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a b s t r a c t 

The electroplating industry, due to steps such as pickling, generates acid pH wastewater. Its treatment 

is important for environmental preservation and the future recovery of metals. Therefore, the main ob- 

jective of this work was the development of an autonomous pH controller for electroplating industry 

liquid effluents, based on fully automated Reinforcement Learning (RL). In order to do that, a Continuous 

Stirred-Tank Reactor (CSTR) neutralization simulator, and an adapted Particle Swarm Optimization (PSO) 

algorithm to automate the choice of RL hyperparameters were developed. The controller was developed 

and validated when it stabilized the effluent’s pH in a neutral range in different scenarios during the 

regulatory and servo operations better than a Proportional Integral Derivative (PID) controller. The devel- 

opment of autonomous wastewater pH control systems in coated surface treatment units is a significant 

advancement, as it reduces human intervention and allows the monitoring of variability associated with 

the electroplating industry. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Automation and control systems present a competitive differ-

ntial in the current market context, considering several initiatives

o encourage intelligent automation and the dissemination of In-

ustry 4.0 paradigms in the industrial sector. Automatic pH con-

rol is critical in chemical, food and bioprocess industries, where

any of the process steps require tools for automation of hydroge-

ionic concentration control, such as wastewater treatment stage

 Shinskey, 1973 ). 

Metals and chemical reagents are intrinsic to treatment and

reparation processes of metal surfaces for nickel and other met-

ls electroplating. The use of these components as pickling agents

roduces acidic liquid effluents. In these, pH control is crucial, not

nly due to damage in future contact with the environment after

isposal, but also due to the recovery of the metals used in the

oating ( Cushnie Jr, 1985 ). 
Abbreviations: RL, Reinforcement Learning; PSO, Particle Swarm Optimization; 

STR, Continuous Stirred-Tank Reactor; PID, Proportional Integral Derivative; ADP, 

daptive Dynamic Programming; pH, power of Hydrogen; HPO, Hyperparameter 

ptimization; PBT, Population-based Training; GCP, Generalized Predictive Control. 
∗ Corresponding author. 

E-mail address: douglasagoulart@gmail.com (D. Alves Goulart). 
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Industrial surface treatment units for metallic coating generate

xtremely toxic effluents, with different compositions depending

n the production schedule and requirement of human monitoring

nd supervision for treatment ( Chen et al., 2007 ). The development

f autonomous wastewater pH control systems in these units is a

ignificant advantage, as it reduces human intervention and allows

onitoring the variability associated with the electroplating indus-

ry. 

As mentioned by Krishnapura and Jutan (20 0 0) , the control of

 reactor’s pH system is often considered to be one of the bench-

arks for nonlinear process control. This is due to the highly non-

inear behavior exhibited by the pH dynamics, making it a great

ase study for evaluating a controller. 

The main objective of this work was the application of a Ma-

hine Learning technique for autonomous pH control, based on

ompletely automated Reinforcement Learning (RL). 

The secondary purposes were to build a numerical simulator of

n electroplating industry wastewater neutralization reactor for the

ontrol strategy testing purposes and obtain the required data for

raining the model; adapt the Particle Swarm Optimization - PSO

 algorithm to optimize of RL hyperparameters. In addition, our

oals included - validating the autonomy of the controller based on

L, analyzing its behavior against process variations and comparing

he performance with the classic Proportional Integral Derivative

PID) controller. 

https://doi.org/10.1016/j.compchemeng.2020.106909
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106909&domain=pdf
mailto:douglasagoulart@gmail.com
https://doi.org/10.1016/j.compchemeng.2020.106909
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2. Preliminaries 

2.1. pH Control and acid wastewater of electroplating industry 

Electroplating is considered one of the main emitters of harm-

ful and toxic wastewaters among the chemical industries by

Hosseini et al. (2016) and Bojic et al. (2007) . To further elu-

cidate how an electroplating unit can be a source of pollu-

tion, Kobya et al. (2017) classifies the electrolytic bath, washing

and rinsing of the electroplated articles as the most wastewa-

ter intensive processes within the plant. The waste streams gen-

erated in these stages, waste pickle liquor and bleed streams,

are of major concern due to the presence of high metals and

acid concentrations, which renders them as highly corrosive and

polluting. 

Regarding the generation of waste pickle liquor in electroplat-

ing industries, Robson (1993) comments that during the heat treat-

ment of various kinds of metal surfaces, for example, steel, atmo-

spheric oxygen reacts with iron on the surface of the steel to form

a crust that is made up of a mixture of iron oxides. The presence

of oxide on the surface of the steel and other metal surfaces is un-

desirable when it is to be subsequently shaped or cold-rolled and

coated. 

