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a b s t r a c t

Background: Surgical patients incur preventable harm from cognitive and judgment errors made under
time constraints and uncertainty regarding patients’ diagnoses and predicted response to treatment.
Decision analysis and techniques of reinforcement learning theoretically can mitigate these challenges
but are poorly understood and rarely used clinically. This review seeks to promote an understanding of
decision analysis and reinforcement learning by describing their use in the context of surgical decision-
making.
Methods: Cochrane, EMBASE, and PubMed databases were searched from their inception to June 2019.
Included were 41 articles about cognitive and diagnostic errors, decision-making, decision analysis, and
machine-learning. The articles were assimilated into relevant categories according to Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines.
Results: Requirements for time-consuming manual data entry and crude representations of individual
patients and clinical context compromise many traditional decision-support tools. Decision analysis
methods for calculating probability thresholds can inform population-based recommendations that
jointly consider risks, benefits, costs, and patient values but lack precision for individual patient-centered
decisions. Reinforcement learning, a machine-learning method that mimics human learning, can use a
large set of patient-specific input data to identify actions yielding the greatest probability of achieving a
goal. This methodology follows a sequence of events with uncertain conditions, offering potential ad-
vantages for personalized, patient-centered decision-making. Clinical application would require secure
integration of multiple data sources and attention to ethical considerations regarding liability for errors
and individual patient preferences.
Conclusion: Traditional decision-support tools are ill-equipped to accommodate time constraints and
uncertainty regarding diagnoses and the predicted response to treatment, both of which often impair
surgical decision-making. Decision analysis and reinforcement learning have the potential to play
complementary roles in delivering high-value surgical care through sound judgment and optimal de-
cision-making.

© 2020 Elsevier Inc. All rights reserved.
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Introduction

Every day, patients and physicians must decide which diag-
nostic and therapeutic interventions should be performed or de-
ferred. Although hundreds or thousands of interventions may yield
more benefit than harm, limitations of time and resources mandate
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that only the most advantageous interventions be performed. This
approach to resource use is often misused or ignored in the United
States, where doctors and hospitals may tend to overtreat the
insured and undertreat the uninsured.1 More importantly, de-
cisions regarding interventions affect mortality, morbidity, and
quality of life for patients and their caregivers.

Ideally, clinical reasoning incorporates rigorous medical
training, clinical intuition, critical thinking, evidence-based medi-
cine, and a robust process of shared decision-making among phy-
sicians, patients, and their caregivers. Unfortunately, decisions
often transpire under time constraints and conditions of uncer-
tainty regarding an individual patient’s diagnoses and predicted
response to treatment. Time constraints may be imposed by acute
diseases that require urgent diagnosis and treatment, or by busy
clinical schedules that restrict time for gathering information and
deliberating. Uncertainty may be imposed by a lack of provider
knowledge, the unavailability of patient data, such as outside
hospital records or diagnostic tests, or the absence of high-level
evidence to guide important management decisions. Under such
time constraints and uncertainty, clinicians may rely instead on
cognitive shortcuts and snap judgments using pattern recognition
and intuition.2,3 Cognitive shortcuts without deliberation can lead
to bias or predictable and systematic cognitive errors.4,5 Cognitive
and judgment errors are a leading cause of misdiagnosis, and
physicians are often blind to them unless feedback is provided by
postmortem examinations, of which 10% to 15% reveal major
diagnostic errors.6e8 Cognitive and judgment errors are especially
harmful in surgical decision-making, in which high-stakes de-
cisions can markedly affect clinical outcomes.9 In a survey of 7,905
members of the American College of Surgeons, lapses in judgment
were the most common cause of major medical errors.10

Decision-support tools are intended to mitigate these errors.
Unfortunately, they often require time-consuming, manual data
entry and are designed for nonspecific, generalized application to
any patient with a certain disease or condition, and so they lack
precision for the unique pathophysiology and clinical context of
individual patients.11 Not surprising, most of these decision-
support tools have not achieved widespread clinical adoption.12

Surgeons need better decision-support tools. Decision analysis
methods and technologies of reinforcement learning can generate
population-based recommendations and augment decision-
making for individual patients. Unfortunately, many clinicians are
unfamiliar with them and the applications to surgery are sparse.
Among many promising methods for improving patient-centered
decision support,13,14 this review features reinforcement learning
because it most closely mimics human learning and offers specific
recommendations for discrete actions rather than predicted prob-
abilities that only indirectly support decisions. Predictive analytic
risk assessments are useful when risk is unexpectedly very low or
very high, but most patients have intermediate risk. This review
describes decision analysis and reinforcement learning in the
context of clinical surgical decision-making.

Methods

Cochrane, EMBASE, and PubMed databases were searched from
their inception to June 2019. Supplemental Digital Content 1 lists
article search parameters and objectives. Articles were excluded if
they were not published in English or were not primary literature
or a review article. Articles were selected for inclusion after we read
the abstracts and full texts to assess topical relevance, methodo-
logic strength, and novel or meritorious contribution to existing
literature. Articles of interest cited by other articles identified in the
initial search were reviewed using the same inclusion criteria. We
included 41 articles and assimilated them into relevant categories
(Table) according to guidelines of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping Re-
views. Supplemental Digital Content 2 lists Preferred Reporting
Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews criteria. The determination to review decision
analysis and reinforcement learning methods was made before
performing the literature search. Topic subcategories were chosen
after performing the literature review by favoring themes that
emerged from the literature. Decision-making concepts and the-
ories were described in the context of surgical decision-making
scenarios. The assimilation process was limited by heterogeneity
among topics and reporting practices that precluded the perfor-
mance of a systematic review and meta-analysis. The 41 articles
included addressed the topics of decision-making (n¼ 13), decision
analysis (n ¼ 13), and machine-learning (n ¼15).

