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A B S T R A C T   

The free-flying space manipulators present challenges in controlling the motions of both the spacecraft bus and 
the manipulator, because of the highly-coupling system dynamics and the unknown space environment distur-
bances. Although the sliding mode controllers are robust to the unknown disturbances and system uncertainties, 
the chattering effect could affect the pointing accuracy and the lifetime of the actuators. This paper first in-
troduces the dynamics of a CuBot, which is a 3-rigid-link manipulator based on the CubeSat platform. To 
maintain the robustness while decreasing the chattering effect, an innovative reinforcement learning based fuzzy 
adaptive sliding mode controller is proposed. To maintain the robustness while reducing the chattering effect, an 
innovative reinforcement learning based fuzzy adaptive sliding mode controller is proposed. The switching gain 
is updated to estimate the lumped upper bound of the system uncertainties and the unknown disturbances, and 
then a new fuzzy logic adaptive law is applied on the switching gain to decrease the chattering effects. On top of 
that, the fuzzy logic rules are tuned by an innovative modified reinforcement learning mechanism to achieve the 
better tracking performance. The uniformly ultimately bounded tracking errors are guaranteed by the proposed 
control scheme, and the effectiveness is validated by the simulation results.   

1. Introduction 

The space manipulators have played an increasingly crucial role in 
various recent complex space missions [1]. The first remotely operated 
space manipulator was successfully demonstrated in 1986 [2]. There has 
been a growing popularity to develop the researches and projects. Since 
then a number of space manipulators have been developed. The ETS-VII 
was developed by JAXA for testing the technologies of rendezvous 
docking in 1997 [3]. The European Robotic Arm (ERA) was designed to 
attach to the Russian segment of the International Space Station (ISS) 
[4]. The humanoid robot ROBONAUT was proposed to replace the as-
tronauts from high risk extravehicular activities [5]. However, for a 
space manipulator attached to the body of the target spacecraft, its 
workspace typically is constrained around a small area. To achieve more 
workspace the manipulator can be mounted on a small sized spacecraft 
that can free fly around the target spacecraft [6]. In this paper a CuBot is 
proposed, where an 8U CubeSat platform, 20 cm � 20 cm x 20 cm, is 
employed as the spacecraft bus. where The manipulator is mounted on 
the CubeSat as shown in Fig. 1. The motion of the CubeSat is controlled 
by thrusters when the manipulator is in operations. 

Compared to terrestrial robot manipulators, the free-flying space 

manipulators have more complicated dynamics due to the external 
forces and reaction torques from the motion of the manipulator. The 
existing control strategies of handling the free flying space robots can be 
classified into 2 types. One type called pose-fixed mode is to treat the bus 
and the manipulator separately: firstly the position and attitude of the 
spacecraft bus are fixed using the thruster and reaction wheels to 
compensate any forces or torques resulted from the motions of the 
manipulator, and then applying the controllers designed for the fixed- 
base manipulators [7]. The other is to control the motions of both the 
spacecraft bus and the manipulator simultaneously by considering the 
dynamic coupling effects [8,9]. Fonseca et al. provided the approximate 
linear dynamic equations of a free-flying spacecraft equipped with a 
manipulator in the scenario of the close proximity phase of rendezvous 
docking operation, and then applied the LQR and PID controllers in both 
the approximate linear model and the non-linear model, demonstrating 
that the spacecraft’s attitude can be stabilized by proper control pa-
rameters [10]. Liu et al. reformulated the dynamics equations of a space 
robot with different models of joint friction, and applied PD controller 
with the aid of state feedback decoupling method, which requires an 
accurate dynamics model, to achieve the exponential stability of the 
spacecraft attitude [11]. Yang et al. modelled the dynamics of a rigid 
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free-flying spacecraft equipped with the manipulator, consisting of the 
rigid links and flexible joints, by the assumed mode approach and the 
Lagrangian method, and then they applied a sliding mode controller 
(SMC) and a LQR controller to achieve the desired trajectory tracking 
[12]. However, most of these controllers require the known upper bound 
of the disturbances and system uncertainties that are hard to know in 
practice. 

The unknown disturbances in space and the system uncertainties 
may result in the failure to control the space manipulators. The issue of 
the system uncertainties and disturbances can be solved by applying the 
adaptive algorithms such as neural networks to estimate the unknown 
disturbances and system uncertainties [13–16] or their upper bounds 
[17,18]. Yoo et al. proposed a dynamic surface based adaptive controller 
with the aid of the self-recurrent wavelet neural network (SRWNN) to 
control the 3-linkage-flexible-joint manipulator on the ground. The 
SRWNN was used to estimate the unknown system uncertainties and 
disturbances, and the control algorithm was verified by both the simu-
lation results and mathematic stability analysis [19]. However, the 
performance of neural networks to approximate the system dynamics is 
highly dependent on the structure of neural network such as the number 
of hidden neurons and type of activation function. The methods of 
determining the optimal structure of the neural networks are still 
empirical [20]. The other method of handling unknown system un-
certainties and disturbances is to apply the sliding mode controller with 

an upper bound of the unknown disturbances and uncertainties [21]. Ref 
[22]. modelled the dynamics equations of a free-flying spacecraft bus 
equipped with 2 manipulators, and then a robust sliding mode controller 
(SMC) requiring a known upper bound of system uncertainties and a 
model predictive controller (MPC) based on the nominal system pa-
rameters are applied in motion control. Shi et al. derived the dynamics 
model of a free-flying space robot considering with zero momentum 
control, and a robust sliding mode control (SMC) with the known upper 
bound of the system uncertainties and disturbances was proposed to 
stabilize both the attitude of the spacecraft and the motion of the 
manipulator [23]. The conventional sliding mode controllers invariably 
lead to the tradeoff between the robustness and the chattering effects 
that can decrease the tracking performance [24]. The big value of 
switching gain would result in the significant chattering effect while the 
small value would result in lower robustness. 

This paper presents a new reinforcement learning based adaptive 
sliding mode controller (RLFSMC) for the CuBot motion control. The 
RLFSMC is capable of mitigating the chattering effects without sacri-
ficing the robustness of the sliding mode controllers. It can achieve the 
uniformly ultimately bounded (UUB) tracking errors. The proposed 
method applies an innovative adaptive law governed by the fuzzy logic 
interference in SMC to provide adaptive switching gains, which can 
effectively reduce chattering effects without sacrificing the robustness. 
Unlike Ref [25] and Ref [26] where the fuzzy rules are given by the 
designer, a modified reinforcement learning mechanism is adopted to 
tune the fuzzy rules online to continuously search the optimal solutions 
in this paper. Moreover, unlike the conventional reinforcement Q 
learning mechanism in Ref. [27] where each pair of an action and a 
reward only lead to the update on 1 element in the Q matrix, the 
modified learning mechanism can utilize a pair of an action and a 
reward to update the Q values of multiple actions, showing more effi-
cient learning. 

The remaining paper is organized as follows. Section 2 presents the 
dynamics and kinematics of an 8U CubeSat equipped with a 3-rigid-link-
age manipulator; In Section 3, we present the adaptive sliding mode 
controller with the aid of a fuzzy logic inference, and the reinforcement 
Q learning mechanism tuning the fuzzy rules is also detailed in this 
section; Section 4 presents simulation results and the comparisons be-
tween the proposed controller and a conventional sliding mode 
controller; Section 5 concludes. 

2. Dynamics of the CuBot 

The following assumptions for the presented model are imposed to 
maintain model simplicity: 

Assumption1. The CubeSat body and manipulator links are rigid. 

Assumption2. The effects of microgravity and orbital mechanics on 
the system dynamics are ignored, because they are insignificant 
compared to the control forces and torques during the typical maneuvers 
of short length for a free flying space manipulator. 

The space manipulator system is constituted by an 8U CubeSat and a 
n-links. The structure of the space manipulator is shown in Fig. 2. 

P
B 

denotes the CubeSat (base) coordinate, 
P

I denotes the inertia coordi-
nate. 

P
li (i ¼ 1;2; 3) is the coordinate of the ith link. ri;I (i ¼ 1; 2;3) is 

the position vector of center of mass (CM) of the ith link. pi;I (i ¼ 1; 2;3) is 
the position vector of the ith joint. ai (i ¼ 1;2; 3) is the position vector 
from the ith joint to the CM of the ith link. bi (i ¼ 1; 2; 3) is the position 
vector from the CM of the ith link to the ðiþ 1Þth joint. 

The dynamics equation can be derived by the general Lagrangian 
formulation [28]: 

d
dt

�
∂T
∂ _qi

�

�

�
∂T
∂qi

�

¼Qi; i¼ 1;…;N; (1) 

Fig. 1. The manipulator mounted on an 8U CubeSat.  