The removal of oxide from metal surfaces by cleaning it with

an acid solution is called “pickling” and is one of the main steps

in the metal treatment industries. This is usually accomplished by

immersing the metal in an acid bath ( Kerney, 1994 , Kerney, 1997 ).

HCl, HNO 3 or H 2 SO 4 are used for this purpose as pickle liquor to

remove surface oxide ( Kleingarn, 1988 ). 

According to Agrawal and Sahu (2009) , the acid pickling

method is preferred over all other methods to remove oxide during

electroplating, like abrasive blasting, tumbling, brushing and alka-

line descaling because of following reasons: 

• It increases service life, eliminates irregular conditions and pro-

motes surface smoothness in the finished products. 
• It allows proper alloying or adherence of metallic coatings and

satisfactory adherence when a non-metallic coating or paint is

used. 
• It also prevents lack of uniformity and eliminates surface irreg-

ularities during the cold reduction of steel sheet and strip. 

Due to the harmful effluents of the electroplating industry re-

sulting from the pickling process, which is preferred over other al-

ternatives, added to the variability of the industry and the varia-

tion in production demand, an autonomous pH controller will be

very useful. 

2.2. Automated reinforcement learning controller 

The task of controlling the pH neutralization of effluents

from the electroplating industry becomes difficult due to non-

linearity, time-varying characteristics, and non-steady operation.

To overcome these issues and difficulties, several advanced data-

driven control techniques have been analyzed for similar processes

[13:21]. 

Data-driven control techniques rely on data collected from the

process to learn and tune controllers ( Hou and Wang, 2013 ). This

makes these techniques more representative of the real process

since it eliminates incompatibilities between a model and the real

case. The data-driven controller learning objective can be achieved

either by using highly adaptive simplified phenomenological mod-

els ( Fliess and Join, 2013 , Hou and Jin, 2011 ) or by using no model

at all. Among the model-free methods, RL has received academic

attention [25:34]. 

As reported by Radac and Precup (2019) , Reinforcement Learn-

ing ( Sutton and Barto, 1998 ) is a data-driven technique that solves
ptimal control problems, and is has been developed simultane-

usly in the machine learning and control systems communities. In

atter, RL is better known as Adaptive (Approximate) Dynamic Pro-

ramming (ADP) ( Werbos, 1992 ) or neuro-dynamic programming

 Bertsekas and Tsitsiklis, 1995 ). 

The RL algorithm requires numerous pre-defined hyperparam-

ters, which are responsible for ensuring the convergence speed

nd reproducibility of the learning process ( Henderson et al., 2018 ).

s they are not automatically adjusted during training, the user

ust select them according to his/her experience. The result of the

earning process, interaction between the algorithm and the envi-

onment, as well as the required learning time strongly depends

n this choice ( Islam et al., 2017 ). 

A common method is a manual search for suitable parame-

ers. Some previous works implemented hyperparameter adapta-

ion in RL by simple rules or manually defined schedules [41:44].

ut this kind of adaptation often requires heuristic knowledge

nd previous experience with the algorithm. Hyperparameter Op-

imization (HPO), is an extremely important field in machine

earning and optimization ( Candelieri et al ., Probst et al. ). HPO

s a difficult optimization problem with high computational cost

 Bengio, 2012 ). 

The introduction of an automated hyperparameter search pro-

ess, according to ( Liessner et al., 2019 ), has the greatest ben-

fit of facilitating the industrial application of data-based con-

rol strategies, as the user does not depend on personal expe-

ience in adjustment of hyperparameters. It was also needed to

ake sure that the control performance obtained by these meth-

ds is the optimal response that only the best hyperparameters

llow. 

With the aim of making the control of chemical processes

ia Reinforcement Learning simpler to be applied industrially, the

uthors, despite being aware of the state of the art of Rein-

orcement Learning technology ( Shin et al., 2019 ), see the use

f Deep Reinforcement Learning as unnecessary in the studied

ase, since the process to be controlled is Single Input – Sin-

le Output, thus a simpler methodology, such as Actor-Critic, was

hosen. 

.3. PSO for hyperparameters optimization 

The work of Jaderberg et al. (2017) proposed a Population-based

raining (PBT), a simple population-based hyperparameter adapta-

ion neural network training method. Different from simple rules

r heuristics, PBT adapts the hyperparameters in the whole rein-

orcement learning process without human intervention. 

