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a b s t r a c t 

In recent years, reinforcement learning (RL) has attracted significant attention from both industry and 

academia due to its success in solving some complex problems. This paper provides an overview of RL 

along with tutorials for practitioners who are interested in implementing RL solutions into process con- 

trol applications. The paper starts by providing an introduction to different reinforcement learning algo- 

rithms. Then, recent successes of RL applications across different industries will be explored, with more 

emphasis on process control applications. A detailed RL implementation example will also be shown. 

Afterwards, RL will be compared with traditional optimal control methods, in terms of stability and com- 

putational complexity among other factors, and the current shortcomings of RL will be introduced. This 

paper is concluded with a summary of RL’s potential advantages and disadvantages. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Artificial intelligence (AI) has recently triggered a paradigm

hift in numerous industries around the world, ranging from tech-

ology to health care. The previously arcane topic is now an in-

uppressable wildfire igniting countless industrial and academic

inds alike. Rapid advancements in computer hardware and ever-

heapening data storage combined with AI’s ability to ‘self-learn’

as pushed AI to become the forefront algorithm for many appli-

ations such as computer vision and natural language processing.

ccording to PwC (2019) , AI is projected to generate over 15 trillion

SD to the world economy while providing a 26% boost in GDP by

030. Overall, AI is a massive field encompassing many goals. 

The major goals/topics of AI are shown in Fig. 1 . Currently, the

ost influential topic in AI is machine learning (ML). ML can be

escribed as the scientific field that studies and develops algo-

ithms and statistical models to give machines the explicit abil-

ty to learn tasks without being programmed to do so ( Russel and

orvig, 2009 ). The ML field can be further decomposed into su-

ervised learning, unsupervised learning, semi-supervised learning,

nd reinforcement learning. 

The breakdown of the ML field is shown in Fig. 2 . In su-

ervised learning, the agent (ML algorithm) learns the input-

utput mapping (model) from a training data set labeled by
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ubject matter expert(s) ( Ng, 2018 ). A supervised learning algo-

ithm generally attempts to generalize across training examples

nd uses this knowledge to predict labels for unseen data.

ote that not all labels are guaranteed to be correct. In the

rocess industry, the subject matter expert is often a sensor

easuring the current state (temperature, pressure, etc.) of a

rocess and could be unreliable and noisy. Ultimately, the per-

ormance of the supervised learning agent cannot outperform

he subject matter expert or supervisor because the agent es-

entially only mimics the labeling behavior of the expert. In

iterature, this performance limit of the agent is known as the

Bayes error rate ( Ng, 2018 ). Unsupervised learning is typically

sed for identifying hidden structures within unlabeled data sets.

xamples include segregating data based on their similarity to

dentify different operating regimes, or identifying the principal

omponents within a data set ( Hinton and Sejnowski, 1999; Sutton

nd Barto, 2018 ). The three main goals of unsupervised learning

re for dimensional reduction, feature extraction, and clustering.

emi-supervised learning is obtained by combining ideas from su-

ervised and unsupervised learning. In the process industry, man-

ally labeling data is a costly endeavor; however, many applica-

ions such as fault detection require labeled data sets to material-

ze useful applications. Here, semi-supervised learning can be ap-

lied to learn from the small amount of labeled data and extract

dditional useful insights from remaining unlabeled data ( Ge et al.,

017 ). Nevertheless, semi-supervised learning still suffers from the

nability to surpass the supervisor. Therefore, the previous meth-

ds can only create value through cost reductions while failing to

https://doi.org/10.1016/j.compchemeng.2020.106886
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106886&domain=pdf
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Nomenclature 

