process. LSW modeling was extended from Dang
et al.’s models [6,9], and coupled with Nghiem et al.’s model [39] to
capture microemulsion phase behavior and polymer rheology proper-
ties in the chemical EOR. More importantly, the ML-NN algorithm was
applied to the relative permeability interpolation under the simulta-
neous effects of salinity and surfactant in the LSS process. The proposed
modeling workflow was implemented in an Equation-of-State (EOS)
compositional reservoir simulator. The important features of LSS
modeling approach are highlighted below.

Surfactant
Phase

Soap Behavior Polymer

Generation Rheology
,/’/

Multidimensional “ Hybrid Low Salinity
Interpolation Chemical Flooding

Rock/Qil/Brine

Interactions

Wettability Multiple lon

Alteration Exchanges
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= Reactions

Fig. 1. Important physics in hybrid low salinity chemical flooding.
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Fig. 2. Microemulsion phase behavior as a function of salinity.

2.1. Microemulsion phase behavior modeling

It was recognized that microemulsion phase behavior in surfactant-
based methods strongly depends on salinity (Fig. 2). At type III phase
behavior, the system can have up to three phases: water, oil, and mi-
croemulsion [19]. Several proposed ASP models in the literature re-
quired the modeling of Type III microemulsion [37,28,48]; however,
Sheng [44] indicated that field-scale ASP simulation needs a simplified
model to reduce the complexity of the modeling process. To overcome
this challenge, Nghiem et al. [39] implemented an alternative solution
that allows modeling a surfactant-based recovery method without the
need of introducing the third microemulsion phase. Nghiem’s modeling
used an approximating Type III with two pseudo phases oil and water
based on the solubility data as introduced by Jong et al. [24] shown in
Fig. 3. This approach has been applied to successfully history match
numerous ASP coreflood experiments with different chemical for-
mulations, core properties, and injection schemes [10,11].

Huh [20] indicated that microemulsion/oil and microemulsion/
water IFT in surfactant-based recovery methods can be calculated from
solubilization ratios (Fig. 4). This approach was also applied to calcu-
late IFT in pseudo oil-water system used in this study.

2.2. Geochemistry modeling

Geochemistry plays a critical role in LSW and chemical EOR pro-
cesses. However, reservoir simulators and specialized chemical flooding
software often need to be coupled with another geochemistry module,
e.g., EQBATCH (Bhuyan, 1989; [37], PHREEQC or IPHREEQC
[51,52,14,28] for geochemical modeling. The external coupling to
these geochemistry modules could be time consuming equations
[12,35] that prevents the application at large scales. This study used an
efficient approach for fully-coupled geochemical compositional re-
servoir simulation to model important reactions in the chemical EOR
and LSW processes as shown below.

Chemical equilibrium reactions, i.e.:

H* + OH™ < H,0 (€))

Oil +
Microemulsion

Jong et al.

Conventional (2016)

Approach

Microemulsion

Fig. 3. Modeling of microemulsion phase behavior.
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2.3. Polymer rheology modeling

Polymer rheology is important in polymer-based EOR methods. The
model used in this paper takes into account the following phenomena:

e Salinity dependent polymer viscosity

® Shear rate dependent polymer viscosity
e Polymer retention

® Permeability reduction

e Polymer degradation
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2.4. Wettability alteration modeling

Generally, LSW process can alter the initial reservoir wettability
condition, e.g. from oil wetness to water wetness, and this phenomenon
can be modeled by considering multiple relative permeability sets that
represent HSW and LSW [9,29]. Several interpolation parameters, e.g.,
salinity, ion exchange, surface complexation, and mineral dissolution,
have been proposed in the literature. In this study, multiple-ion ex-
changes based interpolation [9] was used to interpolate between dif-
ferent wettability alteration conditions.