Specifically, Lorenzo et al. (2017) and Lorenzo et al. (2017) did

n extensive experimental study that was backed-up with statis-

ical tests and revealed that PSO, as a population-based meta-

euristic algorithm is an effective technique for automating hyper-

arameters selection and it efficiently exploits computational re-

ources. The researchers selected hyper-parameters of deep neural

etworks with PSO, demonstrating that it efficiently explores the

olution space, allowing a network of a minimal topology to ob-

ain competitive performance. 

The use of the metaheuristic optimization tool is common in

utomatic pH control applications. Generalized predictive control

GPC) was used by Altiten (2007) to a pH neutralization pro-

ess. The control aimed to keep the pH value at a given set-

oint value when the process was subjected to variations in the

eed flow rate. The model parameters were determined by using

ierman and Genetic algorithms. The efficiency of the GPC was

bserved by calculating the integral of the square of the error

ISE). 
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Fig. 1. Modeled process with RL-controller. 
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Fig. 2. Diagram of Reinforcement Learning iterations. 
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. Methodology 

.1. Case study 

As a benefit, Reinforcement Learning does not require an accu-

ate model of the environment for training. However, the authors

id not have a dataset or physical plant of the process, so a model

as made to simulate the system and acquire the required data. 

A model of a case study of effluent neutralization in an elec-

roplating industry in a continuous stirred tank reactor (CSTR) was

eveloped. In the development of the mathematical model, the fol-

owing assumptions were made; ideal CSTR, isothermal reaction

ystem, negligible heat of reaction, presence of perfectly ionized

trong electrolytes, and a continuous operation (without pH buffer-

ng effect). 

The mathematical model used for the description of the phys-

cal system in Fig. 1 was formed with the material balance based

n mass conservation, and is presented in Eq. (1 ). 

d C H + 

dt 
= 

( C H + , 1 F 1 − C O H −, 2 F 2 − C H + , 3 F 3 ) 

V Reactor 

(1) 

here the term hydrogen concentration accumulation over time,

 C H + / dt is a function of the input stream contribution, C H + , 1 F 1 ;
he portion consumed in the neutralization reaction with the acid

ffluent, C O H −, 2 F 2 ; the portion corresponding to the reactor output

tream, C H + , 3 F 3 ; and the reactor volume, V Reactor . 

Defining V Reactor = 10 0 0L, the input stream i flow, F 1 = 5L/min,

he maximum flow of the neutralizer stream F 2,max = 10L/min. To

atisfy the consideration of continuous regime, F 3 = F 1 + F 2 , in addi-

ion to setting the input stream concentrations: C H + , 1 = 10 −5 mol/L,

 O H −, 2 = 1 mol/L and the initial condition of the output stream

H 3 = 4. Being the time step dt = 0.07 minutes over a total sim-

lation time of 200 minutes. Totaling 2857 iteration episodes per

imulation. 

This controlled the H 

+ concentration in the output stream, C H + , 3 ,
anipulating the opening of a valve that corresponds to the flow

ate of neutralizing F2 current. The Eq. (1 ) differential was solved

y the 4th order Runge–Kutta numerical method. 

.2. RL hyperparameters 

Reinforcement Learning methods are gaining popularity as an

lternative approach to traditional control techniques ( Lewis and

rabie, 2009 , Hoskins and Himmelblau, 1992 , Syafiie et al., 2008 ,

hah and Gopal, 2016 , Martinez, 20 0 0 , Lee and Lee, 2006 ,

ay Chaudhuri et al., 1996 , Khan et al., 2012 , Radac et al., 2017 ).

mong the most prominent and promising approaches are model-

ree online learning methods, which utilizes a stepwise process by

nteracting with the environment to be controlled, as shown in
ig. 2 . They do not require an accurate model of the environment

nd, most importantly, they do not require the designer to have a

reat experience in the specific control task. 

The basic dynamic of RL is explained by Sutton and Barto

1998) . In this algorithm, the agent t receives a representation of

ts state s t Є S from the environment, where S is the possible state

pace, and with this information, the agent selects an action a t Є
(s t ). A(s t ) is the space of actions available in the s t state. At the

ext instant of time, the agent receives a reward r t + 1 Є R and a

ew state s t + 1 . 
In general, the agent implements a mapping of states that are

ikely to perform actions. Such mapping is performed with the

gent policy, denoted π t where π t (s,a) is the probability of a t = a ,

iven s t = s . The learning process changes the policy according to

he agent’s experience. 

