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a b s t r a c t 

In this paper, the Bush–Mosteller (B-M) reinforcement learning (RL) scheme is introduced 

to model the route choice behaviors of the travelers in traffic networks, who aim to seek 

the optimal travel routes that minimize their individual travel time. The optimal route 

choice strategy is presented by the Nash equilibrium of the congestion game. By construct- 

ing a novel potential function, the congestion game is transformed into the traffic assign- 

ment problem (TAP). Then, a distributed algorithm based on B-M RL scheme is devised 

to solve the TAP. Under some mild conditions, the B-M RL solution method is proven to 

converge almost surely to the optimal solution of the TAP. A numerical experiment is con- 

ducted based on the Nguyen–Dupuis network, the experimental results not only demon- 

strate the effectiveness of the theoretical analysis, but also show that the B-M RL-based 

solution method outperforms several existing solution methods. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

1.1. Motivations 

In recent years, wireless communication, on-board computation facilities and advanced sensor techniques have been

integrated into transportation systems. These new technologies establish information exchange in vehicle-to-vehicle and

vehicle-to-infrastructure networks, and further enable real-time traffic information to be collected, processed, and dissem-

inated among travelers, road infrastructure, as well as traffic management centers. Accordingly, a type of well-connected

and information-rich transportation systems, named connected vehicle system, is under rapid development and is expected

to be fully implemented in the near future. With the deployment of the advanced technologies, the information-aid route

guidance systems are developed to assist travelers to make a more suitable decision [1–8] . 

Even though connected vehicle system has been granted a great potential to intelligently route travelers, researchers

have recognized that if each traveler independently chooses the shortest path based on uniformly shared real-time traffic

information, it may only be beneficial when travelers are the minority and their route choices do not impact traffic flows

significantly. In fact, travelers may take advantages of the real-time information and find shorter paths which non-travelers

may not be able to recognized. However, as travelers become the majority, their route choices will impact traffic flows sig-
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nificantly. Then, current uniform real-time information provision may lead to even worsen traffic congestion, given travelers

still selfishly and independently choose their own shortest paths. For example, many travelers sharing uniform information

are very likely to choose a same link not crowed at the time that route choices are made, and then it becomes highly

congested when they arrive at the link. It enables us to create distributed but coordinated traffic applications to improve

mobility, safety, environmental friendliness of transportation systems. 

1.2. Related works 

The most relevant research area to the route choice problem is congestion game. It is a branch of game theory [9] ,

in which the payoff of each player depends on the resources it chooses and the number of players choosing the same

resource. Like all types of games, every player in a congestion game tries to minimize his/her own cost and the equilibrium

point yielded in this way is known as Nash equilibrium [10] , which is defined as the action profile of all players where

none of the players can reduce his/her individual cost by a unilateral move. It is shown in [11] that any congestion game

is a potential game, and the converse is proved in [12] : for any potential game, there is a congestion game with the same

potential function. Therefore, congestion game inherits the desirable property of potential game-the existence of at least

one pure strategy Nash equilibrium. However, it is widely known that Nash equilibria often exhibit suboptimal behavior

compared with the socially optimal assignment. In the fast-developing society, it becomes increasingly crucial to improve

the efficiency of the Nash equilibrium [13,14] . There has been a multitude of researches on the inefficiency of the Nash

equilibrium. To make the Nash equilibrium achieve the social optimum, distributed methods are proposed in [15–17] . In

[15] , a network optimization framework is formulated to address the traffic assignment problem (TAP), in which the route

choice strategy is determined by a logit formula. In [16] , as an extension of the work in [15] , a coordinated online in-vehicle

routing mechanism is proposed, which incorporates the multinomial logit choice model to account for travelers’ behavior,

and is implemented by a simultaneously-updating distributed algorithm. In [17] , the mirror descent algorithm is utilized to

search Nash equilibrium of the congestion game. In practice, the travelers who are seeking shorter and more comfortable

travel time always face with the competition for a finite resource (the roads) among traffic flows in traffic networks, because

of the limited capacities of the roads. Then, the social dilemma in traffic networks emerges, which describes the situation

that the Nash Equilibrium of individual vehicles is inconsistent with the social optimal [18] . To investigate whether the

social dilemma originates from the intentions of vehicles, in [19] , several social dilemma structures are detected. The results

reveal that the information delivered to vehicles is crucial for easing the social dilemma due to urban traffic congestion

when developing technologies to support the intelligent transportation system. 

It is also noteworthy that the works in [15–17] depend on specific mathematical models, such as logit model, nominal

logit model. However, in practice, it becomes more and more complicated and costly to accurately model and identify the

traffic flow due to the vast volume of data produced by the traffic network, which is accompanied by the lack of an effective

physical process model that can support model-based algorithm devise [20] . Thus, it is significant to develop the model-

free methods. In other words, the route choice behavior is an adpative decision-making process that situated in an intricate

environment that learns the optimal action through repeated interactions with its environment. Thus, reinforcement learning

(RL) scheme is adopted to model such decision-making process [21–24] , in which the actions are chosen according to a

specific probability distribution, which is updated based on the environment responses [25–31] . In [21] , the congestion game

with noisy rewards is considered. The Nash equilibrium is learned through a Q-learning algorithm in the form of ε-greedy

learning policy. In [22] , two reinforcement schemes, the IQ-learning and DQ-learning, for solving the route choice problem

is presented and compared. The former uses an individual reward function, which aims at finding a policy that maximizes

the agents’ utility, the latter shapes the agents’ reward based on difference rewards function, and aims at finding a route

that maximizes the system’s utility. In [23] , the route choice problem is modeled as a multiagent system, where each driver

is represented by a learning automaton, and learns to choose routes based on past experiences. In [24] , the route choice

behavior is modeled as a multiagent reinforcement learning scheme based on the action regret. 

1.3. Summary of contributions 

Motivated by the above discussions, the paper focuses to devise the RL scheme to model the route choice process in

traffic networks, in which all the travelers aim to seek the optimal travel routes based on the past experiences that minimize

their individual travel time. The framework of main ideas in this paper is shown in Fig. 1 . 

The main contributions are summarized as follows: 

(i). Employing a B-M RL scheme to model the route choice behavior of the travelers in traffic networks, in which the

travelers iteratively update and propose their routing choice priority in responding to their evaluation of near future

traffic condition based on shared traffic information among all the travelers through a communication environment. 