Observations

Patient-centered decision-making

Shared decision-making that is truly effective improves patient
satisfaction and compliance and may decrease costs from unnec-
essary interventions.15,16 Ethically, patient-centered decision-mak-
ing should be a fundamental principle governing a health care
system that values patient autonomy.17 But clinicians often ignore
patient values. Patients, caregivers, and providers frequently
misunderstand one another and their goals of care.16,18 These
misunderstandings are compounded not only when patients and
caregivers with limited health literacy make complex medical de-
cisions, but also when clinicians fail to recognize inadequate
decision-making capacity. Bertrand et al19 assessed the decision-
making capacity of 206 patients in an intensive care unit (ICU),
using 2 methods: a mini-mental status examination and the
opinion of attending physicians, nurses, and residents. Clinicians
believed 45% of the population had decision-making capacity, but
only 17% of the patients had the capacity according to the criteria of
the mini-mental status examination. In a systematic review of 32
articles including 13,176 patients and surgeons, only 36% of all
patientesurgeon interactions represented shared decision-mak-
ing.20 Surgeons are often unknowingly blind to this phenomenon,
and 1 in 7 surgical patients report decisional regret.20,21 After
establishing rapport and decision-making capacity, surgeons
should ask patients about their goals of care and values. These
findings suggest that patient assessments often omit this step.

Research that should rely on patient preferences often omits
these patient preferences. Noninferiority trials measure a trade-off
between losing the established efficacy of a standard treatment and
some possible benefit of a new therapy. If investigators weigh risk-
benefit trade-offs differently than patients, the new therapymay be
designated noninferior and achieve clinical adoption before clini-
cians realize that patients actually preferred the standard therapy.
Acuna et al22 cite the American College of Surgeons Oncology
Group Z0011 trial as an example. Patients who did not undergo
completion of axillary lymph node dissection had 45% lesser rates
of surgical complications and 13% lesser rates of lymphedema at 1-
year follow-up, and the noninferiority margin for overall survival
set by investigators was 1.3, or 6%.23 But some patients may not
accept a 6% decreased overall survival in exchange for fewer
complications.

Many prediction models and decision-support tools ignore pa-
tient values. Each year, more than 1,000 published articles feature
independent risk factors or independent predictors in their title or
abstract.12 Most decision-support tools described in these articles
have flaws that preclude their widespread clinical adoption (eg, the
risk factors or predictors are not widely available or used by



Table I
Summary of included studies

Authors Study topic Study design Population Sample
size

Major findings pertinent to this
review

Sources of funding, conflicts of
interest

Dijksterhuis
et al3

Decision-making Observational Consumers of simple
and complex products

75 Conscious deliberation can lead to
less satisfactory decision-making
than “deliberation-without-
attention” choices, especially for
complex purchases.

Netherlands Organization for
Scientific Research

Wolf et al5 Decision-making Prospective First-year house
officers

89 Bayesian inference can provide a
useful complement to clinical
judgment, although it is rarely used
by first-year house officers.

Spencer Foundation

Graber et al6 Decision-making Retrospective Cases of suspected
diagnostic error

100 System-related factors and
cognitive biases result in diagnostic
error.

National Patient Safety
Foundation

Kirch and
Schafii7

Decision-making Retrospective Autopsy reports from
1959, 1969, 1979, and
1989

400 Misdiagnosis rates of were
approximately 10% across all
decades.

None reported

Sonderegger-
Iseli et al8

Decision-making Retrospective Autopsy reports from
1972, 1982, and 1992

300 Frequency of major discrepancy
between clinical diagnosis and
necropsy findings in 1992 was 14%.

None reported

Healey et al9 Decision-making Prospective Surgical inpatients 4,658 Half of all adverse events were
attributable to provider error.
Diagnostic and judgment errors
were the second most common
cause of preventable harm.

None reported

Shanafelt et al10 Decision-making Cross-sectional Members of the
American College of
Surgeons

7,905 Surgeons who attributed error to
individual, rather than system-
level, factors (70%).
Surgeons who reported making a
major medical error in the last 3
months (9%), and lapses in
judgment were the most common
cause (32%).

None reported

Leeds et al11 Decision-making Cross-sectional Surgical trainees at 4
institutions

124 A total of 26% of surgical trainees
report using validated,
contemporary risk communication
frameworks. Barriers to use
included lack of electronic and
clinical workflow integration.

NIH, NCI, ASCRS, AHRQ

Brotman et al12 Decision-making MEDLINE search Articles with
“independent risk
factor” or “independent
predictor” in their title
or abstract

d Each year, more than 1,000 articles
are published investigating
“independent risk factors” or
“independent predictors.”

None reported

Legare et al18 Decision-making Systematic review Articles about
implementing shared
decision-making
practices

38 Barriers to shared decision-making
included time constraints and lack
of applicability to patient and
clinical context. Facilitators were
provider motivation and positive
impact on clinical process and
patient outcomes.

Canada Research Chair in
Implementation of Shared
Decision-Making

Bertrand et al19 Decision-making Cross-sectional ICU patients and their
providers

419 Decision-making capacity was
overestimated by providers, largely
because of inappropriate conflation
of consciousness and decision-
making capacity.

Gabriel Montpied Teaching
Hospital, Pfizer, Fisher& Paykel,
Gilead, Jazz Pharma, Baxter,
Astellas, Alexion

de Mik et al20 Decision-making Systematic review Literature on shared
decision-making
during surgical
consultations

32 Only 36% of all patients and
surgeons perceived the
consultation as shared decision-
making. Surgeons were more likely
to perceive that interactions
represented shared decision-
making.

AMC Foundation

Wilson et al21 Decision-making Systematic review Literature on self-
reported decisional
regret

79 Patients who reported regret
(14.4%), most often associated with
the type of surgery, disease-specific
quality of life, and shared decision-
making

None reported

Guyatt et al31 Decision analysis Review d d Demonstrates integration of patient
values with decision analysis for
risks of stroke and hemorrhage
when prescribing antiplatelet
therapy for patients with atrial
fibrillation.

None reported

(continued on next page)
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Table I (continued )

Authors Study topic Study design Population Sample
size

Major findings pertinent to this
review

Sources of funding, conflicts of
interest

Pauker and
Kassirer33

Decision analysis Review d d Establishment of “testing”
threshold and a “test-treatment”
threshold to guide decision-making
on treatment and diagnostic
testing.

NIGMS, NLM, NIH

O'Brien et al39 Decision analysis Review d d Description of how to perform cost-
adjusted value measures like
quality-adjusted life years.

None reported

Djulbegovic
et al36

Decision analysis Review d d Applies patient values to decision
analysis for DVT prophylaxis.