a Anomalous state 

A The set of anomalous states 

b Behaviour policy 

E Expectation 

H Control horizon 

k Update step 

K d Derivative gain 

K i Integral gain 

K p Proportional gain 

N Arbitrary number of time steps 

N Ornstein-Uhlenbeck exploratory noise 

o Observation 

O The set of possible observations, observation space 

p Probability transition function 

p Action probability vector 

Pr Probability 

q ∗ Action-value 

Q Estimated action-value 

Q mpc Tuning matrix for the states MPC 

r Expected reward 

R Sampled reward 

R mpc Tuning matrix for the inputs in MPC 

t Time step 

u Control action 

u ′ Noise corrupted input signal 

u ∗ Optimal control action 

U The set of all possible control actions, action space 

v Expected value 

V Estimated value 

w Weight vector for function approximation 

W t Wiener process 

x State 

y Predicted variable 

X The set of possible states, state space 

γ Discount factor 

π Policy 

α Learning rate or step size 

β Fixed discount factor in Semi-MDPs 

η Time spent in a particular state 

μ State distribution 

μa Threshold for system to be identified as anomalous 

in RL anomaly detection 

ε Percent chance of performing a random action in TD 

methods 

θ Ornstein-Uhlenbeck hyper parameter for the time 

parameter 

σ Ornstein-Uhlenbeck hyper parameter for the Wiener 

process 

Abbreviations 

ADP Approximate dynamic programming 

AI Artificial intelligence 

CMDP Constrained Markov decision process 

CSTR Continuously stirred tank reactor 

DCS Distributed control system 

DPG Deterministic policy gradient 

DDPG Deep deterministic policy gradient 

DMC Dynamic matrix control 

DP Dynamic programming 

DQN Deep q-learning network 

EMPC Economic model predictive control 

FOMDP Fully observable Markov decision process 
t  
FTC Fault tolerant control 

HARL Heuristically accelerated reinforcement learning 

LQG Linear quadratic Gaussian 

LQR Linear quadratic regulator 

LSTM Long short term memory 

MC Monte Carlo 

MDP Markov decision process 

MIMO Multiple-input multiple-output 

ML Machine learning 

MP Mathematical programming 

MPC Model predictive control 

MRP Markov reward process 

MSE Mean squared (tracking) error 

NP Non-deterministic polynomial time 

OPC Open platform communication 

P Pressure 

PID Proportional-Integral-Derivative 

POMDP Partially observable Markov decision process 

PPO Proximal policy optimization 

PUE Power usage effectiveness (used by Google to quan- 

tify energy efficiency) 

RL Reinforcement learning 

RNN Recurrent neural network 

RTO Real time optimization 

SGD Stochastic gradient descent 

SISO Single-input single-output 

SMDP Semi Markov decision process 

SP Set-point 

TD Temporal difference 

TPU Tensor processing unit 

TRPO Trust region policy optimization 

xpand the current capabilities of modern methods. An intuitive

xample is as follows: 

World renowned chemists may have the capability to achieve

95% purity in chemical A using state-of-the-art methods. With

the aid of supervised learning agents to replicate trivial tasks,

the synthesization process may be faster and/or cheaper; how-

ever, the purity will not increase beyond 95% because the agent

is simply replicating the supervisor. In other words, the current

knowledge base of chemistry for synthesization of a higher pu-

rity chemical A has not changed. 

Reinforcement learning (RL) attempts to overcome the above

entioned performance limit by combining previous ML fields into

 unifying algorithm with modifications on the learning process.

ltimately, the goal of RL is to give machines the ability to surpass

ll known methods. Specifically, the goal of the RL agent is to push

he boundaries of what is currently possible through learning the

ptimal mapping of situations to actions (called policy) through a

rial-and-error search guided by a scalar reward signal. In many

hallenging scenarios, actions affect not only the immediate re-

ard, but also all subsequent rewards. These two features – guided

rial-and-error search and delayed feedback – distinguish RL from

ll other topics of ML and ultimately enables the ability to push

he current boundaries of knowledge ( Sutton and Barto, 2018 ). 