(ii). The Nash equilibrium of the congestion game is reformulated as the optimal solution of the TAP, which aims to

seek the optimal route choice strategy that minimize the total latency of the traffic network. Then, the distributed

algorithm based on B-M RL scheme is utilized to solve the TAP. 

(iii). Providing the convergence analysis of the B-M RL-based solution method, which ensures such solution method

converges almost surely to the optimal solution of the TAP under some mild conditions. Thus, the B-M RL-based

solution method is proved to be effective to learn the optimal route choice strategy. 
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Fig. 1. Framework of the main ideas in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notations : The notations are quite standard. Throughout this paper, R and R ≥0 denote the real number set and the set of

nonnegative numbers, respectively. ‖ x ‖ denotes the Euclidean norm of a vector x . The superscript “T ” represents the vector

transpose. ( �, F , P ) deno tes a probability space, where � is a sample space; F is a minimal σ -algebra on subsets of �;

and P is a probability measurement on ( �, F ) . The sample ω denotes an event in the probability space �. All subsequent

random variables will be defined in this space. 

2. Problem formulation 

2.1. Route choice problem in traffic networks 

Consider a traffic network with multiple origin-destination (O-D) pairs, the origin set is denoted by O = { o 1 , o 2 , . . . , o k o }
and D = { d 1 , d 2 , . . . , d k d } denotes the destination set. The topology of the traffic network is described by a directed graph

G = (V , E ) , where V is a finite set of the vertexes, E ⊆ V × V is the set of directed links, in which the links are labeled by

integers { 1 , 2 , . . . , | E |} . Let N = { 1 , 2 , . . . , N} be the set of all travelers. These travelers are partitioned into M disjoint groups,

that is, N = 

⋃ M 

m =1 N k with N m i 

⋂ 

N m j 
= ∅ for all m i � = m j , where N m 

denotes the set of travelers that travel through the

same O-D pair ( o m 

, d m 

). Let R m 

, m = 1 , 2 , . . . , K be the set of routes between O-D pair ( o k , d k ). Then, R = 

⋃ K 
m =1 R m 

denotes

the set of available routes in the traffic network. 

For traveler i ∈ N who want to travel through such traffic network, denote R i � 

{
r i,k i 

}R i 

k i =1 
⊆ R, k i = 1 , 2 , . . . , R i be the

set of the available routes. R i is also called the action set of traveler i . Let �i be the route link incidence matrix for traveler

i , where the element δe 
i,k i 

is given as follows: 

δe 
i,k i 

= 

{
1 , if e ∈ r i,k i , 

0 , otherwise . 

To accomplish the task that travel through the O-D pair, each traveler i should choose a route r i,k i from the action set R i .

Thus, the choice of the travelers determines the route load and the link load. Denote ξ = { ξi , ξ−i } , where ξi ∈ R i stands for

the route chosen by traveler i , and ξ−i is the set of routes that chosen by the travelers other than i . Then, the load of route

r is defined as the total mass of travelers who choose it 

˜ f r = 

N ∑ 

i =1 

I { ξi = r } , 

where I { · } denotes the indicator function. For each link e ∈ E , note that e can be shared by different routes, the link load

on e is associate with the loads of the routes that utilize e , which is defined as 

˜ f e = 

∑ 

r∈ R 

∑ 

e ∈ r 
˜ f r . 
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The link load determines the latencies of all travelers, the loss associated to a link e is given by 	 e ( f e ). 	 e ( ·) is called the

latency function, which is assumed to be nonnegative, strictly increasing, and continuously differentiable for all e ∈ E . More-

over, its derivative 	 ′ e ( f e ) is also strictly increasing. 

The route choice problem considers that there are a large volume of travelers who want to travel through the O-D pairs in

traffic network. At a given short time period, there is a group of travelers which need to make route choice decisions among

a number of candidate routes, according to the past experiences and real-time traffic information. The routing decision is

made by first determining the priorities of candidate routes (a probability distribution), and then picking a route based on

the priorities. Consider the scenario that the travelers choose the routes from their action sets randomly, according to a joint

probability distribution p = { p i } N i =1 
, known as mixed strategy, where p i is a | R i | -dimensional vector, the element p i,k i in p i 

denotes the probability of traveler i that chooses the route r i,k i , with 

∑ R i 
k i =1 

p i,k i = 1 . It is noteworthy that the independency

of the joint probability is reasonable, because the travelers are noncooperative. In the probability sense, let f e be the expected

load of e , and f i,k i be expected traffic flow on route r i,k i of traveler i for all i = 1 , 2 , . . . , N and k i = 1 , 2 , . . . , R i . Then, according

to the probability distribution p i , it holds that 

f i,k i = p i,k i , (1) 

for all i = 1 , 2 , . . . , N and k i = 1 , 2 , . . . , R i , therefore, sometime they are used exchangeably in this paper. Then, the expected

traffic flow on link e under mixed strategy p is given by 

f e (p ) = E 

{ 

N ∑ 

i =1 

∑ 

e ∈ r i,k i 
f i,k i 

} 

= 

N ∑ 

i =1 

R i ∑ 

k =1 

p i,k i δ
e 
i,k i 

, (2) 

for all e ∈ E . Moreover, the expected latency on route r that connects the O-D pair can be obtained as 

	 r (p ) = 

∑ 

e ∈ r 
l e ( f e (p )) , (3) 

for all i = 1 , 2 , . . . , N and k i = 1 , 2 , . . . , R i . In practice, the latency function is of BPR type [32] : 

l e ( f e ) = t 0 e 

[ 

1 + α

(
f e 

C e 

)β
] 

, 

for each link e ∈ E , t 0 e is the free-flow latency, C e is the link capacity and α, β are constants. Obviously, the BPR type latency

function l e ( f e ) is nonnegative, strictly increasing, and continuously differentiable with respect to f e . Moreover, its derivative

is also strictly increasing. For presentation simplicity, hereafter, f e and 	 r is utilized to instead of f e ( p ) and 	 r ( p ), respectively,

when no confusion occurs. 

In the route choice problem, if there exists a mixed strategy such that no traveler has an incentive to unilaterally deviate,

that is, no traveler can strictly decrease his individual latency by unilaterally changing his individual strategy, then the Nash

equilibrium is achieved. Such equilibrium is often called optimal route choice strategy, whose definition is given as follows. 