2.5. Multi-layer neural network algorithm for relative permeability
interpolation

As observed from laboratory experiments, several factors, e.g.,
salinity, surfactant, and polymer with a viscoelastic effect, can change
the shape and endpoints of relative permeability curves simultaneously.
This problem has been found in many advanced EOR methods, e.g.
chemical assisted gas flooding, low salinity WAG, or CoSolvent-Steam
injection; however, it has been rarely discussed in the past. To over-
come this problem, an ML-NN technique [3] was utilized for multi-
dimensional interpolation of oil and water relative permeabilities in LSS
process.

The basic architecture of ML-NN consists of multiple layers (Input,
Hidden, and Output) as shown in Fig. 5. Based on the original training
data, all weight matrices of the N hidden layers and the weight factor of
the output layer are calculated. Consequently, the mean-square error
for a given weight distribution is minimized below:

1
N-1¢

L

&) - §&", WP
1 (12)

E2(w) =

N

where 6 and § are the outputs for the objective function from a simu-
lator and a proxy model, respectively. In hybrid low salinity chemical
flooding modeling, 6 stands for relative permeability, vector X defines
the input values of saturation, salinity and IFT, and vector W represents
the network weights. The gradient error information is propagated back
every time for the set of prediction as shown in Fig. 6.

One hidden layer containing three neurons was used for LSW’s re-
lative permeability interpolation because the limited amount of training
data makes a deeper network an overfitting tool. A simple sigmoid:

1
1+e™ 13)

Sx) =

is used as an activation function, as the output value of relative per-
meability is naturally positive and normalized to 1.
Numerous gradient-based algorithms of ML NN optimization have

Input Layer

Hidden Layers
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—— > Function Signals
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Fig. 6. Flow of the feedforward prediction and backward error in ML-NN
training.

been introduced in the literature and different versions of the Stochastic
Gradient Descent (SGD) method have recently gained a lot of popularity
in the context of Deep Learning Network training. However, for this
simple network model it has been found that the Levenberg-Marquardt
algorithm provided noticeably faster training convergence and a
smaller mean square error for training data. This algorithm, therefore,
is used as an ML-NN optimization. It updates the ML NN weights to find
such a weight correction % that minimizes E2 w + ﬁ)) where W’
stands for the current weight. It can be shown that such minimization

naturally occurs if at each iteration the correction ¥ satisties the fol-
lowing equation:

AT > P -
[T+ wulh =J [6 — 6] a4
where J is a Jacobian, T is an identity matrix, and u is a control
parameter balancing between Gradient (1 — oo) and Newtonian
(u — 0) algorithms. The derivatives of an objective function with re-
spect to the NN weights are calculated analytically by applying a chain
rule.

The training data consists of different sets of relative permeability
curves experimentally measured at different combinations of satura-
tion, salinity and IFT. In this case, two criteria for the method efficiency
were defined: (1) fast convergence to a very small value of a mean-
square error for the training data, and (2) good matching with actual
coreflooding measurements.

Fig. 7 shows the workflow of ML-NN implementation that utilizes
Levenberg-Marquardt algorithm of the Neural Network optimization.

Fig. 8 shows the results for 2D relative permeability interpolation of
a pure LSW process using ML-NN with the NN configuration of 1 hidden
layer containing 3 neurons. The interpolation was based on the training
k;, and ki, curves for HSW and LSW taken from Dang et al. [8].

Output Layer

Fig. 5. Basic multi-layer neural network architecture.
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1 ¢ Populate initial weights of the network

2/ e Compute non-linear output based on training data

N

\~
k 3/ e Calculate error with the objective function

\\

Y "l Update the model weights and coefficients

¢ Update weight for each layer of the network

Fig. 7. ML-NN algorithm.