The reward signal must be defined so that by maximizing it the

gent will achieve the expected goal. The reward value is defined

s a function that maps an s t state, an a t action, and the resulting

tate s t + 1 to a reward r t + 1 = R(s t , a t , s t + 1 , a t + 1 ) . 
The agent always seeks to maximize the accumulated reward

ver time. Thus, the agent must maximize the return R , which is

he summation of actual reward the agent gets from the environ-

ent. This sum can be weighted over time so that immediate re-

ards are more important than future rewards. This is done by in-

luding the discount factor γ . Therefore, it is important to find a

alance in γ , to find a good conciliation between future and im-

ediate rewards. 

The decision made by the agent, defined by the policy, is a

unction of the state signal. Thus, the state entity encompasses all

inds of information available to the agent. The state must summa-

ize the experience compactly, but in such a way that all relevant

nformation is retained. 

Early RL algorithms assumed discrete sets of states and actions,

hich made them ill-suited for complex realistic control scenar-

os. In recent years, though, the focus of researchers has shifted to

ontrol tasks defined in multi-dimensional continuous state-action

paces. Learning continuous space domain functions is dealt with

alue Function Approximation (VFA) ( Busoniu et al., 2017 ), which

rovides a means of obtaining approximations of a continuous-

alued function from a discrete set of samples. 

VFAs use a set of activation functions called features ( ϕ), where

 is the number of features used to represent the state space. With

igher F, greater precision and description of the state space is

chieved, however, this is the most influential factor for the com-

utational time in the execution of RL learning. This is a variable

hat, when optimized, balances performance and computational

ime. 

A liner VFA is the approximation of a given function f(s ) and is

enoted 

ˆ f (s) , as in Eq. (2 ). 

ˆ f ( s ) = θφ(s ) (2) 

Where θ is the parameter vector of the linear combination, also

alled the feature weight vector. VFA was used to estimate the
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Table 1 

RL hyperparameters. 

Symbol Description 

γ Future rewards discount factor. 

F The number of features used to represent state and action space. 

λ Decay factor of eligibility trace. 

αV Actor learning gain. 

απ Critic learning gain. 

V N Noise decreasing speed. 

k r Reward adjustment factor. 
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value function V 

π ( Eq. (3 )) and policy π ( Eq. (4 )) . Thus, the learn-

ing process consists of interactively adjusting the values of the vec-

tors θV and θπ . In this study, Gaussian radial basis functions (RBF)

were used. 

ˆ 
 π ( s t ) = θV φ( s t ) (3)

ˆ π( s t ) = θπφ( s t ) (4)

The learning methodology applied was Actor–Critic (AC)

( Cheng et al., 2013 , Fernandez-Gauna et al., 2018 ). This design is

best suited to work with continuous states and actions because it

keeps a separate structure to represent the value function and the

action selection policy being learned. 

In this approach, at the end of each iteration, with the agent

taking the action a t and reaching the state s t + 1 , a two-step pro-

cess is accomplished. The first step is the policy evaluation and is

made by the critic. It will update its estimate of the value func-

tion V π from the new obtained data with the state transmission

occurred. So that the actor can then update the policy, the critic

gives it feedback, the time difference error δt representing the in-

crement of the value function in s t , according to Eq. (5 ), where ˆ V π
is the estimated value function. 

δτ = r t + γ ˆ V π ( s t+1 ) − ˆ V π ( s t ) (5)

The evaluation of the policy uses the concept of eligibility trace,

which is a memory of recent states and how many instances

they were visited over the period of time ( Fernandez-Gauna et al.,

2018 ). With this, it can spread the responsibility for acquiring a

certain reward throughout the visited states, with the most recent

and most visited prioritized. The eligibility trace vector z t is de-

fined in Eq. (6 ). 

z t+1 = γ λz t + φ( s t ) (6)

Being γ the discount factor previously presented and λ is a tun-

ing parameter called the trace discoloration factor. The importance

of the trace decay factor is noteworthy for updating the z vector,

and the consequence on algorithm learning. This being another hy-

perparameter, optimization has a direct influence on learning per-

formance. 

Then, to perform the policy evaluation and generate a new

value function estimate, the value function’s weight vector θV must

be updated, as shown in Eq. (7 ). 