Definition 1. A mixed strategy p 

∗ is called an optimal route choice strategy, if for all r ∈ R , and all mixed strategies p 

′ other

than p 

∗, it holds that 

	 r (p 

∗) ≤ 	 r (p 

′ ) . 

2.2. Learning automaton 

As a kind of machine learning technique, RL combines concepts from stochastic approximation via dynamic programming

to function approximation. Compared with traditional model-based methods, RL can handle problems with complex transi-

tion probabilities. Therefore, it does not need to compute the transition probabilities. RL can also use function approximation

methods (e.g., linear functions) to approximate the value function with huge state space. 

When employing the RL scheme, a learning automaton is introduced to update the mixed strategy, such that a “good”

route has a high probability to be selected, while the choice probability of a “bad” route is relatively low. Both the mixed

strategy and the available information depend on the underlying learning process. To be specific, at each time stage t ∈
{ 1 , 2 , . . . } , traveler i chooses his route from R i according to the strategy p t 

i 
which is updated via the information available

to traveler i up to time t . 

In the learning automaton, the route of each traveler is modeled by a stochastic variable-structure learning automa-

ton which consists of a simple Markov chain containing only one state (memoryless or static systems) [29] . A stochastic

automaton operating in a random environment is an adaptive discrete machine. At each time stage t , for traveler i , the

learning automaton is described by the tuple 
{
�, { R i } , 

{
ξ t 

i 

}
, 
{

u t 
i 

}
, 
{

p t 
i 

}
, 
{

T t 
i 

}}
i =1 , 2 , ... ,N 

, wher e � denotes the automaton in-

put bound set; R i denotes the set of actions of traveler i ; 
{
ξ t 

i 

}
, 
{

u t 
i 

}
are, respectively, sequences of automaton input and
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automaton output; and p t 
i 
= 

[ 
p t 

i, 1 
, p t 

i, 2 
, . . . , p t 

i,R i 

] T 
denotes the strategy of traveler i with R i = | R i | represents the number of

possible routes of traveler i . Define the conditional probability distributions 

p t i,k i = P 
{
ω ∈ � : u 

t 
i = u 

t 
i (k ) 

∣∣F 

t−1 
i 

}
, 

R i ∑ 

k i =1 

p t i,k i = 1 , 

where F 

t−1 
i 

= σ
({

ξ l 
i 

}t−1 

l=0 
, 
{

u l 
i 

}t−1 

l=0 
, 
{

p l 
i 

}t−1 

l=0 
, i = 1 , 2 , . . . , N 

)
is the minimal σ -algebra generated by all the historical events

F 

t−1 
i 

∈ F ; T t 
i 

represents the reinforcement scheme, according to which, the probability vector p t 
i 

updates to p t+1 
i 

, that is 

p t+1 
i 

= p t i + γ t 
i T 

t 
i , (4)

where γ t 
i 

is a scalar correction factor and T t 
i 
� T t 

i 

({
ξ l 

i 

}t 

l=0 
, 
{

u l 
i 

}t 

l=0 
, p t 

i 

)
. At each time stage t , the vector T t 

i 
=[

T t 
i 
(1) , T t 

i 
(2) , . . . , T t 

i ( R i ) 
]T 

satisfies the following conditions that preserve the probability measure: 

p t i (k ) + γ t 
i T 

t 
i (k ) ∈ [0 , 1] , 

R i ∑ 

k i =1 

T 

t 
i (k ) = 0 , 

for all i = 1 , 2 , . . . , N. The reinforcement scheme is the core of learning automaton, which will be devised later. 

3. Main results 

This section mainly addresses three problems: (i). The existence and uniqueness of the optimal route choice strategy; (ii).

The devise of B-M RL scheme based distributed algorithm; (iii). The convergence analysis of the distributed algorithm. 

3.1. Existence and uniqueness of optimal route choice strategy 

This part explores the existence and uniqueness of optimal route choice strategy. The idea can be traced back to Rosen-

thal’s work [33] , in which searching the optimal route choice strategy is equivalently transformed into searching the optimal

solution of a traffic assignment problem (TAP). The TAP is given as follows 

(T AP ) : min V (f ) = 

∑ 

e ∈ E 

∫ f e 

0 

	 e (s ) ds + 

N ∑ 

i =1 

R i ∑ 

k i =1 

f i,k i ln 

(
1 + f i,k i 

)
, (5)

R i ∑ 

k i =1 

f i,k i = 1 , (6)

f i,k i ≥ 0 , (7)

where f i,k i (i = 1 , 2 , . . . , N; k i = 1 , 2 , . . . , R i ) is decision variable, and f e = 

∑ N 
i =1 

∑ R i 
k =1 

f i,k i δ
e 
i,k i 

, f = ( f T 
1 
, f T 

2 
, . . . , f T 

N 
) T , f i =(

f i, 1 , f i, 2 , . . . , f i,R i 

)T 
. The constraints are standard flow conservation constraints. 

Remark 1. In [15] , when the route choice strategy obeys the logit distribution, the TAP with following objective function

was formulated to search the optimal route choice strategy. 

V (f ) = 

∑ 

e ∈ E 

∫ f e 

0 

	 e (s ) ds + 

1 

θ

N ∑ 

i =1 

R i ∑ 

k i =1 

f i,k i ln 

(
f i,k i 

)
. (8)

Furthermore, in [16] , the TAP with following objective function was constructed to explore the optimal route choice strat-

egy. 

V (f ) = 

∑ 

e ∈ E 

∫ f e 

0 

	 e (s ) ds + 

N ∑ 

i =1 

R i ∑ 

k i =1 

1 

β i 
f i,k i ln 

(
f i,k i 

)
+ 

N ∑ 

i =1 

R i ∑ 

k i =1 

αi 

β i 
f i,k i . (9)

Notice that the objective functions (8) and (9) are not defined at the points with f i,k i = 0 for i = 1 , 2 , . . . , N, k i = 1 , 2 , . . . , R i .

Thus, to make the objective functions continuous, the expression f i,k i ln 

(
f i,k i 

)
is assigned the value zero at f i,k i = 0 .

However, the employed objective function in this paper makes up for this defect. Actually, it also naturally holds that

f i,k ln 

(
1 + f i,k 

)
= 0 when f i,k = 0 . 
i i i 
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Remark 2. In [15–17] , the travelers update their route choice strategies through logit model, nominal logit model, bulletin-

board model and bandit model. In this paper, the route choice strategy is updated according to the RL scheme which is

independent of any specific mathematical model. 