None reported

Vickers and
Elkin37

Decision analysis Review d d Description of how decision curve
analysis can be used to evaluate
diagnostic and prognostic strategies
.

NCI SPORE

Gage et al40 Decision analysis Decision analysis Patients with
nonvalvular atrial
fibrillation

d Warfarin is cost-effective for
patients with nonvalvular atrial
fibrillation and one additional
stroke risk factor. In patients
without such risk factors, this
benefit was lost.

None reported

Robbins et al41 Decision analysis Cost-benefit
analysis

Infants treated with
RSV-IG from 3 RCT

1,108 Demonstrates the use of number-
needed-to-treat principles in
determining RSV-IG treatment for
specific infant populations.

None reported

Komorowski
et al45

Machine learning Retrospective
review

Patients admitted to
ICU with sepsis

96,156 A reinforcement learning model
recommended intravenous fluid
and vasopressor strategies,
mortality was lowest when
decisions made by clinicians
matched recommendations from
the reinforcement learning model.

NIHR, EPSRC, Orion Corp,
Amomed Pharma, Ferring
Pharma, Tenax Therapeutics,
Baxter, Bristol-Myers Squibb,
GSK, HCA International, Philips
Health care, Fresenius-KABI

Silver et al46 Machine learning Observational Go board game d A deep reinforcement learning
model trained by human expert
moves and self-play provided high-
fidelity victories against previous
Go algorithms and human experts.

Google, Google DeepMind

Mnih et al47 Machine learning Observational Atari games d Demonstrated development of a
deep Q network to incorporate
highly dimensional sensory inputs
and actions to optimize machine
performance in Atari video games.

Google, Google DeepMind

Shickel et al49 Machine learning Retrospective
review

ICU admissions 79,701 A deep model fed with SOFA
variables predicted in-hospital
mortality with greater accuracy
than the traditional SOFA score
(AUC 0.90 vs 0.85).

NIGMS, NSF, University of
Florida CTSI, NCATS, J Crayton
Pruitt Family Department of
Biomedical Engineering,
NVIDIA

Sundaram
et al50

Machine learning Observational Actual and simulated
animal and human
genomes

d A deep neural network identified
pathogenic mutations for rare
diseases, with 88% accuracy and
discovered candidate genes for
intellectual disability.

Health Innovation Challenge
Fund, Wellcome Sanger
Institute, NIHR, NIGMS, NSF

Li et al51 Machine learning Observational Actual and simulated
protein sequences

d A deep neural network predicted
protein properties by learning from
protein sequences, with no
supervision or domain knowledge.

NSF, NIH, Industrial Members of
NSF Center for Big Learning

Rajpurkar
et al52

Machine learning Retrospective
review

Chest radiographs 420 A deep learning algorithm had
equivalent performance to board-
certified radiologists in 10/14
pathologies, superior performance
in 1/14, and inferior performance in
3/14.

Stanford AIMI Center,
whiterabbit.ai, nines.ai, Nuance
communications, Radiological
Society of North America,
Phillips Healthcare, GE
Healthcare

Davoudi et al53 Machine learning Observational Surgical ICU patients 22 Autonomous collection of granular
patient and environmental data can
identify contributors to delirium.

NSF CAREER, NIH/NIGMS, NIH,
NIH/NIBIB

Hashimoto
et al54

Machine learning Observational Laparoscopic sleeve
gastrectomy cases

88 The use of computer vision and
deep neural networks can identify
quantitative steps in operative
procedures.

NIH, Olympus Corporation,
Toyota Research Institute,
Verily Life Sciences, Johnson &
Johnson Institute, Gerson
Lehrman Group

Silver et al56 Machine learning Observational Go board game A deep reinforcement learning
model trained by self-play with no
human input consistently defeated
a version that used human input.

Google, Google DeepMind
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Authors Study topic Study design Population Sample
size

Major findings pertinent to this
review

Sources of funding, conflicts of
interest

Pineau et al65 Machine learning Review Experimental epilepsy
models

d Reinforcement learning paradigms
of EEG measurements can be used
to optimize electrostimulations
patterns in the treatment of
epilepsy.

NSERC, CIHR

Van Calster
et al66

Decision analysis Systematic review Men undergoing
prostate biopsy

3,616 Demonstrates the use of decision
curve analysis to identify a range of
clinically reasonable risk thresholds
for prostate biopsy.

Research Foundatione Flanders

Tinetti et al67 Decision analysis Review Disease-specific
guidelines

d Adherence to disease-specific
guidelines in patients with multiple
chronic conditions may result in
clinical harm.

NIA, VA HSR&D, Merck, AFAR

Boyd et al68 Decision analysis Observational Clinical practice
guidelines for Medicare
beneficiaries

d Adherence to clinical practice
guidelines for disease-specific
entities may result in suboptimal
care for elderly patients with
multiple comorbidities.

NIH, NIA, HRSA, Roger C. Lipitz
Center for Integrated Health
Care, Partnership for Solutions

Che et al70 Machine learning Retrospective
review

Critically ill children 398 Deep learning models often lack
interpretability. Shallow models
and knowledge-distillation
approaches can clarify underlying
processes for clinicians.

NSF, USC Coulter Translational
Research Program

Gal71 Machine learning Dissertation d d Using a softmax function to map
machine learning output layer,
network activations may
overestimate model confidence
that its outputs are accurate.

Google AI, Qualcomm

Guo et al72 Machine learning Review Machine learning
models in published
literature

d Many descriptions of machine
learning models do not incorporate
and report calibration.

NSF, Bill and Melinda Gates
Foundation, Office of Naval
Research

Vergouwe
et al73

Decision analysis Observational Moderate or severe
brain injury patients

1,118 Creating benchmark values that
incorporate distributions of patient
characteristics can improve
external validity of prediction
models.

Netherlands Organization for
Scientific Research, NIH

Van Calster
et al74

Decision analysis Observational Decision analysis
models

d Miscalibration of a model
(overestimation, underestimation,
overfitting, and underfitting) to a
baseline event rate reduces net
benefit and can impair clinical
decision-making.

Research Foundation-Flanders

Goldstein
et al75

Machine learning Retrospective
review

Hemodialysis patients 18,846 Comparing summary statistics,
machine learning methods,
functional data analysis, and joint
models revealed that complex
approaches using highly
dimensional EHR data may impair
mortality predictions.