Fig. 2. The free-flying CubeSat with a mounted manipulator.  
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where T refers to the kinematic energy of the system. N means the de-
grees of freedom (DOF) of the system, which is equal to 6þ n consisting 
of the 6 variables for the spacecraft bus attitudes and positions as well as 
the n variables describing the angular movements of the n manipulator 
joints. Qi and qi are the ith elements in the ðnþ6Þ � 1 vector of gener-
alized control forces/torques and the ðnþ6Þ � 1 vector of generalized 
coordinates respectively. 

q¼ ½δb; θb; θm�
T (2)  

Q¼ ½Fb; τb; τm�
T (3)  

where δb ¼ ½x; y; z�T are the positions of the CubeSat with respect to the 
inertia frame, and θb ¼ ½θ0x; θ0y; θ0z�

T are the angular positions of the 
CubeSat in the body frame respectively and θm ¼ ½θ1; θ2;…; θn�

T are the 
angular movements of the n manipulator joints. Fb ¼ ½Fbx; Fby; Fbz�

T and 
τb ¼ ½τbx; τby; τbz�

T are the control forces and torques applied on the 
CubeSat respectively. τm ¼ ½τ1; τ2;…; τn�

T are the control torques on the 
manipulator joints. T can be described in the discrete form by assuming 
the mass of each rigid body mainly concentrates on the mass center [29]: 

T ¼
1
2
Xn

i¼0

�
mivT

i;Ivi;I þωT
i;I Iiωi;I

�
(4)  

where vi;I, ωi;I, mi, Ii; are the linear velocity vector, angular velocity 
vector, mass, and the inertial matrix of the ith rigid link respectively. To 
describe the ωi;I and vi;I in terms of q and _q, the following kinematics 
equations can be applied [30]: 
�

vi;I
ωi;I

�

¼ Jb;i

�
v0
ω0

�

þ Jm;i _θm (5) 

The v0 and ω0 are the vectors of the linear velocity and angular ve-
locity of the CubeSat respectively. The Jb;i is the matrix that maps the 
velocity vector of the CubeSat to the velocity vector of the ith rigid body, 
and the Jm;i is the Jacobian matrix that maps the joint vector of the 
manipulator to the velocity vector of the ith rigid body [28,29]. 

Jb;i¼

"
E � p�0i

0 E

#

2R6�6; p0i¼ ri;I � r0;I (6)  

Jm;i¼

�
k1 �

�
ri;I � p1;I

�
k2 �

�
ri;I � p2;I

�
…ki �

�
ri;I � pi;I

�

k1 k2 … ki

�

2 R6�i (7)  

where the ki is the unit vector along the rotational direction of the ith 

joint of the manipulator. Parameters ri;I and pi;I are respectively the 
position vectors of the ith joint and the mass center of the ith rigid body 
with respect to the inertia frame. The E is the 3� 3 identity matrix and 
the 0 is the 3� 3 matrix in which all elements are zero. The p�0i is the 3�

3 matrix determined by the 3� 1 vector p0i ¼ ½pðxÞ0i ; p
ðyÞ
0i ; p

ðzÞ
0i �

T
, which 

results in the following equation: 

p�0i ¼

2

6
6
4

0 � pðzÞ0i pðyÞ0i

pðzÞ0i 0 � pðxÞ0i � pðyÞ0i

pðxÞ0i 0

3

7
7
5 (8) 

Using the (5)–(8) by applying the general Lagrangian Formulation of 
Eq (1), the dynamic equations of the space manipulator can be obtained 
in the typical form [31,32]: 
"

Hb Hbm

HT
bm Hm

#�
€xb
€θ

�

þ

�
Cb
Cm

�

¼

�
σb
τm

�

þ

"
JT

b

JT
m

#

σe (9)  

where Hb, Hm and Hbm are the inertial matrix of the CubeSat, the robotic 
manipulator and the coupling dynamics between the CubeSat and the 

manipulator respectively. xb ¼ ½δb; θb�
T means the motions of the Cube-

Sat. Cb and Cm are the velocity dependent nonlinear matrixes of the 
CubeSat and the manipulator respectively. σb ¼ ½Fb; τb�

T are the control 
forces and torques on the CubeSat. Jb and Jm are the Jacobian matrixes 
of the CubeSat and manipulator respectively, and σe is the unknown 
disturbance forces and torques. For the simple representation, Eq. (9) is 
rewritten as: 

HðqÞ€qþCðq; _qÞ¼Qþ D (10)  

where HðqÞ is a ðnþ6Þ � ðnþ6Þ matrix and the ðnþ6Þ � 1 vector Cðq; _qÞ
contains all the non-linear velocity term in a microgravity environment. 
The ðnþ6Þ � 1 vector Q contains the control forces and torques on both 
the CubeSat and the manipulator, the ðnþ6Þ � 1 vector D refers to the 
disturbances. For the convenience to design the controller, Eq. (10) can 
be rewritten to: 

€q¼ � H� 1C þ H� 1Dþ H� 1Q (11) 

The system error and its derivative state vector are respectively 
defined as e1 ¼ q � qd and e2 ¼ _e1 ¼ _q � _qd , where qd ¼

½xd; yd; zd; θ0x;d; θ0y;d; θ0z;d; θ1;d; θ2;d; θ3;d�
T is the vector containing the 

desired values of the CubeSat attitude and position as well as the joint 
angles of the mounted manipulator. Now Let the A ¼ � H� 1C, B ¼ H� 1, 
D ¼ H� 1D and u ¼ Q. As a result, the dynamic error is calculated as 
follows: 

_e1¼ e2 (12)  

_e2¼A � €qd þ Buþ D (13) 

To handle the scenario in which the system parameters cannot be 
exactly known, we assume the ΔA ¼ A � bA and ΔB ¼ B � bB as the dif-
ference between the actual value and the nominal value of the system 
parameters, where bA and bB are exactly known. Accordingly, Eq. (13) can 
be rewritten as: 

_e2¼ bA þ bBu � €qd þ ΔAþ  ΔBuþ D (14)  

Assumption 3. similar to Ref. [6,22], we assume the unknown bound 
of the system uncertainties and disturbances exists so that Γ ¼ ðΔA þ
 ΔBu þ DÞ, jΓij � Γ*

i for all i ¼ 1;2;…;N. Where Γi is the ith element of 
the N� 1 vector Γ. 

Definition 1. [33]: Consider the nonlinear dynamical system _xðtÞ ¼
fðxðtÞÞ, xð0Þ ¼ x0. Uniformly ultimately bounded with ultimate bound B 
if there exist positive constants B and C, as well as T ¼ TðA;BÞ inde-
pendent of t0 � 0, for every A2(0,C), such that xðt0Þ � A⇒xðtÞ � B; 8 t �
t0 þ T. 

3. Control strategy 

The controller is designed to control the attitude and position of the 
CubeSat and space manipulator’s joints. The sliding mode controller 
(SMC) with the aid of the state feedback decoupling method is used, 
which can allow the independent selections of the switching gains for 
each system variable [22]. The error state of the system can move to the 
designed sliding manifold initially by the positive designed derivative of 
the switching gain. Once the error state enters into the described vicinity 
of the manifold, the fuzzy logic inference will govern the adaption law 
and adjust the switching gain in order to mitigate the chattering effects. 
Instead of setting up the exact fuzzy rules manually, the modified rein-
forcement Q learning mechanism is applied to search the optimal set of 
fuzzy rules from the given rule candidates in a fast way. The entire 
control scheme is shown in Fig. 3. 
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3.1. Sliding mode controller and fuzzy adaption law 

The sliding variable is defined as: 

s¼ _e1 þ Kse1 (15)  

where Ks ¼ diagð½ks1; ks1;…; ksN�Þ is the ðN�NÞ positive constant diag-
onal matrix and s ¼ ½s1; s1;…; sN�

Tis  the  ðN �
1Þ  vector  of  sliding  variables  . From (12)-(15), the derivative of 
(15) can be written as: 

_s¼ bA þ bBuþ Kse2 � €qd þ ΔAþ  ΔBuþ D (16) 

The control law is: 

u¼ bB
� 1
½ � bA � Kse2þ €qd � βs � bKsgnðsÞ� (17)  

where the ðN�NÞ diagonal matrixes β ¼ diagðβ1; β2;…; βNÞ and bK ¼
diagðbk1; bk2 ;…; bkNÞ in which all the elements βi and bk1 are positive to 
stabilize the system. The system can be decoupled by the u into multiple 
SISO system: 

_si ¼Γi � βisi � bki ⋅ sgnðsiÞ; i¼ 1; 2;…;N (18) 

The ðN�1Þ vector sgnðsÞ ¼ ½sgnðs1Þ; sgnðs2Þ;…; signðsNÞ�
T are defined 

by: 

sgnðsiÞ¼

�
1; if si � 0
� 1; if si < 0 (19) 

The adaption law of the switched switching gains bK are defined as: 

_bki ¼

�
γi⋅jsij ; if

�
�sji � ηi

Ψi; else (20)  

η is a positive constant meaning the vicinity of the manifold. The γj is a 
positive constant. The Ψj is defined as: 

Ψi ¼

8
>><

>>:

γi⋅jsij ; if bki < σi

γi⋅δ
hiρi
1 ⋅jsij ; if ρi � 0 and bki > σi

δ2⋅ρi⋅j sij
ρi ; if ρi < 0 and bki > σi

(21)  

where σi < 0 is the lower bound of bki, and hi is a positive constant to 
adjust the output. δ1 is a positive number larger than 1, and δ2 is a 

positive number smaller than 1. The ρi is the fuzzy output that is 
designed to be bounded ρi 2 ½ � ρi; ρ*

i �. � ρi < 0 and ρ*
i > 0 are the 

minimum and maximum outputs of fuzzy logic inference, which can be 
set by the designer. 