In contrast with pure LSW, the LSS process requires higher dimen-
sional interpolation for relative permeability curves because both sali-
nity and surfactant can alter the shape and endpoints of the relative
permeability. Figs. 9 and 10 show ML-NN prediction for 3D interpola-
tion of the LSS process using two hidden layers containing (4, 4) neu-
rons. The experimental data for relative permeability for NN training
was taken from Alagic and Skauge [1] and Tavassoli et al. [48]. 3D
interpolation for relative permeability was applied in LSS coreflood
simulation in the next section.
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3. Model validations

The proposed model equipped with the ML-NN algorithm was va-
lidated against different laboratory corefloods performed by Alagic and
Skauge [1] for: (1) seawater flooding (HSW); (2) LSW; and (3) tertiary
LSS.

3.1. Coreflooding description and 1D simulation model

Alagic and Skauge [1] conducted several experiments to evaluate
performances of LSW and LSS processes in comparison with secondary
seawater flooding and tertiary LSS after seawater flooding. Fig. 11
shows the experimental setup and injection schemes for two corefloods
(B1 and B3) used in this paper. Core properties and injection compo-
sition are shown in Tables 1 and 2. Seawater was used as the connate
brine for all experiments with total dissolved solids of 36,321 ppm.
Then, seawater and low salinity brine containing 0.5 wt% NaCl were
injected at S,; in the first step for cores B3 and B1, respectively. In the
second step, LSS was applied to investigate the potential of this hybrid
process on reducing residual saturation. Pressure changes and effluent
compositions were monitored and the injection rate was about 0.1cm?/
min for all the experiments.

The simulation was performed with a 1D vertical model that con-
sisted of 50 grid blocks. Important physics presented in the previous
section have been included in the model, e.g., microemulsion phase
behavior, chemical equilibrium reactions, rate dependent reactions,
multiple ion-exchange, wettability alteration, and IFT reduction. The
relative permeability endpoints were measured in the laboratory by
Alagic and Skauge [1] and reproduced by Tavassoli et al. [48] as shown
in Fig. 12. A solubilization ratio for surfactant phase behavior modeling
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Fig. 8. Application of ML-NN for relative permeability interpolation in LSW process.
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Fig. 11. Alagic and Skauge’s [1] coreflood description.
Table 1 Table 2
Core properties for Alagic and Skauge’s [1] experiment. Brine composition of SW and LSW [1].
Core ID B1 B3 Composition SwW LSW
Rock type Berea sandstone Berea sandstone Ca**(ppm) 471 0
Length (cm) 7.92 8.1 Na*(ppm) 11,159 1960
Diameter (cm) 3.7 3.73 Mgt * (ppm) 1329 0
Swi 0.24 0.24 Cl'(ppm) 20,130 3040
Soi 0.76 0.76 SO, (ppm) 2740 0
Porosity (%) 22.6 23.1 HCO3 (ppm) 142 0
Permeability (mD) 630 715 K*(ppm) 349 0
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(Fig. 13) was taken from Tavassoli et al. [48].

3.2. Simulation of high salinity waterflooding

The proposed model has been applied to match a production profile
of seawater injection in core B3 as reported by Alagic and Skauge [1].
The composition of injected seawater was similar to the one in forma-
tion water. Therefore, wettability alteration was not included in the
model. The oil recovery factor after a continuous injection of 7 pore
volumes of seawater was about 54.6%. The proposed model provided a
very good match with the coreflooding data in terms of the final oil
recovery factor and the breakthrough time of oil production by sea-
water injection as shown in Fig. 14.
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Fig. 14. Oil recovery factor for HSW.

Fuel 261 (2020) 116445

100

90 e==Proposed Model . . .
@ Experimental Data

80
70

50

40

30

Oil Recovery Factor (%)

20

10

0 5 10 15 20
Injected Pore Volume

Fig. 15. Oil recovery factor for LSW.