NIDDK

McGlynn et al76 Decision analysis Cross-sectional
study

Randomly selected
patients from 12 US
metropolitan areas

13,275 Only slightly more than half of all
patients surveyed received care
recommended by clinical practice
guidelines.

Robert Wood Johnson
Foundation, VA HSR&D

AFAR, American Federation for Aging Research; AHRQ, Agency for Healthcare Research and Quality; AI, artificial intelligence; AIMI, Artificial Intelligence in Medicine and
Imaging; ASCRS, American Society of Colon and Rectal Surgeons; CIHR, Canadian Institute of Health Research; EPSRC, Engineering and Physical Sciences Research Council;
HRSA, Health Resources and Services Administration; NCI, National Cancer Institute; NIA, National Institute on Aging; NIBIB, National Institute on Biomedical Imaging and
Bioengineering;NIGMS, National Institute of General Medical Sciences;NIH, National Institutes of Health;NIHR, National Institute for Health Research;NLM, National Library of
Medicine; NSERC, Natural Sciences and Engineering Research Council; NSF, National Science Foundation; SOFA, Sequential Organ Failure Assessment; USC, University of
Southern California; VA HSR&D, Veterans Affairs Health Services Research and Development.
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clinicians, predictive performance is weak, or the findings are not
validated in a separate study population to ensure generalizability),
but even the successful tools often do not incorporate patient
values. The CHA2DS2-VASc score is a clinical classification scheme
that uses 7 ordinal and binary variables to estimate annualized risk
of stroke among patients with atrial fibrillation andmakes clinically
useful recommendations regarding antiplatelet and anti-
coagulation therapy, earning support from the European Society of
Cardiology, American College of Cardiology, and the American
Heart Association.24 CHA2DS2-VASc makes assumptions about
patient preferences for outcomes like stroke and hemorrhage,
which may skew decisions regarding antiplatelet and anti-
coagulation therapy for any individual patient, as discussed in the
“Patient values” section later in this review..

Decision analysis

Clinical and translational research and evidence-basedmedicine
define best practices for managing disease and for promoting
health by measuring and evaluating the risks and benefits of
diagnostic and therapeutic interventions. Clinical application re-
quires the additional step of considering these risks and benefits



Fig 1. Optimizing the accuracy of the prediction model may not optimize clinical utility. Model A has greater accuracy, but, if a pregnant woman presenting with fever and right-
sided abdominal pain wishes to avoid fetal demise because of a wrong diagnosis, then model B is favorable.
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alongside patient values and financial costs. Methods of decision
analysis accomplish this step by weighing the risks and benefits by
patient values and by incorporating costs to quantify the value of
care, thereby facilitating the optimal use of resources across health
care systems. This process produces probability thresholds that
inform guidelines and recommendations for diagnostic and ther-
apeutic interventions across populations.
Evaluating model utility

The diagnostic performance and clinical utility of a test or model
are complementary but separate considerations. A magnetic reso-
nance image of the chest may have excellent diagnostic perfor-
mance in identifying traumatic thoracic injuries, but obtaining a
chest magnetic resonance image for an unstable patient with
penetrating chest trauma could harm the patient by delaying
operative exploration, thereby yielding negative clinical utility. The
techniques of decision analysis compare directly the overall clinical
utility of diagnostic tests or prediction models based on risks,
benefits, costs, and patient values. This offers a major advantage
over the common practice of comparing tests and models by
discrimination or accuracy alone. For example, the diagnosis of
appendicitis among pregnant women is challenging. Several other
conditions mimic appendicitis. cephalad displacement of the ap-
pendix alters the clinical presentation, and teratogenic radiation
effects preclude the routine use of computed tomography. Amissed
diagnosis with progression to complicated appendicitis is associ-
ated with increased risk for fetal loss relative to the risk of
nontherapeutic laparotomy, 20% vs 3% in one study.25 Therefore, in
predicting appendicitis among pregnant women, false-negative
results are more harmful than false-positives results.

Consider 2 models predicting appendicitis among 100 pregnant
women presenting with fever and right-sided abdominal pain, of
whom 50 actually have appendicitis (Fig 1). Model A has much
greater specificity and slightly less sensitivity than model B. Accu-
racy assigns equal weight to sensitivity and specificity, therefore
model A is more accurate. The likelihood of 1 fetal loss attributed to
a wrong diagnosis applying model A 100 times is (4 � 0.20) þ (2 �
0.03) ¼ 0.86. The likelihood of fetal loss, using model B, is (1 �
0.20) þ (11 � 0.03) ¼ 0.53. If a womanwishes to avoid fetal demise
attributable to a wrong diagnosis, model B has greater utility,
despite its lesser accuracy. In such cases, metrics, like the number
needed to treat or harm, are useful.
Number needed to treat or to harm

The number needed to treat (NNT)dthe number of patients that
must undergo an intervention to avoid one adverse eventdadjusts
for prevalence by incorporating baseline risk without an inter-
vention and the risk reduction associated with the intervention.
The importance of adjusting for prevalence is illustrated by appli-
cation of Bayesian probability to mammographic detection of
breast cancer.26 A group of physicians was presented with the
following 3 statistics: A 40-year-old woman undergoing screening
mammography has a 1% chance of having breast cancer. If she has
breast cancer, the probability of a positive mammography is 80%. If
she does not have breast cancer, the probability of a positive
mammography is 9.6%. Most physicians in this study estimated that
this 40-year-old woman with a positive screening mammogram
had a 70% to 80% probability of actually having breast cancer,
approximately 1 order of magnitude greater than the actual prob-
ability of 7.8%.

NNT is the reciprocal of absolute risk reduction, or the raw
difference in risk of an adverse event between 2 options. Consider
an uncomplicated, intra-abdominal infection for which manage-
ment options include antibiotics alone or surgical source control. If
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the risk of disease progression and septic shock while treating with
antibiotics alone is 7% and the risk or progression and shock after a
surgical source control procedure is 2%, then the number needed to
treat with surgery to avoid 1 case of septic shock is 1/(0.07 e

0.02) ¼ 20 patients. NNT does not account for adverse events
attributable to the intervention itself, manifest as number needed
to harm, or the number of patients that must undergo an inter-
vention to produce 1 adverse event, calculated as the reciprocal of
the raw difference in harm. If the risk of allergy or untoward effect
from antibiotics is 4% and the risk of postoperative complications is
8%, then the number needed to harm with surgery is 1/ (0.08 e

0.04) ¼ 25. When NNT ¼ 20 and number needed to harm ¼ 25,
surgery is advantageous when assuming equal weight for post-
operative complications, medication side effects, and progression
to septic shock. Patients and surgeons may not agree with these
assumptions. Incorporation of relative value addresses this
problem.