Theorem 1. For a space manipulator mounted on a CubeSat (10) 
controlled by (17)-(21) with the Assumption 1, the sliding variables enter into 
their vicinities (

�
�sji < ηi) of the sliding manifold within the finite time tη, and 

then the sliding variables are guaranteed to be UUB: 

jsjj2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

 

η2
i þ δhiρ*

i
1 ⋅max

n
V*

2;i;V
*
2;i; ⋅*2;i

o
v
u
u
t ; tη ¼maxftηig; i¼ 1; 2;…N

(22)  

where V*
2;i, V*

2;i and υ*
2;i are positive constants. ηi > 0 is the designed 

vicinity of sliding manifold. δ1 > 1 and hi > 0 are parameters of 
controller decided by the designer. ρ*

i > 0 is the maximum output of 
fuzzy logic inference decided by the designer. maxf ⋅g means the 
maximum element. 

Proof. choose the candidate of Lyapnuov function as: 

V1;iðtÞ ¼
1
2
s2

i ðtÞ þ
1
2

~k
2
i ðtÞ
γi

; i ¼ 1; 2;…;N (23)  

where ~ki ¼ Γ*
i �

bki; bki is the estimates of Γ*
i . Differentiating (23) and use 

(16)-(21), resulting in: 

_V1;i¼ si _si �
~ki

_bki

γi
¼ si½Γi � βisi � bki ⋅ sgnðsiÞ� �

~ki
_bki

γi
� � βis2

i þ jsij
�
Γ*

i �
bki
�

�
~ki

_bki

γi
¼ � βis

2
i þ
�
Γ*

i �
bki
�
�

jsij �

_bki

γi

�

¼ � βis
2
i � � βiη2

i < 0
�

when
�
�sji � ηi > 0

�



(24) 

(24) implies that V1;i initially decreases and then enters into the vi-
cinity of the sliding manifold (

�
�sji < ηi) within a finite time [34]. After 

the sliding variables enter into the vicinity of the manifold, it is possible 
for the sliding variables to move out from the vicinity because the 

Fig. 3. The proposed RLFASMC scheme.  
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derivative of V1;i is not guaranteed to be negative. If the sliding variables 
move out the vicinity (

�
�sji < ηi), the _V1;i will become negative and 

consequently the sliding variables will go back towards the vicinity of 
manifold. As a result, the following inequality is obtained: 

�
�sij

2
�V1;i�

1
2

η2
i þ

1
2

~k
2
i

γi
; i¼ 1; 2;…;N (25) 

Subsequently, we should prove the sliding variables are bounded 
after firstly entering into the vicinity (

�
�sji < ηi), which can be achieved 

by proving the bound of ~k
2
i exists so that ~k

2
i � KM;i for i ¼ 1;2;…;N. 

There are 3 situations of _bki after the sliding variables firstly entering 
into the vicinity: 

The following Lyapnuov function is chosen: 

V2;iðtÞ¼
1
2

s2
i ðtÞ þ

~k
2
i ðtÞ

2γi⋅δ
hiρ*

i
1

i ¼ 1; 2;…; N (26) 

The Proof of bounded ~k
2
i can be achieved by proving that the V2;i is 

bounded after the first time of sliding variables entering into the vicinity 
of the manifold (t > tηi ) for all i ¼ 1;2; …N. Where ρ*

i > 0 is the 
maximum fuzzy output, which will be used in the following proof. 
Differentiating (26) and using (16)-(21), resulting in: 

_V2;i ¼ si _si �
~ki

_bki

γi⋅δ
hiρ*

i
1

¼ si½Γi � βisi � bki⋅sgnðsiÞ� �
~ki

_bki

γi⋅δ
hiρ*

i
1

� � βis
2
i þ

�
Γ*

i �
bki
�
 

jsij �

_bki

γi⋅δ
hiρ*

i
1

! (27) 

To the 1st situation in Table 1, where _bki ¼ γi⋅δ
hiρi
1 ⋅jsij, ρi � 0 , ac-

cording to (27): 

_V2;i� � βis2
i þjsij

�
Γ*

i �
bki
�
 

1 �
δhiρi

1

δhiρ*
i

1

!

¼jsij⋅

"

� βijsijþ
�
Γ*

i �
bki
�
 

1 �
δhiρi

1

δhiρ*
i

1

!#

(28)  

where the current fuzzy output 0 � ρi � ρ*
i , δ1 > 1, βi > 0, 0 < δhiρi

1 <

δhiρ*
i

1 and bki � σi and Γ*
i is a constant. We assume a sufficiently large value 

V*
2;i of Lyapunov function V2;i (26) that requires at least one of the terms 

1
2s

2
i and 

~k
2
i

2γi ⋅δ
ρ*
i

1 

should be sufficiently large. If the 12s
2
i is sufficiently large, 

the jsij will be sufficiently large. � βijsij þ ðΓ*
i �
bkiÞ

 

1 � δhiρi
1

δ
hiρ*

i
1

!
�
� βijsijþ

ðΓ*
i þjσijÞ < 0 holds as long as jsij >

ðΓ*
i þjσi jÞ

 

1�
δ
hiρi
1

δ
hiρ*

i
1

!

βi
�

Γ*
i þjσi j

βi
, which 

means _V2;i < 0 resulted by a sufficiently large jsij >
Γ*

i þjσi j

βi
. 

If the 
~k

2
i

2γi ⋅δ
ρ*
i

1 

is sufficiently large, the _V2;i � 0 will be also achieved by 

considering the following optimization problem similar to Ref. [34]: 

max

(
1

γi⋅δ
hiρ*

i
1

�
Γ*

i �
bki
�
)

(29)  

subject to: 

1

γi⋅δ
hiρ*

i
1

�
Γ*

i �
bki
�2
¼Ri �  V*

2;i;
bki � σi;  Γ*

i � 0 (30)  

where the Ri is the sufficiently large number smaller than or equal 
to  V*

2;i, the optimization problem results in a sufficiently large negative 

value of ðΓ*
i �
bkiÞ < 0 because Γ*

i > 0 is a positive constant: 
�
Γ*

i �
bki
�
< 0 (31a) 

The semi-negative derivative _V2;i � 0 can hold by (31a) because 1 �

δhiρi
1

δ
hiρ*

i
1

� 0 holds by 0 � ρi � ρ*
i , δ1 > 1 and hi > 0, shown as the (31b). 

_V2;i� � βis
2
i þ jsij

�
Γ*

i �
bki
�
 

1 �
δhiρi

1

δhiρ*
i

1

!

� 0 (31b) 

As a result, according to (28)-(31), either the sufficiently large 12s
2
i or 

~k
2
i

2γi ⋅δ
hiρ*

i
1 

can result in the semi-negative derivative of V2;i, _V2;i � 0, and 

consequently the V2;i is bounded by a sufficiently large V*
2;i when the _bki ¼

γi⋅δ
hiρi
1 ⋅jsij and 0 � ρi < ρ*

i : 

V2;i�

�
Γ*

i þ jσij
�2

2β2
i

þRi � V*
2;i

�
when  _bki¼ γi ⋅ δhiρi

1 ⋅ jsij
�

(32) 

To the 2nd situation in Table 1, where _bki ¼ γi⋅jsij, according to (27): 

_V2;i� � βis2
i þjsij

�
Γ*

i �
bki
�
 

1 �
1

δhiρ*
i

1

!

¼jsij⋅

"

� βijsijþ
�
Γ*

i �
bki
�
 

1 �
1

δhiρ*
i

1

!#

(33) 

Similarly, we assume a sufficiently large value V*
2;i of Lyapunov 

function V2;i (26) that also requires at least one of the 2 terms 1
2s

2
i and 

~k
2
i

2γi ⋅δ
hiρ*

i
1 

should be sufficiently large. If the 1
2s

2
i is sufficiently large, the jsij

will be sufficiently large, so that � βijsijþðΓ*
i �
bkiÞ

 

1 � 1

δ
hiρ*

i
1

!
�
0 holds as 

long as jsij>

ðΓ*
i þjσi jÞ

 

1� 1

δ
hiρ*

i
1

!

βi
�

Γ*
i þjσi j

βi
, which means _V2;i <0 resulted by a 

sufficiently large jsij>
Γ*

i þjσi j

βi
. 

If the 
~k

2
i

2γi ⋅δ
hiρ*

i
1 

is sufficiently large, the ðΓ*
i �
bkiÞ < 0 will be achieved by 

considering the optimization problem same as (29)-(31). 