θV,t+1 = θV,t + αV z t+1 { r t + γφV ( s t+1 ) θV,t − φV ( s t ) θV,t } (7)

Where α v is a learning tuning parameter that sets the value of the

update step in the direction of the optimal parameter. The critic

will pass the value of δt to the actor and the different error will

be part of updating the policy’s vector θπ weight . 
After the critic assesses the policy, the actor can then update

the θπ weights, toward the optimal policy. This update is defined

in Eq. (8 ). 

θπ,t+1 = θπ,t + απ∇ θππ( S t )( a t − π( S t )) δt (8)

Where απ is a learning parameter tuning, analogous to αv , which

sets the value of the update step in direction of the optimal pa-

rameter, both of which are optimizable; ∇θππ (s t ) is the gradient

of π (s t ) relative to θπ . 

Another point to be defined in the RL methodology is explo-

ration. Initially, the agent has no information about the environ-

ment or the task that it must perform. It needs to explore the state

space to find out which states return good rewards and improve its

policy. 

This work uses the exploration technique based on the addition

of noise to the policy signal that decreases over the iterations so

that the learning processes may converge. So, at the beginning of

learning, the agent explores a lot, not knowing the environment
et. Subsequently, it takes more advantage of the information ob-

ained and its actions directly reflect the policy. 

The perturbation N is a random value of a zero median range

nd decreasing amplitude, calculated using Eq. (9 ). 

 = rand 

[
− 1 

V 

sim 

N 

, + 

1 

V 

sim 

N 

]
(9)

here V sim 

N 
is the rate of noise decay, to the power of the num-

er of simulations already executed. Thus, this factor ensures that

hroughout training simulations, noise decays are exponentially

ased on V N . This rate is a parameter to be optimized, thus bal-

ncing the exploit-explorer ratio to the best of its performance. 

.3. RL as autonomous controller 

The RL agent is the controller of the closed-loop process illus-

rated in Fig. 2 . For this, it was necessary, with the defined con-

rol problem, determine which process variables would be used

s states, actions in addition to establishing the control objective

hrough the reward function 

The action is the control signal, referring to F 2 , and the simu-

ation environment responding with the state, which is the con-

rolled variable C H + , 3 . The reward will be set accordingly to the

etpoint to be reached. 

In this work, we aimed to neutralize the effluent output stream,

he setpoint is the pH of stream 3 (pH 3 ) equal to 7, then,

 H + , 3 = 10 −7 . Thus, the reward function, Eq. (10 ), was defined based

n two points: 

• With smaller error |pH 3 – pH 3,set |, a larger reward is generated,

minimizing the error and taking the controlled variable to the

setpoint. 
• If |a t – a t + 1 | < 0.05 the reward is doubled. Since the action

space is normalized to a Є [0,1] , this criterion increases the re-

ward for smoother control strategies that minimizes the valve

wear by opening and closing the frequency. 

R t+1 = 

{
kr [ 1 − (| pH3 − pH3 , set | ) ] , | at − at + 1 | > 0 . 05 

2kr [ 1 − (| pH3 − pH3 , set | ) ] , | at − at + 1 | < 0 . 05 

(10)

here k r is a constant that will adjust the range of reward val-

es. This variable also directly influences learning, since the order

f magnitude of the reward determines the weight it will have in

djusting the parameters, on θV directly, and on θπ via δt . 

The RL controller in this work is autonomous, as all its hyper-

arameters ( Table 1 ), which depend on the environment and the

earning method, will be determined by an optimization algorithm.

hus, ensuring its best performance, and making the only knowl-

dge of the process required for its execution of the reward func-

ion, to inform the goal to be achieved by the controller. 

.4. Particle swarm optimization 

The original Particle Swarm Optimization (PSO) algorithm, de-

eloped by Kennedy and Eberhart (1995) , makes use of a compu-
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Fig. 3. Flowchart of the PSO iteration dynamic. Adapted from ( Lorenzo et al., 2017 ). 
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ational paradigm based on the phenomenon of collective intelli-

ence exhibited by swarms of insects and flocks of birds. 

In PSO, each particle represents a possible solution to the op-

imization problem. It is initialized by the assignment of random

ositions and velocities in the universe where the solutions will

ransit. 