Now, we are ready to show the existence and uniqueness of the optimal solution of TAP on the feasible region. 

Theorem 1. Under Assumption 1, the TAP possesses a unique optimal solution on the feasible region. 

Proof. The objective function (5) is rewritten as 

V (f ) = 

∑ 

e ∈ E 

∫ ∑ N 
i =1 

∑ R i 
k i =1 

f i,k i 
δe 

i,k i 

0 

	 e (s ) ds + 

N ∑ 

i =1 

R i ∑ 

k i =1 

f i,k i ln 

(
1 + f i,k i 

)
. 

Obviously, the objective function V ( f ) of the TAP is continuous on the feasible region. And the feasible region scoped by

constraints (6) and (7) is compact, hence the TAP has a optimal solution. To show the uniqueness, we will investigate the

convexity of V ( f ). 

Label the links in E by { 1 , 2 , . . . , | E |} . The Hessian matrix H ( V ) of V ( f ) is that 

H(V ) = 

⎡ 

⎢ ⎢ ⎣ 

H(V ) 1 
H(V ) 2 

. . . 

H(V ) N 

⎤ 

⎥ ⎥ ⎦ 

, 

where 

H(V ) i = �i 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

	 ′ 1 
(∑ R i 

k =1 
f i,k i δ

1 
i,k i 

)
. . . 

	 ′ 
l 

(∑ R i 
k =1 

f i,k i δ
l 
i,k i 

)
. . . 

	 ′ | E | 
(∑ R i 

k =1 
f i,k i δ

| E | 
i,k i 

)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

�T 
i 

+ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2+ f i, 1 
(1+ f i, 1 ) 2 

. . . 
2+ f i,k i 

(1+ f i,k i ) 2 
. . . 

2+ f i,R i 
(1+ f i,R i ) 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

for i = 1 , 2 , . . . , N. Since the derivative 	 ′ e (·) of 	 e ( · ) is strictly increasing. Thus, 	 ′ 
l 

(∑ R i 
k =1 

f i,k i δ
l 
i,k i 

)
≥ 0 for all l = 1 , 2 , . . . , | E | .

It is easy to see that H ( V ) i is positive definite since 
2+ f i,k i 

(1+ f i,k i ) 
2 > 0 for k i = 1 , 2 . . . , R i . Therefore, the objective function V ( f )

is strictly convex on the feasible region, which implies that the TAP possesses a unique optimal solution. The proof is

completed. �

Remark 3. In [17] , in order to search the optimal route choice strategy of the route choice problem, the TAP with objective

function V (f ) = 

∑ 

e ∈ E 

∫ f e 
0 

	 e (s ) ds is constructed, which can not guarantee the uniqueness of the optimal solution because

Hessian matrix of V ( f ) is positive semi-definite. In this paper, however, the employed objective function (5) can ensure the

uniqueness of the optimal solution by introducing the term 

∑ N 
i =1 

∑ R i 
k i =1 

f i,k i ln 

(
1 + f i,k i 

)
. 

It can be observed from (1) that the optimal solution of the TAP is consistent with the optimal route choice strategy.

Thus, the optimal route choice strategy can be expressed as the optimal solution of the TAP, in which the objective function

is convex. In the next part, a B-M RL-based solution method will be presented to solve such a convex optimization problem.

3.2. Reinforcement learning scheme 

In this part, the learning automaton is introduced to devise the distributed algorithm to learn the optimal solution of

TAP with incomplete information exchange among the travelers. It is noteworthy that incomplete information exchange is

more suitable for this TAP, because of the noncooperative nature of the travelers. 
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3.2.1. The complete information case 

When the complete information of the expected latencies on routes and the constraints is available, we can employ

the distributed gradient-like technique to attain the optimal solution based on Lagrange multiplier method. Consider the

following Largrange function 

L (f , λ) = 

∑ 

e ∈ E 

∫ ∑ N 
i =1 

∑ R i 
k i =1 

f i,k i 
δe 

i,k i 

0 

	 e (s ) ds + 

N ∑ 

i =1 

R i ∑ 

k i =1 

f i,k i ln 

(
1 + f i,k i 

)
+ 

N ∑ 

i =1 

λi 

( 

R i ∑ 

k i =1 

f i,k i − 1 

) 

, (10)

where λi ∈ R (i = 1 , 2 , . . . , N) is Largrange multiplier, λ = ( λ1 , λ2 , . . . , λN ) 
T 

. Then, we can utilize the distributed optimization

algorithm in [34–39] to explore the saddle point of Largrange function (10), which is given by ⎧ ⎪ ⎨ 

⎪ ⎩ 

g t+1 
i,k i 

= f t 
i,k i 

− ηt 
i 
∇ f t 

i,k i 

L (f t , λt ) , 

λt+1 
i 

= λt 
i 
+ ηt 

i 
∇ λt 

i 
L (f t , λt ) , 

f t+1 
i,k i 

= 

[
g t+1 

i,k i 

]
≥0 

, 

(11)

where t ∈ { 1 , 2 , . . . } is the time stage, ηt 
i 

is the searching stepsize, and [ · ] ≥ 0 is the projection operator onto R ≥0 . When

the stepsize ηt 
i 

(i = 1 , 2 , . . . , N) satisfies certain conditions, the solution of (11) is coincident with the optimal solution of

the TAP. 

3.2.2. The incomplete information case 

When dealing with the incomplete information case, that is, only local expected traffic flow f i,k i and the latency functions

	 e with e ∈ r i,k i are available for traveler i . In this case, the distributed optimization algorithm (11) is no longer applicable,

since the Largrange function L ( f , λ), and the gradients ∇ f i,k i 
L (f , λ) , ∇ λi 

L (f , λ) are not available for all the travelers. To over-

come this obstacle, the RL scheme is utilized to stochastically approximate the gradients in (11). 