1

γi⋅δ
hiρ*

i
1

�
Γ*

i �
bki
�2
¼Ri �  V*

2;i;
bki � σi;  Γ*

i � 0 (34)  

where the Ri is the sufficiently large number smaller than or equal 
to  V*

2;i, the optimization problem results in a sufficiently large negative 

value of ðΓ*
i �
bkiÞ < 0 because Γ*

i > 0 is a positive constant. The semi- 
negative derivative _V2;i � 0 can hold by (31a) because 1 � 1

δ
hiρ*

i
1

� 0 

holds by ρ*
i > 0, δ1 > 1 and hi > 0, shown as the (31b). 

Table 1 
The derivative of the switching gain  

The derivative of 
bki  

Situation 

_bki ¼ γi⋅ jsij
when the sliding variables move out the vicinity 

_bki ¼ γi⋅ δ
ρi
1 ⋅ jsij, 

ρi � 0  

when the sliding variables stay inside the vicinity and the fuzzy 
output ρi is non-negative  

_bki ¼ δ2⋅ ρi⋅ 
�
� sj j

ρi , 
ρi < 0  

when the sliding variables stay inside the vicinity and the fuzzy 
output is negative  
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_V2;i� � βis2
i þ jsij

�
Γ*

i �
bki
�
 

1 �
1

δhiρ*
i

1

!

� 0 (35) 

As a result, according to (33)-(35), either sufficiently large 1
2s

2
i or 

~k
2
i

2γi ⋅δ
hiρ*

i
1 

results in the semi-negative derivative of V2;i, _V2;i � 0, and the V2;i 

is bounded by a sufficiently large V*
2;i when the _bki ¼ γi⋅ jsij: 

V2;i�

�
Γ*

i þ jσij
�2

2β2
i

þRi � V*
2;i ðwhen _bki¼ γi ⋅ jsijÞ (36) 

To the 3rd situation in Table 1, where _bki ¼ δ2⋅ρi⋅j sij
ρi , ρi < 0, ac-

cording to (27): 

_V2;i� � βi

�
�sij

2
þ
�
Γ*

i �
bki
�
 

jsij þ
δ2⋅jρij⋅j sij

ρi

γi⋅δ
hiρ*

i
1

!

(37) 

Similarly, we still assume a sufficiently large value υ*
2;i of Lyapunov 

function V2;i (26) that also requires at least one of the 2 terms 1
2s

2
i and 

~k
2
i

2γi ⋅δ
hiρ*

i
1 

should be sufficiently large. If the 1
2s

2
i is sufficiently large, the jsij

will be sufficiently large so that jsij>1. The (37) can be further written as 
(38) because j sij

ρi < 1 holds by ρi < 0 and jsij > 1 now: 

_V2;i < � βi

�
�sij

2
þ
�
Γ*

i þ
�
�σi
�
�
�
 

jsij þ
δ2⋅ρ*

i

γi⋅δ
hiρ*

i
1

!

< � βi

�

jsij �
Γ*

i þ jσij

2βi

�2

þΛi

(38)  

where\eqalign{Λi ¼
ðΓ*

i þjσi jÞ
2

4β2
i
þ

δ2⋅ρ*
i

γi ⋅δ
hiρ*

i
1

ðΓ*
i þjσijÞ is a positive constant, and 

_V2;i < 0 holds as long as the sufficiently large jsij >
Γ*

i þjσi j

2βi
þ

ffiffiffiffi
Λi
βi

q
ac-

cording to (34), which means _V2;i < 0 resulted by a sufficiently large 

jsij > max
�

1; Γ*
i þjσi j

2βi
þ

ffiffiffiffi
Λi
βi

q �

. 

If 
~k

2
i

2γi ⋅δ
hiρ*

i
1 

is sufficiently large, the ðΓ*
i �
bkiÞ < 0 will be achieved by the 

optimization problem in (29)-(31). 

1

γi⋅δ
hiρ*

i
1

�
Γ*

i �
bki
�2
¼Ri �  V*

2;i;
bki � σi;  Γ*

i � 0 (39)  

where the Ri is the sufficiently large number smaller than or equal 
to  V*

2;i, the optimization problem results in a sufficiently large negative 

value of ðΓ*
i �
bkiÞ < 0 because Γ*

i > 0 is a positive constant. The semi- 
negative derivative _V2;i � 0 can hold by (31a) because jsij þ

δ2⋅jρi j⋅j si j
ρi

γi ⋅δ
hiρ*

i
1

�

0 holds, shown as the (40). 

_V2;i� � βis2
i þ jsij

�
Γ*

i �
bki
�
 

jsij þ
δ2⋅jρij⋅j sij

ρi

γi⋅δ
hiρ*

i
1

!

� 0 (40) 

As a result, either sufficiently large 1
2s

2
i or 

~k
2
i

2γi ⋅δ
hiρ*

i
1 

results in the semi- 

negative derivative of V2;i, _V2;i � 0, and then the V2;i is bounded by a 

sufficiently large value υ*
2;i when the _bki ¼ δ2⋅ρi⋅j sij

ρi , ρi < 0. 

V2;i�V2;i �
1
2
Π2

i þ ri � υ*
2;i ðwhen _bki ¼ δ2 ⋅ ρi ⋅ sij

ρi Þ (41)  

where Πi ¼ max
�

1; Γ*
i þjσi j

2βi
þ

ffiffiffiffi
Λi
βi

q �

. 

Consequently, according to (32), (36) and (41), the _V2;i � 0 holds by 
the sufficiently large value maxfV*

2;i;V
*
2;i; υ*

2;ig, for all i ¼ 1; 2;…N under 
all 3 sorts of adaptive law. In other words, the V2;i cannot exceed the 
sufficiently large value maxfV*

2;i;V
*
2;i; υ*

2;ig, which means all terms of V2;i 

including ~ki are bounded. 

~k
2
i

2γi⋅δ
hiρ*

i
1

�V2;i � max
n

V*
2;i;V

*
2;i; υ*

2;i

o
i ¼ 1; 2;…;N (42)  

~k
2
i �Km;i; Km;i ¼ 2γi⋅δ

hiρ*
i

1 ⋅max
n

V*
2;i;V

*
2;i; υ*

2;i

o
(43) 

According to (24), (25) and (43), the sliding variables are also 
bounded: 

Fig. 4. Membership function of inputs: s and Δs.  
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�
�
�si

�
t
��
�
�
2
� 2V1;i

�
t
�
� η2

i þ δhiρ*
i

1 ⋅ max
n

V*
2;i;V

*
2;i; υ*

2;i

o
; t> tηi ; i¼ 1; 2;…;N

(44a) 

We now consider all subsystems shown as (18), the bounded sliding 
variables of system can be achieved according to (43) and (44a)   

Proof complete 

3.2. Fuzzy logic inference 

The bigger value of sliding switching gain bki can result in the more 
robust controller in that the negative derivative of s2

i can be achieved as 
long as bki > Γi according to Eq. (18). However, the bigger bki will bring 
significant chattering effects. As a result, this paper applies a fuzzy logic 
inference to adjust the derivative of bki to mitigate the chattering effects. 

_bki ¼

(
γi⋅δ

hiρi
1 ⋅jsij ; if ρi � 0 and bki > σi

δ2⋅ρi⋅j sij
ρi ; if ρi < 0 and bki > σi

(45) 

According to (45), it is clear that the smaller ρi (eg. ρi ¼ � 1) can 
result in the smaller switching gain to alleviate the chattering effects 
even if the sliding variables are near the manifold because of its negative 
exponent form, while the bigger ρi (eg. ρi ¼ 1) can also result in the 
bigger switching gain to avoid the variables moving away from the 
manifold. The ρi is the fuzzy output from the fuzzy logic inference taking 
the sliding variables siðtÞ and their variance ΔsiðtÞ ¼ siðtÞ� siðt � TsÞ

during a sampling period Ts as the inputs. 

ρiðtÞ¼FI½siðtÞ; ΔsiðtÞ� (46)  

where FIð⋅; ⋅Þ is the aggregated fuzzy output based on the rules fired by 
the input: siðtÞ and ΔsiðtÞ. The step of fuzzification is to map the range of 
numerical values of the inputs to the linguistic variables, triangular type 
input and output membership functions shown in Fig. 4 are used with 
the linguistic fuzzy sets: 

LinðsiÞ 2 fN7;N6;N5;N4;N3;N2;N1; Z;P1;P2;P3;P4;P5;P6;P7g (47)  

LinðΔsiÞ 2 fN7;N6;N5;N4;N3;N2;N1; Z;P1;P2;P3;P4;P5;P6;P7g
(48)  

LinðρiÞ 2 fN6;N5;N4;N3;N2;N1; Z;P1;P2;P3;P4;P5;P6g (49)  

where N means negative, P means positive, Z means zero and the 
following numbers indicate the intensity (eg. N7 means the very nega-
tive big). The associated fuzzy domains, where the universal of discourse 
(UoD) of the fuzzy values of si and Δsi as well as ρi are normalized from 
� 1 to 1, are shown in Eqs. (43) and (44). As a result, the nonfuzzy values 
of si and Δsi as well as ρi should be scaled to fit the UoD of the fuzzified 
variables with the scaling factors KfdðsiÞ, KfdðΔsiÞ and KfdðρiÞ that can 
also be regarded as the defined ranges of si, Δsi and ρi. 