Patient values

Probability thresholds incorporate patient values by calculating
relative values of risks and benefits attributable to the intervention
and its alternatives. Published literature can produce relative
values. The CHA2DS2-VASc score makes assumptions about patient
values regarding stroke and hemorrhage when recommending
antiplatelet and anticoagulation therapy for patients with atrial
fibrillation. In 4 studies investigating patient preferences and
quality of life, patients appear to consider 1 stroke equivalent to 5
episodes of serious gastrointestinal bleeding.27e30 Considering this
ratio within a decision analysis framework, the relative value of
serious bleeding relative to stroke is 0.744. The relative value of
minor bleeding relative to stroke is 0.014.31 Applied to known
frequencies of major and minor bleeding events among anti-
coagulated patients, the threshold NNT is 152. Among elderly pa-
tients with a history of stroke, diabetes, and hypertension,
anticoagulation decreases 1-year stroke risk from 8.1% to 2.6%, such
that the NNT¼1/(0.081e0.026)¼ 18.32 The NNT in this subgroup is
well below the threshold NNT, and therefore, this subgroup should
receive anticoagulation therapy.

This calculation used five well-designed studies to derive and
apply relative values.27e30,32 Similar data are often unavailable for
surgical diseases, and especially for rare ones. In addition, this
method calculates thresholds for aggregate patient populations. A
patient who declines allogenic blood transfusions may consider
stroke and serious gastrointestinal bleeding to be equally harmful,
generating a different probability threshold than the general
population.

Decision trees and curves

Decision tree analysis uses predicted risks, benefits, and relative
values of possible outcomes to calculate probability thresholds.33

Each patient has a probability p that the disease is present. If p is
near 1, a diagnostic or therapeutic intervention targeting that dis-
ease is likely useful; in contrast, if p is near 0, the intervention is
likely useless. Between 0 and 1, there is a probability threshold pt
where the predicted utilities of performing and deferring the
intervention are equal. Decision trees are the foundation for some
machine-learning methods. Random Forests use a multitude of
decision trees, as the name implies. This review considers decision
trees separately from themachine-learning techniques that employ
decision trees.

Consider a patient who presents with postprandial epigastric
pain (Fig 2). Whether symptoms are attributable to biliary dyski-
nesia or another process (eg, gastritis, pancreatitis) is unclear.
Approximately 60% to 90% of all adults with similar presentations
will have improvement or resolution of these symptoms after
cholecystectomy, with a lesser likelihood of a benefit for patients
with atypical symptoms and no gallstones.34,35 This thought
experiment assumes 75% probability that symptoms are attribut-
able to biliary dyskinesia and will resolve after cholecystectomy.
Assume that the value of surgery when disease is present and the
value of no surgery when disease is not present are each favorable
(0.80), undergoing unnecessary surgery has half the value (0.40),
and that deferring surgery when disease is present has the least
value (0.20). The probability threshold would be 0.40, considerably
less than the probability that symptoms are attributable to biliary
dyskinesia (0.75), so cholecystectomy is advantageous. For a patient
with atypical symptoms, no gallstones, and a 35% probability that
symptoms are attributable to biliary dyskinesia, cholecystectomy
would be disadvantageous.

Djulbegovic et al36 applied this process to the prophylaxis of
deep vein thrombosis (DVT), demonstrating that patients with a
DVT risk of 15% or more should receive DVT prophylaxis, and
patients with less than 15% risk should not. This approach
mandates binary outcome predictions. For models predicting
risk along a continuum (ie, 0%e100%), conversion to a dichoto-
mous threshold sacrifices precision, but decision curve analysis
obviates conversion to a binary outcome threshold.37 Decision
curve analysis proceeds by solving a decision tree for pt, iden-
tifying the number of true-positive and false-positive results
according to pt, calculating the net benefit of the prediction
model used to estimate p, and varying pt over a clinically rele-
vant range of possible values. Model net benefit is calculated for
each new pt, producing a decision curve that plots pt against a
model net benefit for 2 patient populationsdone in which all
patients have the condition being predicted and one in which no
patients have the condition being predicted. The model is
beneficial at all pt for which the space between the 2 lines has
net benefit >0. By avoiding conversion of continuous probability
scores to binary variables, this approach has the theoretic
advantage of preserving precision.

The tendency to overtreat the insured and undertreat the
uninsured in the United States suggests that current practices for
incorporating costs in medical decisions are suboptimal.1 Opti-
mizing value of care, that is, clinical outcomes in the context of
financial costs, could address this problem.38 Decision analyses
can accomplish this goal by comparing gains, expressed as
quality-adjusted life years (QALYs), with expenditures expressed
in monetary values like dollars.39 Among patients with non-
valvular atrial fibrillation with at least 1 risk factor for stroke,
administration of warfarin costs about $8,000 per one QALY
saved. For a 65-year old patient with no risk factors, adminis-
tration of warfarin costs about $370,000 per 1 QALY saved.40

Robbins et al41 demonstrate a method for surveying involved
parties and incorporating their willingness to bear financial bur-
dens in NNT analyses.