The algorithm records the best position of each particle for an

valuation index, “pbest”; and the entire population presents a bet-

er overall candidate solution, “gbest”. At each iteration, each parti-

le stochastically accelerates towards pbest and gbest and updates

ts position, following Eqs. (11 ) and (12) ( Shi and Eberhart, 1998 ),

ntil a stop condition such as a maximum number of iterations is

eached, as illustrated in Lorenzo et al. (2017) , Fig. 3 . 

 i +1 ,d = w v i,d + c 1 rand()(pbes t i,d − x id ) + c 2 rand() ( gbes t d − x id ) 

(11) 

 i +1 ,d = x i,d + v i +1 ,d (12) 

here v i + 1,d is the velocity in the next iteration in the dimension

, v i,d is the velocity i in the dimension d, w is the inertia, c 1 and

 2 are constants, rand() is a random fact, and x i + 1,d and x i,d are,

espectively, position x in the next iteration and current position

n d. 

.5. Application of particle swarm optimization 

The PSO is worked by varying the 7 RL hyper-parameters based

n its exploration, as seen in Eqs. (11 ) and (12) , to minimize the

ntegral Square Error (ISE) of the final simulation with RL controller

nd ensure stable responses. 

Each particle at each moment represents a set of values for the

 hyperparameters. With these variables defined, 25 RL-controlled

eutralization CSTR reactor training simulations are performed,

nd a final simulation where exploration is zeroed, that is, the

dded noise to π (s t ) is null (N = 0) and RL responds only with the

nowledge it has acquired. For this final simulation, ISE is calcu-

ated, which must be minimized by PSO. 

This process (25 trainings simulations + 1 final simulation) is

epeated 5 times, resetting θV and θπ between them, thus restart-

ng learning. The 5 ISE values of the final simulations are analyzed

nd if they are not stable responses, with a standard deviation of

ess than 10% of the mean, the particle result is discarded. If the

nal 5 simulations have stable ISEs, the particle has the average

tness of these values. 

As a comparison, the configured PSO was also used to tune a

lassic PID controller in digital form, Eq. (13 ). The optimizer aimed

o find bias and gains: proportional (Kc), integral ( τ i ) and deriva-

ive ( τD ), responsible for the lowest ISE of the simulation with the

espective controller. 

 k +1 = bias + K C 

(
er ro r k + 

�t 

τi 

∑ k 

i =1 
er ro r i + τD 

�er ro r i 
�t 

)
(13) 
Optimization via PSO proved to be an efficient and better tech-

ique than other evolutionary algorithms for tuning PID controller

arameters like genetic algorithms. PSO showed better time re-

ponse and efficiency in determining global optima ( Chen, 2007 ). 

.6. Deployment 

The electroplating industry effluent neutralization reactor sim-

lator, RL controller with actor-critic methodology, and PSO al-

orithm for optimizing hyperparameters were first developed in

cilab 6.0.0 and coupled, as illustrated in Fig. 4 . It is noteworthy

hat the dynamics of simulations are fully represented in Fig. 1 . 

It was necessary to perform a methodology change when pre-

iminary result was obtained, due to the low computational per-

ormance of Scilab. PSO worked with 7 dimensions and each par-

icle performed a total of 130 simulations (25 trainings + 1 final,

 times). This made it impossible to execute the final algorithm in

cilab 6.0.0 on a machine without high computational power. The

lternative chosen to enable the algorithm execution in this devel-

ped work was: 

1. Translate the code to C ++ , a lower-level language, closer to the

machine language, which decreases the computational time re-

quired for execution. 

2. The code was executed in the cloud. Cloud9 of Amazon Web

Services (AWS), a Cloud-based IDE was used, which offers a

good experience in the development of serverless applications

and ensures stable program execution ( Amazon Cloud9 ). 

The virtual processing instance on AWS was free t2.micro in-

tance ( Amazon EC2 ), which consists of 1 virtual CPU with 6

PU/hour credits, 1GiB memory and storage at Amazon Elastic

lock Store. With this machine, the algorithm took about 6 days

nd 4 hours to complete. 

. Results 

The first analysis considers the configuration of the PSO used.

aximum number of iterations was set to 100 and the popula-

ion size was varied from 5 to 150 particles. Each configuration

as performed 3 times, the average of the determined gBests are

hown in Fig. 5 . 

The non-reproducibility was observed due to the high variance

n the configurations with a few particles (over 75 particles) as the

onvergence was guaranteed, finding results closer to the optimum

epeatedly. The future analyses presented in this work were carried

ut in the configuration of 100 particles in the population since

his is a point of balance between convergence and computational

ime. 

The convergence of PSO can be evidenced in Fig. 6 , by the sta-

ility of gBest throughout the iterations, being the smallest fitness

ound among all particles. Its convergence means the proximity of

he particles with the optimal set of hyperparameters, the one that

rings the RL controller to the best performance. 