fdðsiÞ¼

�

� 1; �
6
7
; �

5
7
; �

4
7
; �

3
7
; �

2
7
; �
@i

7
; 0;
@i

7
;

2
7
;

3
7
;

4
7
;

5
7
;

6
7
; 1
�

(50)  

fdðΔsiÞ¼

�

� 1; �
6
7
; �

5
7
; �

4
7
; �

3
7
; �

2
7
; �

1
7
; 0;

1
7
;

2
7
;

3
7
;

4
7
;

5
7
;

6
7
; 1
�

(51)  

fdðρiÞ¼

�

� 1; �
5
6
; �

4
6
; �

3
6
; �

2
6
; �

1
6
; 0;

1
6
;

2
6
;

3
6
;

4
6
;

5
6
; 1
�

(52)  

where @i is the positive constant that is important to the following 
reinforcement learning and will be detailed later. The mostly used way 

of acquiring the fuzzy rules is to analyze the behavior of the controlled 
system, where the rules are derived in the way that the desired state can 
be achieved [35]. However, the exact rules are hard to acquire because 
the perfect expertise of designer’s knowledge is expensive in the prac-
tice. As a result, instead of manually setting up the fuzzy rules based on 
the expertise of designers, we initially set up the membership functions 
and the scaling factors as well as the group of rule candidates, and then 
applies the reinforcement Q learning to search the optimal rules (shown 
in Table 2) from the rule candidates. 

The firing strengths of each fuzzy rule in Table 2 can be calculated by 
using the given membership functions: 

μk
i ½Rkðn;mÞ� ¼ min½μnðsiÞ; μmðΔsiÞ�; n ¼ � 7; � 6;…; 6; 7

m ¼ � 7; � 6;…; 6; 7
i ¼ 1; 2;…;N
k ¼ 1; 2;…; 15� 15

(53)  

where the operator minð ⋅Þ selects the minimum value among the 
membership μnðsiÞ of si and membership μmðΔsiÞ of Δsi. After calculating 
the firing strength of each rule, the numerical output can be achieved 
[36]: 

ρi ¼FIðsi; ΔsiÞ ¼

Pkm
k¼1μk

i Φk
i KfdðρiÞ

Pkm
k¼1μk

i

; i ¼ 1; 2; ::; N (54)  

where Φk
i is the fuzzy values corresponding to the linguistic value of the 

kth rule in the ith subsystem, shown in Fig. 5, corresponding to the ith sub- 
system shown in (18). km is the number of rules. 

Table 2 
Fuzzy rules.  

LðΔsiÞ/LðsiÞ N7  N6  …  P7  

N7  R1ðN7;N7Þ R2ðN7;N6Þ …  R15ðN7;P7Þ
N6  R8ðN6;N7Þ R9ðN6;N6Þ …  R30ðN6;P7Þ
⋮  ⋮  ⋮  ⋱  ⋮  

P6  R196ðP6;N7Þ R197ðP6;N6Þ …  R210ðP6;P7Þ
P7  R211ðP7;N7Þ R212ðP7;N6Þ …  R225ðP7;P7Þ

Fig. 5. Membership function of output ρi.  

jjsðtÞjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1
s2

i

 

t

!v
u
u
t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XN

i¼1

 

η2
i þ δhiρ*

i
1 ⋅max

(

V*
2;i;V

*
2;i; υ*

2;i

)v
u
u
t

1

A; t>maxftηig; i¼ 1; 2…N (44b)   
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3.3. Modified fuzzy reinforcement Q learning 

Q learning has the ability to optimize the unknown system by 
modelling the system into the Markov decision process, where an agent 
(the fuzzy logic inference in this paper) applies an action u 2 UðwÞ at 
time instant t on the state w 2W to make the system move to the next 
state w’ 2W with a resulted reward/penalty c. The agent is supposed to 
find the policy πðwÞ→u that can generate the actions, which result inthe 
Q-value of either the biggest reward or the lowest penalty: 

Qðw; uÞ¼ cðw; uÞ þ λ
X

ðw’2WÞ

½pðw;w’; uÞ ⋅ Q*ðw’; uÞ� (55)  

where pðw;w’; uÞ is the possibility of moving from w to w’, Q* is the 
maximum Q value. The update law of Q value can be generated from 
(55): 

Qðwt; utÞ← Qðwt; utÞ þ α
�
cðwt; utÞþ λ ⋅ Q*�wtþ1; ut� � Qðw; uÞ

�
(56)  

Q*�wtþ1; ut�≜arg max
u2Uðwtþ1Þ

�
Q
�
wtþ1; ut�� (57)  

where wt and wtþ1 refer to the state on tth and ðt þ 1Þth instant, and ut is 
the action taken on the tth instant. α 2 ½0; 1� is the learning rate and λ 2
½0; 1� is the discount factor. The optimal Q-values can be achieved by 
visiting each pair of state and action [27]. 

In this paper, the Q learning will be used to determine the Q values 
for each pair of visited state (the linguistic variables of si and Δsi) and the 
taken action (the fuzzy rules taken). 

wiðtÞ≜ ðL½siðtÞ�;L½ΔsiðtÞ�Þ ; i¼ 1; 2; ::;N (58)  

uiðtÞ≜ RkðL½siðtÞ�; L½ΔsiðtÞ�Þ ¼L½ρiðtÞ� ; i¼ 1; 2;…;N (59) 

For each state wiðtÞ shown in Tables 2 and 3 different groups of rule 
candidates are given, they are the sliding variables approximating the 
manifold, drifting away the manifold and keeping static around the 
manifold. 

Rk: If L½siðtÞ� 2 fP7; P6;…;P1;Zg and L½ΔsiðtÞ� 2 fN7;N6;…;N1g, or if 
L½siðtÞ� 2 fN7;N6;…;N1; Zg and L½ΔsiðtÞ� 2 fP7; P6; …; P1g, then Ui

k ¼

fN6;N5;…;N1; Zg and: 

ui
kðtÞ ¼ ui

k;1ðtÞ ¼ N6 with q
�

ui
k;1; k

�

ui
kðtÞ ¼ ui

k;2ðtÞ ¼ N5 with q
�

ui
k;2; k

�

⋮  

ui
kðtÞ ¼ ui

k;7ðtÞ ¼Z with q
�

ui
k;7; k

�

Rk: If L½siðtÞ� 2 fP7;P6;…;P1g and L½ΔsiðtÞ� 2 fP7;P6;…;P1;Zg, or if 
L½siðtÞ� 2 fN7;N6;…;N2;N1g and L½ΔsiðtÞ� 2 fN7;N6;…; Zg, then Ui

k ¼

fZ;P1;…;P5;P6g and: 

ui
kðtÞ¼ ui

k;1ðtÞ ¼ Z with q
�

ui
k;1; k

�

ui
kðtÞ¼ ui

k;2ðtÞ ¼ P1 with q
�

ui
k;2; k

�

⋮  

ui
kðtÞ¼ ui

k;7ðtÞ¼P6 with q
�

ui
k;7; k

�

Rk: If L½siðtÞ� ¼ Z and L½ΔsiðtÞ� ¼ Z, then Ui
k ¼ fN3;N2;…;P2;P3g

and: 

ui
kðtÞ¼ ui

k;1ðtÞ ¼ N3 with q
�

ui
k;1; k

�

ui
kðtÞ¼ ui

k;2ðtÞ ¼ N2 with q
�

ui
k;2; k

�

⋮  

ui
kðtÞ¼ ui

k;7ðtÞ¼P3 with q
�

ui
k;7; k

�

where ðui
k;1ðtÞ; u

i
k;2ðtÞ;…; ui

k;7ðtÞÞ are the possible actions corresponding 
to the rule Rkand state wiðtÞ, those actions are all from the group can-
didates Ui

k. It indicates that the states of approximating the manifold will 
be given the actions that could result in ρi < 0 to decrease chattering 
effects, while the states of drifting away the manifold will be given the 
actions that could bring up ρi > 0 to steer the sliding variables back. 

For an input state wiðtÞ, the firing strength associated with each rule 
is generated as μiðtÞ ¼ ½μi;1ðtÞ;μi;2ðtÞ;…;μi;kðtÞ;…μi;kmðtÞ�, where km is the 
number of rules. Greedy search is taken to acquire the maximum Q- 
value: 

u* i
k ¼ arg max

ui
k;l2Ui

k

q
�

ut
k;l; k

�
; l¼ 1; 2; ::; 7 (60)  

where u* i
k is selected from the group of candidates Ui

k, the exploration 
exploitation policy (EEP) is applied to find the better solutions by 
randomly searching: 

bui
k ¼

(
ui

k ; with probability ζ
u*i

k ; with probability 1 � ζ
(61)  

bui
k is the last selected action and ui

k is a random selection from the group 
of candidates Ui

k. The ζ is declined from 1 to 0 over the time to search the 
optimal action by the end of exploration. And then, the numerical output 
can be achieved by (54). 