In the RL scheme, the process that the travelers decide their own route choice priorities is treated as a negotiation and

coordination process among all the travelers. These travelers spontaneously form a routing coordination group according

to recent route choice decision requests. In the routing coordination group, each traveler acts as a player, seeking to find

the best route choice priority, which leads to the probabilities of choosing the candidate paths with minimum expected

travel time. The coordinated travelers iteratively update and propose their routing choice priority in responding to their

evaluation of near future traffic condition based on shared traffic information among all the travelers through a communi-

cation environment. The negotiation process repeats several iterations until all travelers accept and would not change their

route choice priorities (i.e. optimal route choice strategy). Mathematically, the RL scheme can be performed in the following

way, at each time stage t ∈ { 1 , 2 , . . . } , according to current individual strategy p t 
i 
, traveler i chooses an action r t 

i 
= r i,k i from

his individual action set R i . Denote by r t = 

(
r t 

1 
, r t 

2 
, . . . , r t 

N 

)T � 

(
r 1 ,k 1 , r 2 ,k 2 , . . . , r N,k N 

)T 
the joint action of the travelers at time

stage t . Then, according to the RL scheme, traveler i updates his individual strategy based on the expected latency of current

route r i,k i under the current joint action r t , and obtains p t+1 
i 

. These procedures need to be repeated until the latencies of

the links cannot be descended. Following this idea, the B-M RL scheme that introduced in [29] will be employed to search

the optimal solution of TAP. 

Let r t = 

(
r 1 ,k 1 , r 2 ,k 2 , . . . , r N,k N 

)T 
be the joint action at time stage t , and σi 

(
r t 
)

= 

∑ 

e ∈ r i,k i 
	 e ( f e ) denote the expected latency

of route r i,k i under the current joint action r t . Actually, σ i ( r 
t ) is a random variable with respect to the route choice of traveler

i , which is assumed to satisfy the following. 

Assumption 1. For the current joint action r t = 

(
r 1 ,k 1 , r 2 ,k 2 , . . . , r N,k N 

)T 
, the conditional expectation of σ i ( r 

t ) and its second

moment are uniformly bounded by δi, + < ∞ , and � i, + < ∞ , respectively, that is, 

E 
{
σi 

(
r t 
)∣∣F 

t−1 
i 

∧ r t i = r i,k i 

}
≤ δi, + , 

E 
{
σ 2 

i 

(
r t 
)∣∣F 

t−1 
i 

∧ r t i = r i,k i 

}
≤ � i, + , 

for all i = 1 , 2 , . . . , N and t = 1 , 2 , . . . . 

Of note is that the B-M RL scheme requires that the environment responses to belong to the unit interval [0,1], but the

available observations do not obligatory satisfy this condition. Thus, a normalization procedure is needed when deviseing

the RL scheme. The B-M RL scheme with normalization procedure is given in Algorithm 1 . 

In Algorithm 1 , when learning the optimal solution, the travelers are only aware of their own private information, includ-

ing the historical choices and current latencies, which means that the B-M RL scheme matches the basic property of route

choice problem, in which the travelers are noncooperative. On the other hand, the conditional expectation of the auxiliary

latency is exactly equal to the gradient of V ( f ) with respect to expected traffic flow, that is, 

E 
{

˜ σ t 
i 

∣∣F 

t−1 
i 

∧ r t i = r i,k i 

}
= 

∂V (f ) 

∂ f i,k 
. (15)
i 



8 B. Zhou, Q. Song and Z. Zhao et al. / Applied Mathematics and Computation 371 (2020) 124895 

Algorithm 1 B-M RL Scheme. 

Initialization: 

The current mixed strategy p 

t = 

{
p t 

i 

}N 

i =1 
. The current joint action r t = 

(
r 1 ,k 1 , r 2 ,k 2 , . . . , r N,k N 

)T 
. The current expected la- 

tency 
{
σi 

(
r t 

i 

)}N 

i =1 
. 

Iteration: 

1: Calculate the current auxiliary local latency: 

˜ σ t 
i = σi 

(
r t i 
)

+ ln 

(
1 + p t i,k i 

)
+ 

p t 
i,k i 

1 + p t 
i,k i 

. (12) 

2: Normalize the automaton input: 

ζ t 
i = 

αt 
i 

˜ σ t 
i 

+ βt 
i 

p t 
i,k i 

, (13) 

where αt 
i 

= 

� t 
i ( 1 −� t 

i ) 
δi, + 

(
2+2(R i −2) � t 

i 

) , βt 
i 

= 

� t 
i ( 1+ ( 2 R i −3 ) � t i ) 

2+2 ( R i −2 ) � t i 
, and 0 < � 

t 
i 
↓ 0 . 

3: Update the route choice strategy: 

p t+1 
i 

= p t i + γ t 
i 

( 

e R i ,k i − p t i + 

ζ t 
i 

(
1 R i − R i e R i ,k i 

)
R i − 1 

) 

, (14) 

where γ t 
i 

∈ [0 , 1] is a scalar, 1 R i = ( 1 , 1 , . . . , 1 ︸ ︷︷ ︸ 
R i 

) T , e R i ,k i = 

⎛ 

⎝ 

R i ︷ ︸︸ ︷ 
0 , . . . , 0 , 1 ︸ ︷︷ ︸ 

k i 

, 0 . . . , 0 

⎞ 

⎠ 

T 

. 

4: Generate the new route choice strategy distribution: 

p 
{

r t+1 
i 

= r i,k i 

∣∣F 

t 
i 

}
= p t+1 

i,k i 
. 

 

 

 

 

 

 

Remark 4. From [29] , we know that the automaton input ζ t 
i 

in (13) belongs to the unit interval, which ensure that the

individual strategy p t 
i,k i 

∈ [0 , 1] for t ∈ { 1 , 2 , . . . } . 
Remark 5. It should be pointed out that the distributed optimization algorithm based on (11) can only be applied if the

complete information is available for the travelers. However, the B-M RL scheme in this paper only depends on partial

information. 

3.2.3. Convergence of B-M RL-Based solution method 

In this part, the convergence analysis of the B-M RL-based solution method will be presented. 

Lemma 1. (Robbins & Siegumnd [40] ) Let 
{
F 

t 
}∞ 

t=1 
be a sequence of σ -algebras, and a t , b t , c t and d t be F 

t -measurable non-

negative random variables. And let the following inequalities hold with probability one 

E 
{

a t+1 
∣∣F 

t 
}

≤
(
1 + b t 

)
a t + c t − d t , 

and 
∞ ∑ 

t=1 

b t < ∞ , 

∞ ∑ 

t=1 

c t < ∞ , 

where E 
{

a t+1 
∣∣F 

t 
}

denotes the conditional mathematical expectation for the given a k , b k , c k and d k (k = 0 , 1 , · · · , t) . Then, with

probability one, 

lim 

t→∞ 

a t = a ∗, 

and 
∞ ∑ 

t=1 

d t < ∞ , 

where a ∗ is some random variable. 