The best swarm particle had its best position in the iteration

5, which is consistent with the best set of parameters found as

hown in Table 2 . These were the parameters responsible for gen-

rating the lowest average of ISEs with a standard deviation within

n acceptable range. Average was 8778.6 with a standard deviation

f 0.0022%. 

The pH behavior over time in electroplating industry wastewa-

er treatment, based on neutralization in a CSTR, controlled by RL

ith the parameters found by the PSO can be seen for the training

nd final simulations of Fig. 7 . 

It can be observed that the RL has learned by manipulating the

eutralizer input to drive and maintain the output current pH at 7,

hus achieving the goal given to it by the reward function. 
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Fig. 4. Simulator-RL Controller-PSO coupling algorithm. 

Fig. 5. Minimum ISE (gBest) in different configurations of PSO, with 100 maximum iterations. 
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To evaluate the optimal hyperparameters determined in Table 2 ,

an analysis was made of how the algorithm behaves in an ex-

tensive range of combinations of learning gains, both for the ac-

tor ( απ ) and for the critic ( αV ). These hyperparameters were cho-

sen because they have the biggest influence on the RL algorithm

in all stages. These parameters were varied by multiplying the

optimum values ( απ = 2.2051E-6, αV = 1.1534E-4) by different

factors, stating all other hyperparameters were fixed. The varia-

tion of the ISE of the final simulation in face of this combina-

tion of factors is shown in Fig 8 . It is observed that the opti-

mum founded (alfa_P factor = alfa_V factor = 1) is really in a global

minimum. 
Fig. 7 shows the evolution of the 25 learning simulations. Fig. 9

hows more clearly the importance of the number of training sim-

lations, an extremely important factor in time and computational

ost of the controller training. In this step, performance and repro-

ucibility analysis, tests were performed with different amounts of

earning simulations, always with a final simulation, which has its

SE evaluated. Each set of simulations (training plus final) was per-

ormed 10 times, the ISE’s averages are plotted in Fig. 9 . The stan-

ard deviation was very small, meeting the optimization objective,

t a maximum of 0.034% and decreases with the number of sim-

lations, guaranteeing the reproducibility of the controller perfor-

ance for the same set of hyper-parameters. 
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Fig. 6. Evolution of gbest over PSO iterations for RL hyperparameters optimization. 

Fig. 7. Controlled pH by RL in training and final simulations. 
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In the optimization of the classical controller, two suboptimal

esponses were found when tuning the PID controller, which are

resented in Table 3 . The particle responsible for the PSO gBest,

ith the smallest ISE, is presented as the first solution. However,

his response sets the bias to zero. The second scenario, with bias,

howed a difference of only 0.04% compared to the first scenario

nd the presence of bias in the PID controller configuration can
ake it more effective in some situations. Therefore, this paper

ill compare the RL controller with these two PID configurations. 

The performance comparison between classic PID and RL based

ontrollers is shown in Fig. 10 . In the first analysis by ISE, the PID

ontroller performed better due to the shorter rising time of the

ontrolled variable, however, it has an offset of 1.4%, while the RL

ontroller showed no offset. The performance of the PID controller
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Fig. 8. ISE of the final simulation controlled by RL with different combinations of 

learning gains. 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Best particle position by PSO for RL 

controller optimization. 

Hyper-parameter Best value 

γ 0.3619 

F 32 

λ 0.9041 

αV 1.1534E −4 

απ 2.2051E −6 

V N 1.9654 

k r 0.84 

Table 3 

The best answers for PID parameters optimization by PSO. 

Bias Kc τ i τ D ISE 

1 0 −531.27 9459.2 1.6907 8724.6 

2 0.8206 −2962.4 3235.8 1.6567 8728.1 

i  

l  

c  

c  

o  

r  

m

 

p  

a  

c  

n  

d  

f  

i

 

t  
represents both versions (with and without bias), as its graphical

difference is imperceptible. 

Up to this point, the RL controller has only been shown to work

when it has been optimized. To evaluate the intelligent controller’s

autonomy capacity, it was submitted to situations with variations

in the process in regulatory and servo operation. 

In the regulatory operation, the simulation time was increased

to 800 minutes, and after 200 minutes there was a variation in the

pH of the process input stream. Fig. 11 shows the performance of

RL, PID controllers with and without bias with input current pH

equal to 2. 