The Q-value associated with the selected action will be also calcu-
lated: 

Fig. 6. The sliding variables and their variance (a) and the chattering-free dynamics _s ¼ � kxs (b).  
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Qi
�
wiðtÞ; bui

ðtÞ
�
¼

Pkm
k¼1μi;kðtÞq

�
bui

k; k
�

Pkm
k¼1μi;kðtÞ

; i¼ 1; 2;…;N (62)  

Q*
i

�
wiðtÞ; u* i

ðtÞ
�
¼

Pkm
k¼1μi;kðtÞq

�
u* i

k; k
�

Pkm
k¼1μi;kðtÞ

; i¼ 1; 2;…;N (63) 

We only consider the current reward so that discount factor λ ¼ 0, 
according to (56) and (57), the update law of q-values can be achieved: 

ΔQi ¼ ci
�
wiðtÞ; bui

ðtÞ
�
þ λ ⋅ Q*

i

�
wiðtþ TsÞ; u*iðtþTsÞ

�
� Qi

�
wiðtÞ; bui

ðtÞ
�

(64)  

q
�

ui
k;l; k

�
← q

�
ui

k;l; k
�
þα ⋅ ΔQi ⋅

μi;kðtÞ
Pkm

k¼1μi;kðtÞ
; ui

k;l ¼ bu
i
k; i¼ 1; 2; ::;N (65)  

where ci is the reward to evaluate the actions that result in the ρi. α is the 
learning efficiency of remembering new knowledge and forgetting old 
knowledge. 

According to (18), the variance of bki can be considered as highly 
related to the variance of _si: 

Δ _siðtÞ¼ΔΓiðtÞ � βiΔsiðtÞ � ΔbkiðtÞ ; i ¼ 1; 2;…;N (66)  

Δsiðtþ TsÞ � ΔsiðtÞ← ΔbkiðtÞ ; i¼ 1; 2;…;N (67)  

where Δ _siðtÞ ¼ _siðt þ TsÞ � _siðtÞ, ΔΓiðtÞ ¼ ΓiðtþTsÞ � ΓiðtÞ and ΔbkiðtÞ ¼
bkiðt þ TsÞ � bkiðtÞ. (66) holds when siðtÞsiðt þ TsÞ > 0, which implies the 
sliding variable does not hit the manifold. The variance of _si will be 
governed by the variance of bki if the ΔΓi and ΔsiðtÞ are negligible 
compared to Δbki, shown in (66). It is reasonable in this case because the 
jsij is small in the designed vicinity of manifold and the small ΔΓi can be 

Fig. 7. The targets of the dynamics of the sliding variables.  

Fig. 8. The reward function when siðtÞ > 0 (a) and when siðtÞ > 0 (b).  

Table 3 
Function parameters of frð ⋅Þ when (ΔsiðtÞ > 0 and siðtÞ > 0).  

Situation: When jsiðtÞj � εi:  When jsiðtÞj > εi:  

χl;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � 0:1siðtÞ
χm;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � 0:05siðtÞ
χr;i ¼ 0  � ΔsiðtÞ � ΔsiðtÞ

Table 4 
Parameters of frð ⋅Þ when (ΔsiðtÞ < 0 and siðtÞ > 0).  

Situation: When jsiðtÞj � εi:  When jsiðtÞj > εi:  

χl;i ¼ � ΔsiðtÞ � ΔsiðtÞ � 0:06siðt þ TsÞ

χm;i ¼ � ΔsiðtÞ � 0:5ΔsiðtÞ � ΔsiðtÞ � 0:03siðt þ TsÞ

χr;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ

Table 5 
Parameters of frð ⋅Þ when (ΔsiðtÞ < 0 and siðtÞ < 0).  

Situation: When jsiðtÞj � εi:  When jsiðtÞj > εi:  

χl;i ¼ 0  � ΔsiðtÞ � ΔsiðtÞ
χm;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � 0:05siðtÞ
χr;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ � 0.1siðtÞ

Table 6 
Parameters of frð ⋅Þ when (ΔsiðtÞ > 0 and siðtÞ < 0).  

Situation: When jsiðtÞj � εi:  When jsiðtÞj > εi:  

χl;i ¼ � ΔsiðtÞ � ΔsiðtÞ � ΔsiðtÞ
χm;i ¼ � ΔsiðtÞ � 0:5ΔsiðtÞ � ΔsiðtÞ � 0:03siðt þ TsÞ

χr;i ¼ � ΔsiðtÞ � ΔsiðtÞ� 0.06 siðt þ TsÞ

Table 7 
CuBot parameters.   

Platform Link1 Link2 Link3 

Mass (kg) 8 0.5 0.5 0.5 
Moment of inertia (Ix ; kg⋅m2)  0.04 0.0004 0.00007 0.00007 

Moment of inertia (Iy ; kg⋅m2)  0.04 0.0004 0.00007 0.00007 

Moment of inertia (Iz ; kg⋅m2)  0.04 0.00007 0.0004 0.0004 

Length (am)  0.1 0.05 0.05 0.05 
Length (bm)  0.1 0.05 0.05 0.05  
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achieved by small sampling period. As a result, we use the variance of _si 
among 3 consecutive instants to indicate the effects from the variance of 
switching gain ΔbkiðtÞ that is determined by the output of fuzzy logic 
inference ρiðtÞ, shown in Fig. 6 a. And the mechanism of giving rewards 
to evaluate the actions is based on the chattering-free dynamic sliding 
variable _s ¼ � kxs where s apprximates the manifold and never hit it so 
that chattering-free, shown in Fig. 6 b. 

Considering the discrete form of _s ¼ � kxs as the desired dynamics: 

Δs*
i ðtÞ ¼ � G isiðtÞ; i ¼ 1; 2;…;N (68)  

where G i is a positive constant, and Δs*
i ðtÞ is the desired variance of the 

sliding variable. We designed 2 different vicinities of sliding variables: 
the vicinity ηi and the second vicinity εi (0 < εi < ηi). We separate the 
dynamics of the sliding variables after entering into the vicinity ηi into 2 
situations. The first situation is the sliding variable that is outside the 
designed second vicinity of manifold εi much smaller than the vicinity ηi 
so that ηi > jsiðtÞj > εi, where the sliding variable siðtÞ is supposed to 
approximate to the manifold with the dynamics similar to Eq. (61) as 
much as possible. The second situation is the sliding variable that has 
been inside the second vicinity εi so that jsiðtÞj � εi < ηi, where the 
sliding variable siðtÞ is supposed to stay inside the vicinity εi and never 
hit the sliding manifold (si ¼ 0) that results in the chattering effects. 
Clearly εi determines the errors of the sliding variable siðtÞ, which can be 
adjusted to the acceptable range by appropriately setting the parameters 
of the controller including δ1, δ2 and γi as well as the fuzzy domains of 
inputs and outputs shown in (47)-(49). The reinforcement learning can 
be concluded in Fig. 7. 

Because the requirements on the dynamics of the sliding variable are 
different on the 2 vicinities (ηi > jsiðtÞj > εi and jsiðtÞj � εi < ηi), we let 
the non-fuzzy value of the sliding variable corresponding to the lin-
guistic variables“N1” and “P1”in (50), be equal to the vicinity εi so that 
εi ¼ KfdðsiÞ⋅@i

7 . It is for the purpose that the actions on the linguistic states 
of “P1”, “N1” and “Z” of the sliding variables ensure that the sliding 
variables stay inside the second vicinity εi. 

The function of assigning the rewards to the corresponding actions is 
used in the reinforcement learning to determine the optimal rules among 
the candidates of the fuzzy rule. Eq. (61) takes the variance of ΔsiðtÞ over 
a sampling period Ts as the input (χi ¼ Δsiðt þ TsÞ � Δsiðt)) and then 
outputs the reward to evaluate the fuzzy output ρiðtÞ. We designed 3 
different variables χl;i, χm;i and χr;i that will be used later. 

Table 8 
Scaling factors of the fuzzy logic inference and the 2 vicinities of each subsystem.   