Nevertheless, this characteristic introduces unique challenges to

he RL agent, one being the trade-off between exploration and

xploitation . The goal of the agent is to maximize the reward

ignal; however, the agent is initialized tabula rasa (i.e., a clean

tate). Thus, the agent must first explore the state space to iden-

ify the optimal actions. Furthermore, for stochastic systems or sys-

ems with delayed reward signals, each state must be visited many

imes to obtain reliable information. Ultimately, the agent must ex-
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Fig. 1. The major goals of artificial intelligence. 

Fig. 2. The sub-components of machine learning. 
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loit the current information to maximize rewards. However, ex-

loiting too soon leads to locally optimal or sub-optimal actions.

ikewise, exploiting too late results in forgone rewards. The prob-

em is further complicated by non-stationary or time-varying sys-

ems, where exploration is a requirement for the continued opti-

ality of the agent. In control, this dilemma is known as identifi-

ation (or estimation) versus control. 

Mathematically, RL is formulated as an optimal sequential deci-

ion making algorithm with the ability to account for stochasticity

ithin the system. Furthermore, RL was partly built upon stochas-

ic optimal control which may provide advantages in certain sys-

ems compared to modern control techniques ( Rawlik et al., 2013 ).

raditional optimal control methods (e.g., model predictive control

MPC)) typically employ mathematical programming (MP) based

rajectory optimization methods. The successes of such methods

n addressing multi-stage optimal control problems are widely

emonstrated; however, industrial applications of such methods

n large-scale stochastic multiple-input multiple-out (MIMO) prob-

ems are still limited due to their online computational require-

ents ( Maravelias and Sung, 2009 ). Furthermore, the solutions

o systems with uncertainty typically use stochastic programming

ith only a finite number of uncertainty scenarios and assume that

he information regarding the uncertainty is known. Unfortunately

n practice, uncertainty information is typically unknown, non-

tationary and contain uncertainty themselves ( Shin et al., 2019 ).

oreover, the control horizon of MP methods for large MIMO

ystems is generally short to ensure computational feasibility, al-

hough the identified optimal solution for short horizons might be

ighly sub-optimal in the long term ( Mayne and Rawlings, 2017 ). 

Compared to MP control methods, RL overcomes the issue of

ong online computation times by pre-computing the optimal so-

utions offline, a concept similar to parametric programming in ex-

licit model predictive control ( Bemporad et al., 2002 ). This char-

cteristic of RL is advantageous for systems where online compu-

ation time is of importance. However, for complex systems, of-

ine training of the RL agent may require hundreds of thousands

f steps to achieve even a near-optimal policy; thus, making the

raining step infeasible in live operations. To overcome this issue,
he agent may be first trained in a process simulator to obtain gen-

ral knowledge of the process. The performance of the agent after

his phase will be strongly correlated with the fidelity of the sim-

lator. It is expected that the RL agent’s ultimate performance dur-

ng such a training process will not outperform the performance of

 corresponding MPC designed based on the same simulator model

f global optimality is ensured in obtaining the MPC’s solution.

hen compared to advanced control, RL is similar to the widely

sed combination of real-time optimization (RTO) and MPC. In tra-

itional optimal control, RTO provides the optimal steady state set-

oint(s) and MPC identifies the optimal input trajectory to achieve

he desired set-points. For RL, the learned optimal policy implicitly

arries information regarding the optimal set-point(s) and the op-

imal input(s) to reach the set-points. This is indeed very similar to

he concept of economic MPC which aims to combine the RTO and

PC layers ( Ellis et al., 2014 ). Due to these unique features, it is a

atural curiosity to explore the areas where RL may have potential

n the process control industry. 