3.3. Simulation of low salinity Waterflooding

Coreflooding B1 was similar to B3 except that a continuous low
salinity brine of 0.5 wt% NaCl was injected for about 17 pore volumes.
Fig. 15 shows the cumulative recovery factor by LSW from the proposed
model along with the experimental data. There was a good agreement
between simulation and laboratory measurements of the LSW process in
which the ultimate recovery factor was about 60.2%. In comparison
with HSW in the B3 coreflood experiment, incremental oil recovery was
about 5.6% by LSW due to a favorable wettability alteration toward
more water wetness. Fig. 16 shows the pressure drop calculated from
the proposed model against the one monitored during the experiment.
In consistent with the laboratory data, the simulation results indicated
that additional oil was produced during the first 2 to 3 PV with slight
changes in the pressure drop profile. Small traces of fines accumulation
were detected by Alagic and Skauge [1] that may explain for a partial
increase in the pressure drop profile observed at the end of the LSW
process.

Figs. 17 through 19 show the comparison between simulation and
laboratory data for the ion concentration at the effluent during LSW for
Na®, Ca* ™, and Mg* *, respectively. As shown in these figures, the
ionic composition of the produced water gradually decreases during the
first periods of LSW. This matching result is achieved by considering
multiple ion-exchanges between injected brine and reservoir rock, and
geochemical reactions occurred during the course of LSW process.

3.4. Simulation of low salinity surfactant flooding

After the first step of LSW, Alagic and Skauge [1] extended the B1

5
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Fig. 16. Pressure drop for LSW.
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experiment by injecting a continuous low salinity surfactant solution.
The surfactant slug consisted of 0.5wt% NaCl, 1 wt% Enordet surfac-
tant, and 1 wt% isoamyl alcohol with the solubilization ratios indicated
in Fig. 13. The new mechanistic model equipped the with ML-NN ar-
tificial intelligence algorithm has been used to perform 3D interpolation
of relative permeability under the simultaneous effects of salinity and
surfactant. The architecture of Levenberg-Marquardt neural network
used in this case study was one hidden layer containing 4 neurons. The
neural network system is trained by laboratory data and provides a set
of relative permeability curves for each grid block corresponding to its
calculated values of IFT and salinity.
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Fig. 22. Comparison between HSS Flooding and LSS Flooding.

As experimentally found in the past studies, LSS flooding success-
fully reduced residual oil saturation after LSW with very low surfactant
retention even though IFT was not ultra-low. Fig. 20 indicates that the
proposed model with ML-NN efficiently captures the advantages of LSS
with the final oil recovery factor over 90% OOIP. The calculated
pressure drop from simulation results is also consistent with the one
obtained from the laboratory experiment as shown in Fig. 21.

LSW followed by LSS demonstrated a superior performance over the
conventional method when surfactant flooding is injected in a high
salinity environment as shown in Fig. 22. The final recovery factory by
continuous injection of LSS after seawater injection was about 74.5%
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¢ Run an initial set of reservoir simulations by simultaneously varying multiple uncertain
parameters using an experimental design method.

¢ Construct a proxy function using ML-NN to approximate the posterior probability density
function (PDF) calculated from the initial set of simulation results.

¢ Sample the posterior PDF using the Proxy-based Acceptance-Rejection (PAR) sampling
method and run an ensemble of new simulation models using the sample values.

¢ The new simulation results obtained in step 3 are added to the training datasets generated
in step 1 to improve the accuracy of the proxy function. Steps 3 and 4 are repeated until a
predefined stop criterion is satisfied.

o Filter all simulation runs generated in step 3 using appropriate tolerance criteria for various
history-match quality indicators. The selected filtered cases constitute the final ensemble
of simulation models that can be further used for uncertainty quantification in forecasting.

Fig. 23. Bayesian workflow using ML-NN.

a. Facies Distribution

b. Clay Distribution

c. Porosity Distribution

d. Permeability Distribution

Fig. 24. Base Case for LSW History Matching.

compared to 92% by hybrid low salinity surfactant flooding. With a
higher tertiary recovery factor and lower surfactant adsorption con-
firmed by different coreflood experiments, LSS can become an attrac-
tive and cost-effective method for the future EOR.