Reinforcement learning

Reinforcement learning is potentially useful in surgical decision-
making because it can use an expanded set of complex input data,
including text, image, and waveform data tailored to individual
patients, to recommend specific actions at sequential decision
points. Reinforcement learning is the subfield of artificial intelli-
gence that most closely mimics human learning and decision-
making. In this discussion, the agent (an algorithm) learns to map
states (patient conditions such as stages of cancer) observed from
its environment (data available to the algorithm [eg, data from an
electronic health record or a database]) to actions that maximize a



Fig 2. Decision tree framework and clinical application. When it is unclear whether a diagnostic or therapeutic intervention is useful, decision tree analysis identifies a probability
threshold (pt) at which value-adjusted outcomes for intervention and no intervention are equivocal. A prediction model or published literature provides the probability that disease
is present. If this value is greater than pt, then the intervention is useful. Published literature and patient interviews provide relative values for each outcome.
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Fig 3. Reinforcement learning framework and clinical application. An algorithm interacts with its environment (consisting of data from electronic health records or data sets) to
learn states (representing disease or patient acuity), actions that lead to new states, probabilities of transitioning between states, and associations between state transitions and an
ultimate goal, such as survival or discharge to home in good health. The algorithm then identifies actions that are most likely to achieve the ultimate goal. This process can occur
within a Markov Decision Process framework and apply to a patient presenting with bowel obstruction, estimating the clinical utility of observation and operative exploration in
response to evolving clinical conditions.
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reward (clinical outcome). Actions may affect not only the imme-
diate outcomes but also all subsequent states and outcomes.42 By
developing optimal value functions and decision-making policies,
reinforcement learning identifies sequences of actions yielding the
greatest probability of long-term favorable outcomes as conditions
of uncertainty evolve over time. Interactions between a learning
algorithm and its environment often occur within a Markov Deci-
sion Process containing states, actions, state-transition probabili-
ties, and rewards (Fig 3).

For a patient presenting with adhesive small bowel obstruction
without peritonitis, a surgeon may recommend 1 of 2 primary ac-
tions: observation or operative exploration. Resolution and
discharge homewithout the need for abdominal exploration, bowel
resection, or intra-abdominal sepsis during hospitalization is the
goal; however, the goal could be any patient-centered outcome that
available data can represent. This “thought experiment” assumes
that initial observation yields a 50% chance of transitioning to a
state of resolved bowel obstruction, a þ3 reward, and a 50% chance
that the patient will develop peritonitis, a e2 reward. If instead the
patient undergoes early operative exploration, there is an 80%
chance of resolution, representing aþ2 reward, and a 20% chance of
intra-abdominal sepsis attributable to missed enterotomy or sur-
gical site infection, representing a e3 reward. At the next decision
step, the patient with intra-abdominal sepsis may be observed,
yielding a 100% probability of persistent, intra-abdominal sepsis, or
undergo reoperation, yielding a 60% chance of clinical improve-
ment with resolution of obstruction and infection, representing
a þ4 reward. The algorithm performs a series of such interactions
with the environment. The environment sends rewards at each
time step, and a value function determines which sequence of ac-
tions maximizes the cumulative long-term reward, generating a
policy for choosing actions in each state, but also adapting to un-
certain conditions that evolve over time. Details regarding “reward”
and “value functions” are beyond the scope of this review. We refer
interested readers to foundational work on these topics by Sutton
and Barto.42
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Electronic health records

Like other artificial intelligence subfields, most reinforcement
learning algorithms require large data sets for training and vali-
dation. To achieve the granularity necessary for precise application
to individual patients, data sets must be large enough that they
contain data from multiple patients that closely mimic the indi-
vidual patient for whom the decision-support tool is being applied.
Many electronic health records (EHR) contain massive quantities of
data. Most EHR platforms are adept for billing and ensuring
completeness of records, but their interfaces are often cumber-
some, and clinically important information lies buried in layers of
auto-populated fields. In 1 observational study, medical interns
spent 43% of their time during an inpatient rotation using EHRs.43

Of their time, 13% included direct patient care, down from 25% 2
decades ago.43,44 One might expect decision-support tools
requiring manual data acquisition and entry to be overlooked.
Among studies investigating barriers to effective, shared decision-
making, time constraint was the most common barrier.18 In a sur-
vey of trainees at academic hospitals, only 26% of all respondents
regularly used a risk calculator or other risk-assessment tool.11

Respondents identified lack of integration with clinical workflow
as a major barrier to clinical adoption.

Theoretically, reinforcement learning can capitalize on large
data sets in EHRs and obviatemanual data entry.45 It is also possible
to expand the input of data for the model to learn from images on
radiographs and video monitors and by natural language process-
ing from notes written by clinicians through integration with deep
learning, which is adept at parsing large data sets and various types
of complex input data. For example, information from computed
tomography; cardiac telemetry waveforms; and written de-
scriptions of diseases, operations, and postoperative complications
could be processed and represented by deep learning models, and
then used as input data for models of reinforcement learning. This
approach, “deep reinforcement learning,” has the potential to make
the best possible recommendations by incorporating more data
requiring no manual input from more sources.

Deep reinforcement learning

For health care applications to be useful, reinforcement learning
platforms must efficiently process large volumes of complex data.
As the number of variables representing states increases linearly,
the combinations and mixtures of data that could represent unique
states increase exponentially, computational requirements increase
exponentially, and it becomes impossible for naïve or shallow
models to perform an exhaustive search for the best possible action
in a given state.46,47 To address this challenge, deep learning and
reinforcement learning may be combined, that is, reinforcement
learning with parametric function approximation by deep neural
networks that efficiently extract key features and patterns from
complex environments.48When deep learningmodels are provided
with the same data of vital signs and laboratory evaluations used to
calculate a traditional illness severity score (for instance the
sequential organ failure assessment [SOFA] score often used in an
ICU setting), the deep model makes more accurate predictions of
mortality.49 Deep models have performed well in predicting pro-
tein structure from raw protein sequences and the impact of human
gene mutations.50,51 Deep models are also adept at tasks that
involve computer vision which use pixels as input data to classify
images. This technology can apply to radiographs and data from
video monitors, expanding the set of input data available to
represent environments in reinforcement models.52e55

The gaming industry has applied deep reinforcement learning
with impressive results. Go is a complex game. There are 32,490
possible first moves, and the number of possible board configura-
tions and available moves increases rapidly as the game progresses.
Therefore, an exhaustive search for the optimal move in a certain
board configuration with reinforcement learning alone is not
feasible. By combining deep and reinforcement learning, an
AlphaGo program defeated the European Go champion 5 games to
0.46 A subsequent version, AlphaGo Zero, was trained purely with
deep reinforcement learning using self-play, with no supervised
human data and domain knowledge.56 AlphaGo Zero defeated the
earlier version 100 games to 0.