In the literature, there exists some review papers focusing

n ML and process control such as Shin et al. (2019) and

ee et al. (2018) . In these existing review papers, the target au-

ience is catered towards academic researchers and typically in-

olve more rigorous mathematics. The objectives of this paper are

o introduce the motivations and concepts of RL in tutorial way

o potential practitioners. A general overview of all branches and

tate-of-the-art RL algorithms will be briefly explored. The focus of

his study is on the potential implementation and value creation

f RL in the process control industry, not on rigorous mathemati-

al proofs and numerical studies of RL methods compared to tra-

itional process control. This review starts with an introduction to

L, the Markov decision process (MDP) and different families of

L methods. Concepts explored will also be intuitively correlated

o process control ideas to enhance understanding. Section 3 com-

ares RL qualitatively to traditional control methods and also in-

roduces some of successful RL applications. A quantitative exam-

le where RL was applied onto an industrial pumping system will

lso be shown here to provide additional intuition. The section is

oncluded with RL implementation techniques catered towards the

rocess industry. Section 4 presents the current weaknesses that

ay be preventing RL from being adopted in process industry. Fi-

ally, the review is concluded in Section 5 with the advantages and

isadvantages of RL summarized. 

. Reinforcement learning 

.1. A brief history 

RL originated from two main fields of research: optimal control

sing value functions and dynamic programming and animal psy-

hology inspiring trial-and-error search. The optimal control prob-

em was originally proposed to design a controller to minimize the

oss function of a dynamical system over time ( Mayne and Rawl-

ngs, 2017 ). In the mid 1950s, Richard Bellman extended the works

f Hamilton and Jacobi and developed an approach to solve the
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Table 1 

From left to right, the evolution of reinforcement learning. 

k -armed bandits Contextual bandits Reinforcement learning 

Optimal action Optimal action Optimal action 

One situation Many situations Many situations 

Immediate conseq. Immediate conseq. Long-term conseq. 
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Fig. 3. The general Markov decision process framework. Original image from 

Sutton and Barto (2018) . 
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optimal control problem. This approach, now called dynamic pro-

gramming, optimizes the input trajectory by using the functional

equation (a function where the unknowns are also functions) gen-

erated from the system’s state information in conjunction with a

value function ( Bellman, 1957a ). The functional equation, known

as the Bellman equation, is given as: 

 (x ) = r(x ) + γ
∑ 

P (x ′ | x, u ) · V (x ′ ) (1)

where V ( x ) is the value function in state x, γ is a discount factor

to incorporate uncertainty into future rewards, r ( x ) is the reward

obtained as a function of the system’s behaviour with respect to a

desired performance, P ( x ′ | x, u ) is the transitional probability of ar-

riving at the next state x ′ given current state and control input x

and u , respectively, V ( x ′ ) is the value function at the next state x ′ .
Intuitively, the value function can be understood as the goodness

of being in a particular state, assuming optimal behaviour there-

after; high values correspond to good states and low values for bad

states. Unfortunately, dynamic programming suffers from the curse

of dimensionality (i.e., the computational cost grows exponentially

with the number of states). A significant step in RL literature was

made when approximate dynamic programming (ADP) methods

were developed to overcome this obstacle ( Mes and Rivera, 2017 ).

Reinforcement learning leverages one such ADP method to solve

for the optimal policy offline. The design of the ADP may take

many forms dependent on the objective of the agent. For exam-

ple, Lee and Wong (2010) found that post-decision-state formula-

tion of ADPs offers the most benefit to process control problems

where the main objectives are safety and economics. More de-

tails can be found in Lee and Wong (2010) . The concept of a re-

ward/punishment trial-and-error learning system in RL originated

from animal psychology . More specifically, the original concept was

proposed in Thorndike and was named the Law of Effect , stating

that actions resulting in good outcomes are likely to be repeated,

while actions with bad outcomes are muted. Initially, the agent

undergoes a trial-and-error search to identify the outcomes cor-

responding to each action, then only repeating the good outcome

actions thereafter. Through the combination of dynamic program-

ming from optimal control and trial-and-error search from animal

psychology, the modern field of RL was developed. For additional

details regarding the history of reinforcement learning, please refer

to Sutton and Barto (2018) . 