Theorem 2. Suppose that Assumption 1 hold. Let the optimal route choice strategy be p 

∗ = ×i =1 , 2 , ... ,N p 
∗
i 
. If the parameter γ t 

i 

satisfies γ t 
i 

> 0 , 
∑ ∞ 

t=1 γ
t 
i 

< ∞ and 
∑ ∞ 

t=1 

(
γ t 

i 

)2 
< ∞ for i = 1 , 2 , . . . , N, then the individual route choice strategy p t 

i 
converges to

the individual optimal strategy p ∗
i 

with probability one as t → ∞ . 
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Fig. 2. The Nguyen–Dupuis network. 

Table 1 

Link-Route incidence relationship of the Nguyen–Dupuis network. 

O-D pair Route no. Links sequence O-D pair Route no. Links sequence 

(1,2) 1 1,10,19 (1,3) 9 2,5,8,12 

2 2,6,9,16,19 10 2,6,9,15,18 

3 2,6,9,15,17 11 2,6,14,11,18 

4 2,6,14,11,17 12 2,5,7,11,18 

5 2,5,7,11,17 13 1,13,9,15,18 

6 1,13,9,16,19 14 1,13,14,11,18 

7 1,13,9,15,17 (4,3) 20 4,8,12 

8 1,13,14,11,17 21 4,7,11,18 

(4,2) 15 4,7,11,17 22 3,5,8,12 

16 3,6,14,11,17 23 3,6,9,15,18 

17 3,6,9,16,19 24 3,6,14,11,18 

18 3,6,9,15,17 25 3,5,7,11,18 

19 3,5,7,11,17 

Table 2 

The free latency f 0 e and link capacity C e of the Nguyen–Dupuis network. 

Link no. 1 2 3 4 5 6 7 8 9 10 

f 0 e 7 9 9 12 3 9 5 13 5 9 

C e 300 200 200 200 350 400 500 250 250 300 

Link no. 11 12 13 14 15 16 17 18 19 

f 0 e 9 10 9 6 9 8 7 14 11 

C e 500 550 200 400 300 300 200 300 200 

 

Proof. Consider the following Lypunov function 

W 

t 
i = 

∥∥p t i − p ∗i 
∥∥2 

for all i = 1 , 2 , . . . , N. Then, for any time stage t , it follows from (14) that 

W 

t+1 
i 

= 

∥∥∥∥∥p t i − p ∗i + γ t 
i 

( 

e R i ,k i − p t i + 

ζ t 
i 

(
1 R i − R i e R i ,k i 

)
R i − 1 

) 

∥∥∥∥∥
2 

= 

∥∥p t i − p ∗i 
∥∥2 + 2 γ t 

i 

(
p t i − p ∗i 

)T 

( 

e R i ,k i − p t i + 

ζ t 
i 

(
1 R i − R i e R i ,k i 

)
R i − 1 

) 

+ 

(
γ t 

i 

)2 

∥∥∥∥∥e R i ,k i − p t i + 

ζ t 
i 

(
1 R i − R i e R i ,k i 

)
R i − 1 

∥∥∥∥∥
2 

= 

∥∥p t i − p ∗i 
∥∥2 + 2 γ t 

i 

(
p t i − p ∗i 

)T 
�t 

i + 

(
γ t 

i 

)2 ∥∥�t 
i 

∥∥2 
, 

where �t 
i 
= e R i ,k i − p t 

i 
+ 

ζ t 
i 

(
1 R i 

−R i e R i ,k i 

)
R i −1 . Taking mathematical expectation with respect to F 

t 
i 
, we obtain that 

E 
{

W 

t+1 
i 

∣∣F 

t 
i 

}
= 

∥∥p t i − p ∗i 
∥∥2 + 2 γ t 

i 

(
p t i − p ∗i 

)T 
E 
{
�t 

i 

∣∣F 

t 
i 

}
+ 

(
γ t 

i 

)2 
E 

{ ∥∥�t 
i 

∥∥2 ∣∣F 

t 
i 

} 
. (16)
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Fig. 3. Traffic flows at equilibrium on each route. 
From (13) and Assumption 2, we get that 

E 
{
�t 

i 

∣∣F 

t 
i 

}
= 

R i ∑ 

k i =1 

E 
{
�t 

i 

∣∣F 

t−1 
i 

∧ r t i = r i,k i 

}
p t i,k i 

= 

R i ∑ 

k i =1 

( 

e R i ,k i − p t i + 

χ t 
i 

(
1 R i − R i e R i ,k i 

)
R i − 1 

) 

p t i,k i 

= 

1 

R i − 1 

R i ∑ 

k i =1 

χ t 
i p 

t 
i,k i 

(
1 R i − R i e R i ,k i 

)
+ ς 

t 
i , (17) 

and 

E 

{ ∥∥�t 
i 

∥∥2 ∣∣F 

t 
i 

} 
= 

R i ∑ 

k i =1 

E 

{ ∥∥�t 
i 

∥∥2 ∣∣F 

t−1 
i 

∧ r t i = r i,k i 

} 
p t i,k i 

≤ R 

2 
i � i, + , (18) 

where χ t 
i 

= E 
{
ζ t 

i 

∣∣F 

t−1 
i 

∧ r t 
i 

= r i,k i 

}
, ς 

t 
i 

= 

∑ R i 
k i =1 

(
e R i ,k i − p t 

i 

)
p t 

i,k i 
. 

Substituting (17) and (18) into (16), it yields that 

E 
{

W 

t+1 
i 

∣∣F 

t 
i 

}
≤ W 

t 
i + 2 γ t 

i 

(
p t i − p ∗i 

)T 

( 

1 

R i − 1 

R i ∑ 

k i =1 

χ t 
i p 

t 
i,k i 

(
1 R i − R i e R i ,k i 

)
+ ς 

t 
i 

) 

+ ϒi ( � i ) 
(
γ t 

i 

)2 

≤ W 

t 
i + 2 

γ t 
i 

R i − 1 

R i ∑ 

k i =1 

(
p t i − p ∗i 

)T (
χ t 

i p 
t 
i,k i 

(
1 R i − R i e R i ,k i 

))
+ 2 γ t 

i 

R i 

R i − 1 

(
p t i − p ∗i 

)T 
ς 

t 
i + R 

2 
i � i 

(
γ t 

i 

)2 
. (19) 
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Fig. 4. The evolutions trajectories of route choice strategies of the travelers on Route 2 for different solution methods. (a). The B-M RL-based solution 

method; (b). The multinomial logit choice model; (c). The improved learning automata; (d). The modified Q-learning algorithm. 