Health care applications

Evidence from retrospective studies suggests that reinforce-
ment learning can apply to clinical decision support. Sepsis is a
common, morbid condition for which management strategies are
evolving. Within the last decade, evidence-based guidelines have
recommended intravenous fluid resuscitation targeting the estab-
lishment and maintenance of a central venous pressure of 8 to 12
mm Hg, among other hemodynamic goals. Adherence to this
recommendation was associated with administration of nearly 17 L
of intravenous fluid within the first 3 days of treatment.57,58 Un-
fortunately, sepsis-associated vasoplegia, capillary leak, and
decreased ventricular compliance portend poor fluid responsive-
ness.59 Less than half of all septic patients with hypotension are
fluid responsive, similar to other populations of critically ill pa-
tients.60,61 Excessive administration of intravenous fluid can be
harmful. Even among healthy volunteers, only 15% of a fluid bolus
remains intravascular 3 h after administration.62 Fluid boluses,
increased central venous pressure, and positive fluid balance have
been associated with increased mortality among sepsis pa-
tients.63,64 Methods to ensure optimal balance between intrave-
nous fluid resuscitation and vasopressor administration for
patients with sepsis and septic shock remain highly controversial.

Komorowski et al45 created the AI (Artificial Intelligence)
Clinician, a clinical-decision support model capable of recom-
mending the appropriate volume of intravenous fluid and the
appropriate doses of vasopressor for septic patients. The model
uses a Markov decision process framework in which 90-day sur-
vival is the ultimate goal. Themodel was trained with data from the
Medical Information Mart for Intensive Care-III from 61,532 ICU
admissions and validated on the Philips eRI data (Koninklijke Phi-
lips NV, Amsterdam, The Netherlands) from more than 3.3 million
ICU admissions. A total of 48 variables, including vital signs, labo-
ratory values, and comorbidities, were tracked along 4-hour in-
crements during 72 hour and clustered into 750 distinct states. The
model “learned” that certain combinations of intravenous fluids
and vasopressors were associated with transitions between states,
and that certain state transitions were associated with the greatest
probability of survival. AI Clinician tended to recommend lesser
intravenous fluid and greater doses of vasopressors than clinicians.
Mortality was least when actions taken by clinicians matched
recommendations from AI Clinician.

When epileptic seizures do not respond to medications, elec-
trical stimulation of the brain and vagus nerve with implantable
devices may be a viable alternative treatment. The optimal
approach would provide enough neurostimulation to decrease or
eliminate seizure activity and minimize cell damage attributable to
excessive neurostimulation. The optimal approach is difficult to
achieve, attributable in part to difficulties in accurately represent-
ing this paradigm with traditional statistical methods and regres-
sion modeling. Pineau et al65 developed a reinforcement learning
model to perform this task. The model trained on experimental
recordings of in vitro electroencephalogram field potentials that
were hand-labeled as normal or seizure activity used to define



Fig 4. Comparison of decision analysis and reinforcement learning for augmenting clinical reasoning. The unique strengths and limitations of decision analysis and reinforcement
learning suggest complementary roles in augmenting clinical reasoning.
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various states. Actions included no stimulation or stimulation at
three different fixed frequencies. Whereas Komorowski et al45

targeted a single binary outcome (ie, survival), the Pineau et al65

study targeted two outcomes (ie, seizure activity and neuro-
stimulation), penalizing both. Minimization of seizure activity was
assigned a greater value than the minimization of stimulation,
which reflects the clinical observation that seizures are worse than
neurostimulation from implantable devices. When applied to
experimental data, the model produced decreases in seizure ac-
tivity comparable to traditional periodic stimulation at fixed fre-
quencies, but with less neurostimulation, thereby achieving the
ultimate goal.

Strengths and limitations of decision analysis and reinforcement
learning

Decision analysis and reinforcement learning have unique and
shared strengths and limitations (Fig 4). These similarities and
differences suggest complementary roles in augmenting clinical
reasoning across populations and for individual patients.

Strengths
In summary, decision analysis methods quantify overall clinical

utility by weighing risks and benefits by patient values and incor-
porating costs to quantify the “value” of care, facilitating optimal
use of resources across health care systems. Probability thresholds
inform guidelines and recommendations for diagnostic and ther-
apeutic interventions across populations.66 Reinforcement learning
can use an expanded set of complex input data, including text,
image, and waveform data, tailored to individual patients to
recommend actions at sequential decision points with uncertain
conditions. Both reinforcement learning and decision analysis can
make specific recommendations for discrete choices, incorporating
multiple risks, benefits, and alternatives of possible interventions
and the likelihood that they will lead to patient-centered outcomes
of interest.

Limitations
Decision trees and curves typically use few input variables,

limiting their ability to represent the unique physiology of indi-
vidual patients. Like all models, they are less effective when the
index patient differs from the cohort used for the development of
the model.15 The same phenomenon limits evidence-based
guidelines.67,68 In addition, decision analyses adapt poorly to con-
ditions of uncertainty, because these decision analyses require that
inputs be known or imputed. Finally, the use of simple decision tree
and curve analysis is difficult to apply to sequential decision-
making, which is often necessary for health care applications.14

Reinforcement learning can perform sequential decision-
making tasks, but with each additional decision, a smaller pro-
portion of the original sample remains, decreasing the effective
sample size.69 For many surgical diseases, there are no large data-
bases containing all information necessary to solve certain prob-
lems with reinforcement learning. Sharing EHR data among
institutions could solve this problem but ensuring the interopera-
bility and security of multi-institutional EHR data is difficult both
logistically and technically. In addition, when comparing a rein-
forcement learning policy with clinician decisions, model input
data should include all data that truly can influence clinician de-
cision-making.45 For example, a model recommending operative
versus nonoperative management of acute appendicitis should
incorporate evidence present on computed tomography of a peri-
cecal phlegmon, suggesting a greater likelihood of the need to
perform a greater-risk operation like an ileocecectomy or right
hemicolectomy, a greater likelihood that surgeons will recommend
nonoperative management, and worse outcomes regardless of
management strategies. A model that ignores any pericecal
phlegmon could make erroneous associations between nonopera-
tive management and worse outcomes for these patients. Similarly,
a model that ignores appendicoliths, which suggest greater likeli-
hood of failing nonoperative management, may underestimate the
benefits of early appendectomy for these patients. In these clinical
scenarios, the findings on physical examination can make impor-
tant contributions to surgical decision-making but cannot be
included in predictive analytic models with current technologies.
Finally, evenwhen all relevant input data are incorporated, it can be
difficult to understand how a model reached its recommendation.
To mitigate this challenge, methods to improve the transparency
and interpretability of the models are available, such as methods
that identify model inputs that made important contributions in
determining model outputs.49,70