KfdðsiÞ KfdðΔsiÞ KfdðρiÞ ηi  εi  

i ¼
1  

0.0001 0.000001 0.8 0.0001 0.000001 

i ¼
2  

0.0001 0.000001 0.8 0.0001 0.000001 

i ¼
3  

0.0005 0.000001 0.8 0.0001 0.000001 

i ¼
4  

0.0005 0.000005 0.8 0.001 0.00001 

i ¼
5  

0.0005 0.000005 0.8 0.001 0.00001 

i ¼
6  

0.0005 0.000005 0.8 0.001 0.00001 

i ¼
7  

0.0005 0.000005 0.8 0.001 0.00005 

i ¼
8  

0.0005 0.000005 0.8 0.001 0.00005 

i ¼
9  

0.0005 0.000005 0.8 0.001 0.00005  

Fig. 9. The sliding variables and tracking performance of subsystem i ¼ 9 when εi ¼ 0:0001 and εi ¼ 0:00025: (a). s9 with εi ¼ 0:0001. (b). θ3 with εi ¼ 0:0001. (c). 
s9 with εi ¼ 0:00025. (d). θ3 with εi ¼ 0:00025. 
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ciðtÞ¼ frðχiÞ; i¼ 1; 2;…;N (69)  

where the function frð ⋅Þ is the law of giving reward ci. The details of (69) 
are given corresponding to Fig. 8. When siðtÞ > 0, the action ρiðtÞ
bringing up the χi smaller than χl will be given the negative reward 
smaller than � 1, meaning either insufficient decline or excessive in-
crease of bkiðtÞ (sliding variable moving toward to the manifold too fast). 
And the action ρiðtÞ resulting in the χi bigger than χr will be given the 
negative reward bigger than � 1, meaning either excessive decline or 
insufficient increase of bkiðtÞ (sliding variable drifting away from the 
manifold). When siðtÞ < 0, the action ρiðtÞ resulting in the χi smaller than 
χl will be given the negative reward bigger than � 1, meaning either 
insufficient increase or excessive decline of bkiðtÞ. And the action ρiðtÞ
resulting in the χi bigger than χr will be given the negative reward 
smaller than � 1, meaning either excessive increase or insufficient 
decline of bkiðtÞ. For both of the siðtÞ > 0 and siðtÞ < 0, χm that will result 
in the maximum reward is the ideal value of ΔsiðtþTsÞ� ΔsiðtÞ corre-
sponding to (68). The details of χl;i, χm;i and χr;i are given as following: 

If the sliding variable is diverging above the designed sliding mani-
fold (ΔsiðtÞ > 0 and siðtÞ > 0), the χl;i, χm;i and χr;i are shown in Table 3 
corresponding to Fig. 8 (a). 

If the sliding variable is converging above the designed sliding 
manifold ((ΔsiðtÞ < 0 and siðtÞ > 0), the χl;i, χm;i and χr;i are shown as 
following equations corresponding to Fig. 8 (a). 

If the sliding variable is diverging under the designed sliding mani-
fold (ΔsiðtÞ < 0 and siðtÞ < 0), the χl;i, χm;i and χr;i are shown as following 
equations corresponding to Fig. 8 (b). 

If the sliding variable is converging under the designed sliding 
manifold (ΔsiðtÞ > 0 and siðtÞ < 0), the χl;i, χm;i and χr;i are shown as 
following equations corresponding to Fig. 8 (b). 

The above definitions of χl;i, χm;i and χr;i indicate that the fuzzy rules 
are learned in order to achieve the desired dynamics of the sliding 
variable similar to Eq. (61) shown in the 3rd column of Tables 3–6 when 
jsiðtÞj > εi. After the sliding variable enters into the vicinity jsiðtÞj < εi, 
the fuzzy rules are learned to make efforts to cage the variable jsiðtÞj
inside this vicinity without hitting the sliding manifold shown in the 2nd 
column of Tables 3–6. 

The q values of the Q matrix in the reinforcement Q learning can be 
obtained by largely visiting the pair of the action (the candidates of each 
fuzzy rule) and the state (the firing strength of each fuzzy rule). How-
ever, the vast time used on the exploration of Q matrix will result in the 
inefficient learning and the bad performance on tracking signals. Intu-
itively, if an action of a state brings up the insufficient increase or 

Fig. 10. The sliding variables of the subsystems of CubeSat (Subsystems i ¼ 1e6): (a) sliding variable s1. (b) sliding variable s2. (c) sliding variable s3. (d) sliding 
variable s4. (e) sliding variable s5. (f) sliding variable s6. 
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Fig. 11. The sliding variables of the mounted manipulator (Subsystems i ¼ 7e9): (a) sliding variable s7. (b) sliding variable s8. (c) sliding variable s9.  
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excessive decrease on the switching gain bki(eg. The bki increases insuf-
ficiently so that the sliding variable drift away from the sliding mani-
fold), the actions of this state that show smaller linguistic values could 
result in the more insufficient increase or the more excessive decrease. 
Similarly, if an action of a state results in the insufficient decrease or 
excessive increase on the switching gain bki (eg. The bki decreases insuf-
ficiently so that the sliding variable hits the sliding manifold, resulting in 
the chattering effects), the actions of this state that show the bigger 
linguistic values could bring up the more insufficient decrease or the 
more excessive increase. 

As a result, the q-values of some actions can be updated even though 
these actions are not visited. The multiple q-values of the Q matrix can 
be updated by only a pair of action and state to improve the efficiency of 
learning. If the action of a state is regarded as leading to “the bki 

decreasing not enough” or “the bki increasing excessively”, not only is 

this action given an update on q-values according to the acquired 
reward, but also the q-values of the other actions of this state that have 
bigger linguistic variables will be updated. Similarly, if the action of a 
state is regarded as leading to “the bki increasing not enough” or “the bki 
decreasing excessively”, not only is this action given an update on q- 
values according to the acquired reward, but also the q-values of the 
other actions of this state that have smaller linguistic variables will be 
updated. For example, if an action ui

k;lðtÞ on the state wiðtÞ corresponding 
to the rule RkðL½siðtÞ�; L½ΔsiðtÞ�Þ results a reward smaller than � 2, not 
only is the qðui

k;l; kÞ given a update but also q-values qðui
k;L; kÞ; for all L >

l will be updated. In this paper, we only consider the current reward with 
the discount λ ¼ 0. Consequently, the conventional law of updating the 
Q matrix of (64) and (65) can be modified to the innovative updating 
law in (70)-(72). 

If the reward ciðtÞ 2 ð0; 1�: 

Fig. 12. The tracking performance of the CubeSat (subsystems i ¼ 1e6): (a) Linear movement of CubeSat in X axis. (b) Linear movement of CubeSat in Y axis. (c) 
Linear movement of CubeSat in Z axis. (d). Angular movement of CubeSat in X axis. (e) Angular movement of CubeSat in Y axis. (f) Angular movement of CubeSat in 
Z axis. 
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where L ¼ l, only the q-value of the taken action is updated as a normal 
Q learning. 

If the reward ciðtÞ 2 ½ � 1;0Þ:   
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(71)  

where L � l, ςi > 1 is a positive constant bigger than 1. (71) means that 
ρi bringing up either insufficient increase of bki or excessive decline of bki 
allows the update of the q-values of multiple actions. The other actions 
of the current state will be given the update on the q-values with the 
reward modified by ςl� L

i , indicating the actions that correspond to the 
smaller linguistic values will be given smaller rewards. 

If the reward ciðtÞ 2 ½ � 2; � 1Þ :
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�
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�
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(72)  

where L � l, ςi > 1 is a positive constant bigger than 1. The (72) means 
that ρi bringing up either insufficient decrease of bki or excessive increase 
of bki allows the update of the q-values of multiple actions. The other 
actions of the current state will be given the update on the q-values with 
the reward modified by ςL� l

i , indicating the actions that correspond to 
the bigger linguistic values will be given smaller rewards. 

It is noticeable that the taken action in the current state (l ¼ L) will 
be updated as a normal Q learning because ς0

i ¼ 1. 

4. Simulation results 

The numerical simulations are carried to validate the proposed 
control strategy in this section. The conventional SMC, the time delay 
estimation (TDE) based adaptive sliding mode controller (ASMC) in 
Refs. [34] and the adaptive fuzzy sliding mode controller in Ref. [24] are 
used to compare with the proposed reinforcement learning based SMC. 
The CuBot shown in Fig. 2 has 9� of freedom (DOF), consisting of the 
angular movements of the 3 joints, the 3 angular movements and 3 
linear movements of the CubeSat along the axes of roll, pitch and yaw 
respectively. The CuBot parameters are shown in Table 7. 

Fig. 13. The tracking performance of mounted manipulator (subsystems i ¼ 7e9): (a) The 1st Joint’s angle of Manipulator. (b) The 2nd Joint’s angle of Manipulator. 
(c) The 3rd Joint’s angle of Manipulator. 
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We suppose that the initial states of the system are all zero so that the 
position of the CubeSat δb0 ¼ ½0;0; 0�T m, the attitude of the CubeSat 
θb0 ¼ ½0;0; 0�T rad and the angles of the manipulator joints θm0 ¼

½0; 0; 0�T rad. The target position and target attitude of the CubeSat are 
set as δb* ¼½0:001;0:001;0:001�T m and θb* ¼ ½0:01;0:01;0:01�Trad, 
while the target angles of the manipulator joints are set as θm* ¼

½0:01;0:01;0:01�Trad. The controller proposed to control the motions of 
both the CubeSat and the robotic manipulator needs to convert the 
initial state of δb0, θb0 and θm0 to the target state of δb*, θb* and θm*. This 
process is equivalent to track the step signals. 