 

 

 

It follows from (13) and (15) that 

1 

R i − 1 

R i ∑ 

k i =1 

χ t 
i p 

t 
i,k i 

(
1 R i − R i e R i ,k i 

)
= 

1 

R i − 1 

R i ∑ 

k i =1 

( 

αt 
i 

∂V 

(
p 

t 
)

∂ p t 
i,k i 

+ βt 
i 

) (
1 R i − R i e R i ,k i 

)
= −αt 

i ∇ p t 
i 
V 

(
p 

t 
)

− βt 
i 1 R i . (20)

From the proof of Theorem 1 , we know that V ( p ) is strictly convex, which implies that 

−
(

p t i − p ∗i 
)T ∇ p t 

i 
V 

(
p 

t 
)

≤ V (p 

∗) − V 

(
p 

t 
)
. (21)

Combining (19), (20) and (21), it obtains that 

E 
{

W 

t+1 
i 

∣∣F 

t 
i 

}
≤ W 

t 
i − 2 γ t 

i 

(
p t i − p ∗i 

)T (
αt 

i ∇ p t 
i 
V 

(
p 

t 
)

+ βt 
i 1 R i 

)
+ 2 γ t 

i 

R i 

R i − 1 

(
p t i − p ∗i 

)T 
ς 

t 
i + R 

2 
i � i 

(
γ t 

i 

)2 

≤ W 

t 
i + 2 γ t 

i α
t 
i 

(
V ( p 

∗) − V 

(
p 

t 
))

+ 

2 R i 

R i − 1 

γ t 
i 

(
p t i − p ∗i 

)T 
ς 

t 
i + R 

2 
i � i 

(
γ t 

i 

)2 
. (22)

An application of vector inequality 2 a T b ≤ ‖ a ‖ 2 + ‖ b‖ 2 , it yields that 

2 

(
p t i − p ∗i 

)T 
ς 

t 
i ≤

∥∥p t i − p ∗i 
∥∥2 + 

∥∥ς 

t 
i 

∥∥2 
. 
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Fig. 5. The evolutions trajectories of route choice strategies of the travelers on Route 4 for different solution methods. (a). The B-M RL-based solution 

method; (b). The multinomial logit choice model; (c). The improved learning automata; (d). The modified Q-learning algorithm. 

 

 

 

From the definition of ς 

t 
i 
, we have 

∥∥ς 

t 
i 

∥∥2 ≤ R 2 
i 
. Hence, 

2 

(
p t i − p ∗i 

)T 
ς 

t 
i ≤

∥∥p t i − p ∗i 
∥∥2 + R 

2 
i . (23) 

Then, combining (22) and (23), it obtains that 

E 
{

W 

t+1 
i 

∣∣F 

t 
i 

}
≤
(

1 + 

R i 

R i − 1 

γ t 
i 

)
W 

t 
i + 

(
R 

3 
i 

R i − 1 

γ t 
i + R 

2 
i � i 

(
γ t 

i 

)2 

)
− 2 γ t 

i α
t 
i 

(
V 

(
p 

t 
)

− V ( p 

∗) 
)
. (24) 

It is easy to see that V 
(
p 

t 
)

− V ( p 

∗) ≥ 0 since p 

∗ is the optimal route choice strategy. From the conditions 
∑ ∞ 

t=1 γ
t 
i 

< ∞
and 

∑ ∞ 

t=1 

(
γ t 

i 

)2 
< ∞ , we know that the conditions in Lemma 1 are satisfied. Hence, with probability one, 

lim 

t→∞ 

W 

t 
i = W 

∗
i , 

for i = 1 , 2 , . . . , N. 

In the following, we will prove that 

W 

∗
i = 0 (25) 

for i = 1 , 2 , . . . , N. As a matter of fact, if (25) is not true, then there exists some i such that W 

∗
i 

� = 0 . From the definition of

W 

t 
i 
, it obtains that p t 

i 
converges to certain p ∗∗

i 
and p ∗∗

i 
� = p ∗

i 
. Let p 

∗∗ be the stationary mixed-strategy that includes p ∗∗
i 

as a
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Fig. 6. The evolutions trajectories of route choice strategies of the travelers on Route 14 for different solution methods. (a). The B-M RL-based solution 

method; (b). The multinomial logit choice model; (c). The improved learning automata; (d). The modified Q-learning algorithm. 

 

 

 

 

 

 

part, i.e., p 

t → p 

∗∗ as t → ∞ . It can be obtained that p 

∗∗ � = p 

∗. On the other hand, since p 

∗∗ is stationary, ∇ p i V (p ) 
∣∣

p i = p ∗∗
i 

= 0

for i = 1 , 2 , . . . , N, which means that p 

∗∗ is a local optimal solution of the TAP. However, we know from Theorem 1 that

the optimal solution of the TAP is unique. Thus p 

∗∗ = p 

∗, which is a contradiction. Hence, W 

∗
i 

= 0 for i = 1 , 2 , . . . , N, which

means that p t 
i 

converges to p ∗
i 

almost surely for i = 1 , 2 , . . . , N. The proof is completed. �

4. Numerical experiments 

In this section, a numerical example is provided to illustrate the effectiveness of the proposed B-M RL-based solution

method ( Algorithm 1 ). 

4.1. Experiment configuration 

In the numerical example, the Nguyen–Dupuis network [41] is utilized, which is shown in Fig. 2 . It consists of 13 nodes,

19 links, 25 routes and 4 O-D pairs. 

The incidence relationship of routes and links are shown in Table 1 . The following BPR type latency function is em-

ployed 

	 e ( f e ) = f 0 e 

( 

1 + 0 . 35 

(
f e 

C e 

)3 . 5 
) 

, 
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Fig. 7. The evolutions trajectories of route choice strategies of the travelers on Route 19 for different solution methods. (a). The B-M RL-based solution 

method; (b). The multinomial logit choice model; (c). The improved learning automata; (d). The modified Q-learning algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

where the free latency f 0 e and link capacity C e for each link are given in Table 2 . Both Tables 1 and 2 are adopted from

the benchmark case in [42] . Initially, the route choice strategy of each traveler are assumed to be uniform, that is, the

travelers’ available routes have the same probabilities to be chosen. The parameter γ t 
i 

in algorithm is set to be 1 
t 1+ ε for all

i = 1 , 2 , . . . , N, where ε = 10 −3 is a small real number. The numerical experiment is implemented by MATLAB R2018a in a

laptop with processor: Intel (R) Core (TM) i7-3520 CUP @2.9 Ghz and RAM: 4.0 GB. 