2.2. The bandit problem 

The evolution of RL is shown in Table 1 . Reinforcement learning

takes its roots from the k -armed bandit problem where the agent

is only concerned with making the optimal decisions in one situ-

ation. Additionally, only the immediate consequences were consid-

ered. Eventually, the concept was extended in the early 1980s by

Barto et al. (1981) to solve multi-situation systems. This new prob-

lem was named contextual bandits (also named associative search).

Here, the agent was still only concerned with the immediate con-

sequences. However, real world problems can rarely be solved by

considering only the immediate consequences. In most scenarios,

near term sacrifices are absolutely necessary to reach long term

success. To overcome this dilemma, RL was developed to find the

optimal decisions in multi-situation systems that optimized not

only the immediate rewards, but also the trajectory thereforth. 
The k -armed bandit problem establishes the fundamental

nowledge for understanding modern RL. In this problem, the

gent assumes the system has only one constant state with many

ossible control actions. A classic example of the bandit problem

ould be choosing which slot machines to play in a casino. Here,

he agent has one state (being inside the casino), and must iden-

ify which slot machine yields the highest reward. Objectively, the

gent attempts to maximize reward over N steps by identifying the

ptimal control action, u ∗ ∈ U , where U is a set of k possible ac-

ions. For each action in U k ×1 , there is an expected reward called

alue , given by: 

 

∗(u ) = E [ R t | U t = u ] (2)

here u is the control action taken at time t, R t is a scalar re-

ard signal obtained by the agent after performing action u . For

tationary (non-stationary) stochastic processes, R t is drawn from

 stationary (non-stationary) probability distribution, R t ~ N ( q ∗( u ),
2 ). Finally, q ∗( u ) is the expected reward of taking action u . In a

eal process, q ∗( u ) is unknown, but can be estimated through ex-

loration of each u . The estimated value is denoted as Q ( u ). As all

 ∈ U are picked infinitely many times, by the law of large num-

ers, Q ( u ) → q ∗( u ) ( Borel, 1909 ). 

Given any time t , one Q t ( u ) will be greater than all others, sig-

ifying its corresponding action is optimal at time t and should be

icked. Methods where action selection is based on the estimated

alues are called action-value methods ( Sutton and Barto, 2018 ).

lgorithms to solve the k -armed bandit problem are easily applied

o situations where the concept of state is inert and only the ac-

ions are of concern; a near impossibility in the real world. 

Naturally, Barto et al. (1981) extended the original problem to

ncorporate many states and named it contextual bandits. In con-

extual bandits, different optimal policies are associated with dif-

erent states (contexts). Mathematically, Eq. (2) was extended to:

 

∗(x, u ) = E [ R t | X t = x, U t = u ] (3)

here x is the current state of the system. Here, the value function

s a function of both the state and action; therefore, allowing the

gent to behave differently for different situations. Nevertheless,

he agent is still concerned with only the immediate reward, rather

han the long term optimal trajectory. To alleviate this, RL was de-

eloped, introducing the concept of sequential decision making. 

.3. Markov decision process 

The reinforcement learning paradigm is shown in Fig. 3 and

onsists of two components: the agent and the system . The agent is

he continuously learning decision maker (i.e., RL algorithm). The

gent attempts to learn and conquer the system through mean-

ngful interactionswith the system. The system is comprised of ev-

rything the agent cannot arbitrarily change. Relating to process

ontrol, the agent would be the controller logic and everything

lse would make up the system. Reinforcement learning’s deci-

ion making process is formalized in the Markov decision process

MDP). 
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Table 2 

A comparison of different Markov decision processes. 