The robust term βi ¼ 0:0001, for i ¼ 1;2::;9. The small βi means that 
the dynamics of the sliding variable si are mainly influenced by the bki 
that is governed by the designed Q learning based fuzzy logic inference. 
The Ks ¼ diagð½1; 1;1; 1;1; 1;1; 1;1�Þ determines the settling time of the 
system. The γi ¼ 150, for i ¼ 1;2::; 9 are selected with the purpose that 
we select the big value for γi to achieve the robustness and short time of 
approximating the sliding manifold, and then the chattering effects are 
supposed to be mitigated by the adaptive law governed by the fuzzy 
logic inference. The δ1 ¼ 2:7 and δ2 ¼ 0:001 are selected, and hi ¼ 10 
and ςi ¼ 2:7, for all for i ¼ 1;2::; 9 are selected. With respect to the 
parameters of the modified Q learning based fuzzy logic inference, the 
scaling factors and vicinities are shown in Table 8. The learning effi-
ciency is selected as α ¼ 0:6 for an efficient learning process. To carry 
the simulation with the scenario that the system uncertainties and dis-
turbances exist, we use the actual system matrices A and B that are 40% 

and 30% respectively off from the nominal system matrices bA and bB that 
are used in the controller to decouple the system. The method of setting 
uncertainty is same as [22]. 

The disturbances used in simulation are of the combination of the 
sinusoid and cosine functions. In details, the disturbances shown in Eq. 
(11) are assumed D ¼ ½Dc;Dm�

T that consist of the unknown disturbances 

applied on the mounted robotic manipulator Dm ¼

h
0:002 sinðπtÞ; 0:002 sinðπtÞ; 0:001 sinðπtÞ þ 0:001cos

�
π
2 t
�iT 

and the 

unknown disturbances applied on the Cube5Sat Dc½ ¼
h
0:01 sin

�
π
2 t
�
; 0:001 cosðπtÞ;0:0015 

sinðπtÞ;0:002 sinðπtÞ;0:002 sinðπtÞ; 0:002 sinðπtÞ
iT 

. 
In the simulation of the proposed RLSMC, we set the probability of 

randomly searching the optimal solutions in the EEP as a decreasing 
values from 1 to 0 along the simulation time, indicating that the Q 
learning agent initially is given a high probability to randomly search 
the potentially better solution during the period when the q values of 
most actions are not updated and visited, and then the agent is inclined 
to take the actions that have the biggest q values (local optimal). The 
details of the probability are that ζ ¼ 2:7� 0:05t when t < 3s, and ζ ¼ 0 
when t � 3s. After the period of randomly searching, the sliding 

Fig. 14. The control torque and force applied on the CubeSat: (a) Control Force on CubeSat in X axis. (b) Control Force on CubeSat in Y axis. (c) Control Force on 
CubeSat in Z axis. (d) Control Torque on CubeSat in X axis. (e) Control Torque on CubeSat in Y axis. (f) Control Torque on CubeSat in Z axis. 
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variables learn to stay inside the vicinity (jsiðtÞj < εi), and clearly the εi 
determines the errors of the tracking performance that the bigger values 
of εi mean the bigger errors of tracking performance. More precisely, we 
take the sliding variable of the 9th subsystem (the angular movement of 
the 3rd joint of the manipulator) as the instance shown in Fig. 9, the 
sliding variable s9 that is designed to stay inside the vicinity εi ¼ 0:0001 
shows the less steady state errors and better the tracking performance 
than the sliding variable s9 that is designed to stay inside the vicinity 
εi ¼ 0:00025. The value of εi should be selected carefully because it 
determines the steady state errors. In details, the too big value of εi will 
result in the sliding variable far away from the sliding manifold (jsij is 
large), which could then bring up the large tracking error, while the too 
small value of εi will result in the sliding variables never enter into the 
second vicinity εi because of the limitation of capability of the controller 
(the sampling period cannot be the absolute zero). 

The proposed control strategy is compared with the TDE-ASMC [34] 
and AFSMC [24] as well as a conventional sliding mode controller in 
which the adaptive law of switching gain is positively proportional to 
the absolute value of the sliding variables. Figs. 10 and 11 show the 
dynamics of the sliding variables of all subsystems i ¼ 1e9. Clearly, the 
conventional SMC has the worst chattering effects among 4 controllers 
because of the monotonously increasing switching gain, shown as the 
green curves in Figs. 10 and 11 that reflect the nature of discontinuous 
control inputs near the sliding manifold. The chattering can be much 
worse by increasing the values of the switching gain and the sampling 
interval. Although AFSMC [24] shows better chattering effect compared 
to the conventional SMC, the sliding variables drifting away the 

manifold (Fig 10a~c) and chattering (Fig 10d~f and Fig 11c) are 
observed, which results in the compromised tracking accuracy and 
chattering control signals. TDE-ASMC [34] yields the rebounding sliding 
variables that repeatedly approaches and leaves the manifold in all 
subsystems (i ¼ 1e9), shown as the red curves in Figs. 10 and 11. The 
tracking errors have a positive correlation to the distance between the 
manifold and the location to which the sliding variables travel, which 
means the tracking accuracy can be maintained by tuning the controller 
parameters (TDE-ASMC [34]) to make the sliding variable travelling 
within a small region near the manifold (Fig. 10f). Otherwise, the 
tracking accuracy could be decreased because of the sliding variables 
leaving the manifold (Fig 10a~e and Fig 11a~c). However, it is chal-
lenging and time-consuming for users to find the appropriate controller 
parameters manually. The proposed RLSMC shows the sliding variables 
that irregularly fluctuate around the sliding manifold during the initial 
stage of control for all subsystems (shown as the blue curves in Figs. 10 
and 11 when t � 4s), which is caused by the reinforcement learning 
mechanism trying the actions randomly during the stage of policy 
exploration. However, the smallest chattering and smallest drifting 
sliding variables are achieved by the proposed RLSMC after the optimal 
policy is learnt (t > 4s). 

The tracking performance is shown in Figs. 12 and 13. Clearly, the 
TDE-ASMC [34] and AFSMC [24] presents the significant tracking errors 
because of the rebounding sliding variables, while the conventional SMC 
shows the tracking errors caused by chattering effects of sliding vari-
ables. The TED-ASMC has the more significantly rebounding sliding 
variables than AFSMC, and therefore TED-ASMC shows the bigger 

Fig. 15. The control torque applied on the joints of mounted manipulator: (a) Control Torque on the 1st Joint of Manipulator. (b) Control Torque on the 2nd Joint of 
Manipulator. (c) Control Torque on the 3rd Joint of Manipulator. 
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tracking errors than that of AFSMC. The smallest tracking errors during 
the later stage (t > 4s) are achieved by the proposed RLSMC in all 
subsystems. The fluctuation of system states under RLSMC during the 
initial seconds (t < 4s) is observed because of the reinforcement learning 
mechanism trying the actions randomly during the stage of exploration. 

The control signals (torques and forces) are shown in Figs. 14 and 15. 
Clearly, the conventional SMC shows the most significantly chattering 
control signals (shown as the blue curves in Figs. 14 and 15) among 4 
controllers, which is followed by AFSMC [24] (shown as the orange 
curves). TDE-ASMC [34] shows the much less chattering control signals 
than conventional SMC and AFSMC [24], shown as the yellow curves, 
while the proposed RLSMC shows the smallest chattering control signals 
among 4 controllers (shown as the black curves). The less chattering 
effects not only provide the smoother torques and forces to the system, 
but also it means the less energy consumption that is important to 
implement the missions in space especially for the un-rechargeable fuels 
such as the gas. By using the fuzzy logic inference with the sampling 
time smaller than the dynamics of the non-random disturbances, the 
proposed controller can be regarded as the controller equipped with a 
disturbance observer. 

As a result, the proposed controller attenuates the chattering effects 
of both the sliding variables and the control torques/forces are signifi-
cantly in comparison with TED-ASMC [34], AFSMC [24] and conven-
tional SMC. Although the fluctuations of system sates and the sliding 
variables are observed on the initial period of learning, the chattering 
effects are significantly mitigated after learning the optimal actions 
among the given candidates, which results in the improvement of 
tracking accuracy and the smoothness of control inputs. 

5. Conclusion 

This paper modelled the dynamics of an 8U CubeSat equipped with a 
3-rigid-link robotic manipulator. To control the angular movements of 
the manipulator joints and the attitude and position of the CubeSat 
simultaneously, the sliding mode controller with the aid of the decou-
pling method converting the MIMO system into the multiple SISO sys-
tems is used. For mitigating the chattering effects, we designed the 
reinforcement Q learning based fuzzy logic inference to tune the de-
rivatives of the switching gain to avoid the sliding variables either 
hitting the sliding manifold or drifting away from the manifold, which 
can achieve the improvement of tracking accuracy and the smooth 
control inputs. The proposed reinforcement learning based fuzzy sliding 
mode controller has the 2 advantages: 1. It can yield the UUB system 
errors regardless of the failure of finding the optimal parameters of 
adaptive law of switching gain. The optimal fuzzy rules outputting the 
optimal parameters can yield small tracking errors while the inferior 
fuzzy rules can yield a bigger but still bounded tracking errors, which 
not only avoids the loss of stability resulted from negative derivative of 
switching gain but also can offer the reinforcement learning mechanism 
with a safe environment to learn optimal policies. 2. The modified Q 
learning mechanism in this paper can utilize a pair of action and state to 
update the q-values of multiple actions, which can improve the effi-
ciency of learning. The simulation validates the effectiveness of the 
proposed control scheme. 
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