Patients and surgeons will want to know how confident the
models really are that predictions made by the model will match
true, observed outcomes. This need for confidence in themodel and
suggestions of treatment are important because confidence levels
of the machine-learning model can be approximated



Fig 5. Decision analysis and deep reinforcement learning have complementary roles in augmenting population-based and personalized decision-making. Input variables from
patient assessments and the data from the electronic health record feed decision analysis tools that calculate probability thresholds to inform population-based recommendations.
Reinforcement learning models combined with deep learning representation of an expanded set of input data can identify actions yielding the greatest probability of a patient-
centered outcome.
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mathematically to (0.1), with greater values suggesting greater
confidence that the model output is accurate, but this method may
also overestimate model certainty.71 Alternatively, predicted
probabilities can be calibrated with reliability curves, producing
confidence scores.72 Calibration compares model outputs with a
gold standard and answers the question, “Do x of 100 patients with
predicted risk x% have the outcome?” This may be depicted
graphically or described with the Brier score (calculated as the
difference between predicted probability and the actual outcome,
raised to the second power), observed-to-expected ratios, or the p
value of the Hosmer-Lemeshow goodness-of-fit c2 statistic. In
predictive analytic terms, calibration compares model predictions
with actual outcomes For example, if a perfectly calibrated model
predicts a 5% chance of postoperative delirium for 100 different
patients, delirium will actually occur in 5 of those patients.
Whereas stable discrimination or accuracy depends on consistent
effects of the measured covariates on outputs, stable calibration
requires that unmeasured covariates make minimal impact on the
outcome of interest.73 Therefore, the performance of the model
should be described with both discrimination and calibration.
Calibration has a clinically important impact on medical decision-
making.74 Unfortunately, calibration is often omitted in develop-
ment and validation of models of machine-learning.72

Both decision analysis and reinforcement learning require large,
high-quality data sets for development and validation. For a patient
with early stage breast cancer, the choice to pursue breast-
conserving therapy with partial mastectomy and adjuvant radio-
therapy limits future treatment options involving additional
radiotherapy, which may affect a small subgroup of patients who
will develop conditions for which additional radiotherapy is
potentially beneficial. Provided with enough granular, longitudinal
data, a model could make predictions that consider these subtle-
ties, but such data are often unavailable. EHRs are notorious for
noisy data which compromise the performance of traditional and
machine-learning models alike.75 Even when large, longitudinal,
high-quality data are available, contemporary approaches to deci-
sion analysis and reinforcement learning cannot tailor recom-
mendations to the unique values of individual patients. There may
come a time when the availability of massive volumes of data and
computational power allows for the efficient training of reinforce-
ment learning models designed to achieve a specific goal that is
determined through a shared decision-making process among pa-
tients, caregivers, and clinicians. Until then, however, attentive
clinicians that understand and interpret clinical context must
perform this task. Currently, there is no evidence demonstrating
that reinforcement learning can improve surgical decision-making
for individual patients or that reinforcement learning is superior to
other decision-support methods. Therefore, its potential advan-
tages, though promising, remain theoretic.

Discussion

The unique strengths and limitations of decision analysis and
reinforcement learning suggest complementary roles in augment-
ing clinical reasoning. Decision analysis is well-suited for gener-
ating population-based recommendations that optimize clinical
utility and value of care. Reinforcement learning is also potentially
ideal for individual, patient-centered, sequential decision-making
(Fig 5). To produce general recommendations, data from aggre-
gate patient populations regarding the risks and benefits of elective
repair of a symptomatic ventral hernia may be considered within
the context of financial costs and patient-centered outcomes like
long-term functional status and quality of life. In isolation, this may
not ensure optimal decision-making for individual patients.
Approximately half of all evidence-based practices are provided to
patients in the United States.76 Personalized approaches may suc-
ceed where dissemination of clinical practice guidelines has failed.
Theoretically, for a patient presenting with a symptomatic ventral
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hernia, deep reinforcement learning can incorporate an expanded
set of input data to determine whether elective repair or expectant
management is more likely to yield optimal long-term functional
status and quality of life in that specific patient, with sequential
recommendations that evolve with changes in clinical conditions
over time.

Clinical adoption of reinforcement learning would inevitably
lead to disagreements between clinicians and recommendations by
the model. There could be substantial legal consequences in
assigning liability for adverse events. The nature of the decision
also has important implications. Humans and computers both
make errors, but patients and their caregivers may have markedly
different perceptions regarding human and computer errors
regarding sensitive decisions such as situations in which deter-
mining futility of care can lead to suggestions of withdrawal of life-
sustaining treatments. Finally, a model trained with data from a
homogeneous patient population may not represent accurately a
separate population or individual patient. For instance, Awad et al77

reported substantial cross-cultural variation in preferences for
moral dilemmas facing self-driving cars. Similar variations likely
exist among surgical patients and their caregivers.

In conclusion, surgical patients incur preventable harm from
cognitive and judgment errors made under time constraints and
uncertainty regarding a patient’s diagnosis and predicted response
to treatment. Clinicians often ignore or are ignorant of the avail-
ability of decision-support tools, which require time-consuming
manual entry of appropriate data and lack precision for repre-
senting individual patient pathophysiology and clinical context. To
address these challenges, decision analysis methods can generate
population-based recommendations that jointly consider risks,
benefits, costs, and patient values. Reinforcement learning offer the
possibility of using large sets of complex patient-specific input data
(when available) to identify actions yielding the greatest proba-
bility of achieving a goal following a sequence of events as uncer-
tain conditions evolve, offering theoretic advantages for
personalized, patient-centered decision-making. The unique po-
tential strengths and limitations of decision analysis and rein-
forcement learning suggest complementary roles in achieving the
ultimate goal of delivering high-value surgical care through sound
judgment and optimal decision-making.
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