FOMDPs SMDPs POMDPs 

All states observable All states observable Some states observable 

Discrete time Continuous time Discrete time 
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The MDP is a discrete representation of the stochastic optimal

ontrol problem and a classical formulation of sequential decision

aking where both immediate and future rewards are considered

 Bellman, 1957b; Sutton and Barto, 2018 ). MDPs provide formal-

sm to agents when rationalizing about planning and acting in the

ace of uncertainty. Many different definitions of MDPs exist and

re equivalent up to small alterations of the problem. One such

efinition is that a MDP, M , is a tuple (X , U , p ( x ′ , r | x, u ), γ , R )

omprised of ( Ng, 2003 ): 

• x ∈ X : state space that describes the industrial system. Typical

states in the process industry include temperatures, pressures,

flow rates, etc. 
• u ∈ U: action space of the reinforcement learning agent. In con-

trol, this is the bounded control inputs. 
• R ∈ R : expected reward from the system after the agent per-

forms u at x . Rewards are generated based on a desired per-

formance metric and is called the objective function in control

literature. Typically, | R | ≤ R for stability and convergence pur-

poses, where R is some upper bound of the reward. 
• p ( x ′ , r | x, u ): dynamics function of the environment. It denotes

the probability of transitioning to x ′ and receiving r given x ∈ X ,

u ∈ U as described below: 

p(x ′ , r| x, u ) ̇ = P r{ X t = x ′ , R t = r| X t−1 = x, U t−1 = u } (4)

where p describes the dynamics of the system and Pr denotes

probability ( Sutton and Barto, 2018 ). Additionally, p is a proba-

bility distribution satisfying: ∑ 

x ′ ∈X 

∑ 

r∈R 

p(x ′ , r| x, u ) = 1 , ∀ x ∈ X , u ∈ U (5)

Notice that p depends only on the immediate past, thus

assumes that x t−1 and u t−1 contain information about the

history. This property is known as the Markov property

and is critical for successful RL applications in process

control. Note also that RL formulations with past state

information augmented as: x t−1 = [ s t−1 , s t−2 , . . . s t−N ] , u t−1 =
[ a t−1 , a t−2 , . . . , a t−N ] , where s t−N and a t−N denote the past

states and actions, still exhibit the Markov property because de-

cisions can be made exclusively using x t−1 and u t−1 . 
• γ : discount factor associated with future uncertainty,

(0 ≤ γ ≤ 1). 

Three different versions of MDPs exist and are used to describe

roblems containing different characteristics as shown in Table 2

nd are discussed below. 

.3.1. Fully observable MDPs 

Fully observable MDPs (FOMDP) are used by agents to reason

bout decision making in discrete systems where all states are ob-

ervable (measurable in control terminology). It will serve as the

oundation of the MDP framework. The framework is initialized

y the agent starting in some initial states x 0 . At each time t , the

gent picks some action u t given x t corresponding to its policy π .

iven x t and u t , the system will then transition to the new state

 t+1 following Eq. (4) and output reward R t+1 based on the desired

erformance metric. In control, the performance metric is typically

he squared tracking error of the controller. By repeating this pro-

edure many times, the agent is able to traverse through some se-
uence, x t , u t , R t+1 , x t+1 , u t+1 , R t+2 , x t+2 , . . . and accumulate: 

 t = R t+1 + γ R t+2 + γ 2 R t+3 . . . (6)

 

∞ ∑ 

k =0 

γ k R t+ k +1 (7) 

here G t is the cumulative discounted return at time t . Further-

ore, γ is the discount factor and captures the uncertainty of fu-

ure rewards. MDPs can be finite or infinite; the former describes

pisodic systems with explicit terminal states while the latter may

ontinue forever. For example, a game of chess can be described as

 finite MDP where the game is terminated after one player is de-

eated. Contrarily, an infinite MDP system, such as the control sys-

em in a refinery, could continue on indefinitely. For infinite MDP

ystems such as those in process control, γ < 1 is required to keep

 t bounded. The RL agent tries to find the optimal policy, π ∗, that

aximize G t (instead of R t in the bandit case) over N steps. The

alue function for each state in the system is given as Sutton and

arto (2018) : 

 π (x ) = E π [ G t | X t = x ] 

= E π

[ 

∞ ∑ 

k =0 

γ k R t+ k +1 | X t = x 

] 