4. Application of ML-NN in quantifying uncertainties of LSW

Chemical EOR, LSW, and hybrid low salinity chemical flooding have
been identified as strongly geology-dependent recovery processes.
Uncertainties in these processes are associated with geology and re-
lative permeability estimation due to the wettability alteration [7].

Thus, it is important to capture the uncertainties of geology and re-
servoir parameters in history matching (HM) and production fore-
casting of these processes. Yang et al. [53] introduced a Bayesian fra-
mework that can effectively evaluate the uncertainties in forecasting
results. This approach has been extended in this study to quantify the
uncertainties of the field-scale HM of the LSW process by utilizing ML-
NN as a proxy. A detailed Bayesian workflow using ML-NN is described
in Fig. 23. This approach was also compared with the classical algo-
rithms such as Particle Swarm Optimization (PSO) [34] and Differential
Evolution (DE) [36].

Field-scale LSW HM has been recognized as a complex task due to a
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Fig. 25. Field-scale LSW history matching results.

large number of involved parameters. It is essential to simultaneously
match both geological distribution and reservoir engineering para-
meters for achieving good history matching results. From this per-
spective, we used an integrated HM approach for LSW in which geo-
logical information is transferred to a simulation model smartly
controlled by an optimizer in an automatic loop to provide the best
global HM results. In this study, a Bayesian framework coupled with
ML-NN algorithm, DE, and PSO were used for a LSW HM case described
by Dang et al. [10,11]. The sandstone reservoir consists of 14,400 grid
blocks with 3 different facies as shown in Fig. 24. LSW was applied in
an inverted five-spot pattern. Multiple ion-exchange reactions between
calcium, magnesium and clay surfaces are considered. The facies pro-
portion and distribution in each layer and relative permeability para-
meters were adjusted to get the match with the production data.

10

Fig. 25 shows the comparison of HM results for this particular case
study with 2500 simulation jobs for Bayesian plus ML-NN, DE, and PSO.
All three algorithms can provide good HM results from a global history
matching point of view; however, the best-matched model with the
lowest global history matching error was found by the Bayesian method
with ML-NN. More importantly, this approach demonstrates a better
capability in quantifying the uncertainties of the LSW HM process since
it provides better uncertainty ranges for all HM parameters, as in-
dicated in Fig. 26 for Corey’s relative permeability exponents and
proportion of medium-sand facies in layer 1, compared to DE and PSO.
This advantage is very important to take into account the uncertainties
of LSW and hybrid low salinity chemical flooding in short and long term
production forecasting (Fig. 27).
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Fig. 26. Uncertainty assessment of LSW history match.
5. Further discussions for new applications 6. Conclusions
Relative permeability is important in predicting flow behaviors in e A mechanistic model for hybrid low salinity chemical flooding is
porous media and adequately modeling displacement processes, espe- presented and implemented in an EOS compositional reservoir si-
cially for hybrid EOR methods that require multidimensional inter- mulator.
polation of the relative permeability. The application of artificial in- o Artificial intelligence based ML-NN is used for multi-dimensional
telligence for estimating relative permeability proposed in this study interpolation of the relative permeability in EOR processes.
can be efficiently applied to model different advanced recovery pro- o Hybrid LSS flooding is a promising EOR method as it provides a high
cesses, for example: recovery factor, up to 92% OOIP and low surfactant retention in
laboratory tests.
e Hybrid Low Salinity Polymer Flooding when viscoelastic polymer e Simulation results based on the proposed model are strongly con-
and salinity can affect the relative permeability simultaneously. sistent with various coreflood data.
® Hybrid Low Salinity Surfactant Polymer Flooding when surfactant, ® A Bayesian workflow plus multi-layer neural network is an efficient
viscoelastic polymer and salinity can affect the relative permeability and practical approach for LSW history matching and uncertainty
simultaneously. assessment at the field scale.
e Hybrid Low Salinity WAG when CO, and salinity can affect the re-
lative permeability simultaneously. Acknowledgements
e Solvent assisted steam flooding in which solvent and steam can af-
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