4.2. Experimental results 

4.2.1. Comparative analysis under identical traffic flows 

In this part, we compare the B-M RL-based solution method with several similar methods from existing works, that is,

the multinomial logit choice model in [16] , the improved learning automata in [23] , the modified Q-learning algorithm in

[43] , in which the traffic flows between O-D pair (1,2), (1,3), (4,2), (4,3) are set by 200, 250, 150, 200, respectively. The goal

here is to compare the efficiency of such four solution methods from the perspective of the convergence performance and

the total travel time. 

The exprimental results are presented in Figs. 3–8 . Fig. 3 shows the traffic flows at equilibrium on each route under

B-M RL-based solution method. Figs. 4 , ,–7 compare the evolution trajectories of the route choice strategies of the travelers

for different solution methods on Route 2, Route 4, Route 14 and Route 19, respectively. It can be seen from Fig. 4 –7 that

although initial route choice strategies of the travelers for the same route are identical, their evolution trajectories differs
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Fig. 8. The evolutions of the total travel times of the travelers in traffic networks for the four solution methods. The red line, green line, blue line and dark 

line present the evolutions of the total travel times with the B-M RL-based solution method, the multinomial logit choice model, the improved learning 

automata and the modified Q-learning algorithm, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

Table 3 

Four different cases of traffic flows in the Nguyen–Dupuis network. 

(1,2) (4,2) (1,3) (4,3) 

I 50 35 30 50 

II 200 250 150 200 

III 400 500 300 400 

IV 800 1000 600 800 

 

 

 

 

 

 

 

 

 

 

 

dramatically for different solution methods: the B-M RL-based solution method converges after 500 times iteration, while

the others fail to converge within the same time period. Thus, compared with the similar solution methods, the B-M RL-

based solution method performs better in convergence performance. Moreover, Fig. 8 shows the evolutions of total travel

time of the travelers for the four solution methods. It can be seen in Fig. 8 that the total travel time in traffic networks

under B-M RL-based solution method is the lowest among the four solution methods. Thus, we can conclude that the B-M

RL scheme is more efficient than the other three methods, because it not only provides better convergence performance,

but also helps reduce the total travel time over entire network. 

4.2.2. Comparative analysis under different traffic flows 

In this part, we test the four solution methods under four different types of traffic flows, which are listed in Table 3 . The

experimental results are shown in Table 4 , Figs. 9 and 10 . 

Table 4 and Fig. 9 show the experimental results of B-M RL solution method under the four types of traffic flows. As

we can see from Table 4 , from Case I to Case IV, with more and more travelers involved in the Nguyen-Dupuis network,

the links are becoming congested little by little. In Case I, all the links are smooth; in Case II, there are five links become

congested; in Case III, fourteen links are congested; in Case IV, eighteen links are congested, in other words, the traffic
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Table 4 

The traffic conditions in the Nguyen–Dupuis network for Case I-Case IV. Symbol“S” stands for “Smooth”, 

while symbol “C” stands for “Congested”. A link is smooth, if its traffic flow is lower than its capacity, 

and otherwise, it is congested. 

1 2 3 4 5 6 7 8 9 10 

I S S S S S S S S S S 

II C S C C S S S C S S 

III C C C C C C S C C S 

IV C C C C C C C C C C 

Link no. 11 12 13 14 15 16 17 18 19 

I S S S S S S S S S 

II C S S S S S S S S 

III C C C S C S C C S 

IV C C C S C C C C C 
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Fig. 9. The proportion of travelers who choose the routes for Case I-Case IV, in which the red bar, the blue bar, the yellow bar and the dark bar represent 

the proportions for Case I, Case II, Case III and Case IV, respectively. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

network is smooth for Case I, is semi-congested for Case II, and encounters traffic jam for Case III and Case IV. Fig. 9 shows

the proportion of travelers who choose the routes for Case I-Case IV. From Fig. 9 , we can see that Route 1, Route 13, Route

15 and Route 20 have undertaken the most of the traffic flow for the four O-D pairs, respectively, regardless of the volume

of traffic flows. Compared with other cases, Case II is more suitable for simulating the route choice behaviors, because

the semi-congested property is better for showing the effectiveness of the B-M RL-based solution method that faced with

multiple traffic conditions. 

Furthermore, we test the running time of the four solution methods under the four types of traffic flows. The experimen-

tal results are illustrated in Fig. 10 , in which we can observe that the running time of the four solution methods significantly

increases with respect to the increasing traffic flows, and the increasing tendencies are nearly identical, which means that

the four solution methods share the common time complexity, simultaneously, the running time of the B-M RL-based so-

lution method is always the lowest among the four solution methods under fixed traffic flows, which means that the B-M

RL-based solution method is more efficient than the other three solution methods. 
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the running time of the B-M RL-based solution method, the multinomial logit choice model, the improved learning automata and modified Q-learning 

algorithm, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 

In this paper, we present a B-M RL scheme to address the route choice problem. The problem is approached from a

learning automata’s perspective, where travelers learn to choose the optimal route to travel based on their past experience.

The optimal route choice strategy is presented by the Nash equilibrium of congestion game. We construct a novel potential

function that transforms the congestion game into the TAP, which aims to seek the optimal route choice strategy, such

that the total travel time in traffic networks can be minimized. Then, the distributed algorithm based on B-M RL scheme

is devised to solve the TAP. Under some mild conditions, such solution method converges almost surely to the optimal

solutions of the TAP, which means that the B-M RL-based solution method is effective to learn the optimal route choice

strategy. In numerical experiments, we show that the B-M RL solution method provides reasonably good solutions, and is

able to make a more efficient use of the road network. The key advantage of the B-M RL-based solution method is that it

is independent of any specific mathematical model, and does not require any central authority assigning the traffic data.

Furthermore, our approach might be potentially implemented as an intelligent mobile service to guide the travelers’ daily

route choice strategies. 
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