This scenario shows the ability of the RL controller to learn

from the environment, even after the optimization and learning

simulations, where it perceives changes and learns from it, adapt-
Fig. 9. Performance analysis of the RL controller wi
ng to process variations inherent to the real-world control prob-

ems. The poor and oscillating PID performance shows the diffi-

ulty of a classic controller in high nonlinear processes such as pH

ontrol ( Shinskey, 1973 ). Both controllers went through the same

ptimization step for the process with pH 5 as input current. This

esult demonstrates the robustness and autonomy of the Reinforce-

ent Learning-based intelligent controller. 

This latter analysis was redone to intermediate input stream

H’s. The ISE of each simulation controlled by the three controllers

s a function of input current pH is shown in Fig. 12 . The bias PID

ontroller was the one that showed the worst performance under

ew conditions. The intelligent RL-based controller is the one that

emonstrates the lowest performance degradation. In the very dif-

erent situations from the primary conditions, pH 2 and 2.5 for the

nput current becomes the one with the lowest ISE. 

It is worth mentioning that the control was made with varia-

ions in the input pH, as this is the most impact variable in the
th different amounts of learning simulations. 
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Fig. 10. pH controlled by RL and PID. 

Fig. 11. pH dynamics in regulatory operation with RL and PID (a) without and (b) with the bias controller. 
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rocess, and is the variation most likely to occur in the electro-

lating industry. The variations went to more acidic pH’s to test

he neutralization case study. 

In servo operation, simulations of 800 minutes were also done,

ut with small variations in the desired pH of the output current,

he process setpoint, starting from 200 minutes. Figure 13 shows

he performance of RL, PID controllers with and without bias with

he new pH setpoint equal to 7.4. 

Again, the robustness of the RL controller over classic PID con-

rollers is explicit. In this case the PID control, upon entering the

ew operating condition, responds with an overshoot, requiring a
ong time to return to the setpoint. PID without bias responds with

 smaller overshoot but still represents 12.6%. While the RL control

ealizes the change, it explores the space of actions and states and

eaches the new setpoint. This analysis has been redone for inter-

ediate setpoints. The ISE of each simulation with the different

ontrollers is presented in Fig. 14 . 

The PID with bias controller performs better than without bias

n all test scenarios, but both, when out of the initial optimization

ituation, perform worse than the RL controller, again showing ro-

ustness, autonomy and ability to continue learning and adapting

hroughout the process. 
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Fig. 12. ISE’s from regulatory operation simulations to RL and PID without and with bias controllers. (a) Full Graphic (b) Zoom for comparison between RL and PID with 

bias. 

Fig. 13. pH dynamics in servo operation with RL and PID without and with bias controllers. 
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5. Final considerations and conclusions 

This work developed, applied and validated a Machine Learning

technique for autonomous pH control via Reinforcement Learning

(RL) for an electroplating industry wastewater neutralization reac-

tor. 

To do so, a numerical simulator of an effluent neutralization re-

actor for electroplating industry was modeled, where the control

strategies were tested. The actor-critic RL methodology was chosen

and adapted with VFAs stochastic policy to work with a continuous

space of states and actions. 

A PSO algorithm has been adapted and executed on the cloud to

determine the optimal controller hyperparameters. Thus, the only

knowledge of the process to be introduced in this technique is the

inherent characteristic of control, which is the goal to be achieved

via a reward function for the RL. 

The RL-based controller proved its autonomy in regulatory and

servo operations, in addition to having its performance validated

when compared to the classic controller. The PID algorithm pre-

sented an oscillatory control performance and a 12.6% offset in the
egulatory and servo operation, respectively. In both scenarios, RL

ontroller had smooth offset-free control. 

Future research steps will involve decreasing the simplifications

f the dynamic simulator. By disregarding the considerations of

sothermal reaction system, with negligible reaction heat, presence

f perfectly ionized strong electrolytes, without buffering effect,

hus bringing the simulator even closer of the real case. 

Analyses were also performed to evaluate the importance of

he optimization algorithm configuration and how the RL behaves

ith poor hyperparameters, which proved the efficiency of the

SO in finding the optimal set of hyperparameters for the RL

ontroller. 

In the future, the authors intend to start testing the RL au-

onomous controller in pilot plants of the process, in the treatment

f real effluents from electroplating industry. 

An interest was generated in studying possibilities of RL

ethodologies, and other ways of working with continuous state

nd action spaces, such as the use of the Deep Reinforcement

earning methodology associated with the transformation of the

urrent model into a Multiple Inputs Multiple Outputs - MIMO
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Fig. 14. ISE’s from servo operation simulations to the RL and PID without and with bias controllers. 
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ystem. Allowing more opportunities for process manipulation and

ontrol. 
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