= E π [ R t+1 + γ G t+1 | X t = x ] , ∀ x ∈ X (8) 

here v π ( x ) is the value function of state x under policy π . Ad-

itionally, v π is guaranteed to exist and be unique for continuous

ystems where γ < 1 or in systems with guaranteed termination.

ompared to Eq. (2) , Eq. (8) takes the expectation of G t (defined in

q. (7) ) rather than R t ; therefore, optimizing the long term trajec-

ory compared to only immediate rewards. The action-value ver-

ion of Eq. (8) is given as: 

 π (x, u ) = E π [ G t | X t = x, U t = u ] 

= E π

[ 

∞ ∑ 

k =0 

γ k R t+ k +1 | X t = x, U t = u 

] 

, ∀ x, u ∈ X , U (9) 

OMDPs can accurately represent discrete systems where all states

re observable. Unfortunately, states in industrial processes are of-

en times not fully measurable due to hardware limitations or

ther factors. During such situations, the system no longer exhibits

he Markov property ultimately resulting in sub-optimal decision

aking. 

.3.2. Partially observable MDPs 

Partially observable Markov decision processes (POMDPs) ex-

end the concepts of FOMDPs and are used to solve systems with

tates that are no longer fully observable. Observability in RL ter-

inology is equivalent to measurability in control as mentioned

arlier; thus, the two terminologies will be used interchangeably

ere-forth. Previously in FOMDPs, the agent at each time t can ob-

erve its current state x t . In the more general setting of POMDPs,

he agent has a set of possible observations O rather than some

tates X . At each time t , the agent instead sees observation o t 
hich corresponds to probability distributions over states giving

he agent information regarding the state it might currently be in

g (2003) . In a process control setting, existing sensors usually

nly measure a subset of the current states directly. Using avail-

ble measurements and the input information, one is able to infer

he remaining unmeasured states using probabilistic inference ap-

roaches such as Kalman filter. Such systems are partially observ-

ble in RL terminology and are represented by POMDPs. 

In general, finding the true optimal policy, π ∗, in a POMDP

ystem is significantly harder compared to FOMDPs. Even find-

ng a near-optimal policy is NP-hard (non-deterministic polynomial
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time) ( Lusena et al., 2001 ). Additionally, agents knowing all the

true value functions of the system are still unable to behave op-

timally in POMDP systems because the current states are unknown

( Ng, 2003 ). 

The use of belief states is one possible approach for agents to

behave optimally in POMDPs. Belief states, b , are probability distri-

butions over states representing what the agent thinks its current

state is, given previous observations and actions. Using these prob-

abilities, one can compute the value functions of each state-action

pair and use it to act optimally. Note that the behaviour is not op-

timal with respect to the system, rather, it is optimal with respect

to the available information. Ultimately, belief states transform the

POMDP problem into a FOMDP since all belief states are fully avail-

able. An quantitative example is as follows: 

Assume an agent exists in a simple POMDP system with two

unmeasurable states ( x 1 and x 2 ) and two actions ( u 1 and u 2 )

and suppose the problem has a horizon of one (for longer hori-

zons, the agent must identify the trade-off between immedi-

ate and long term rewards, making the example less intuitive).

Such a system has four value functions corresponding to the

immediate reward obtained for each state-action pair. Suppose

u 1 yields a reward of 2 in x 1 and 0 in x 2 . Similarily, u 2 yields

a reward of 0 in x 1 and 1 in x 2 . If the current belief state b

is [0.2, 0.8] (probabilities of being in x 1 and x 2 , respectively),

then Q(b t , u 1 ) = 0 . 2 · 2 + 0 . 8 · 0 = 0 . 4 and Q(b t , u 2 ) = 0 . 2 · 0 +
0 . 8 · 1 = 0 . 8 , making u 2 the optimal action. For more relevant

examples, please refer to Kaelbling et al. (1999) . 

In control theory, observers are leveraged to estimate unknown

states. Observers are typically based on first principles models, but

could also be based on data driven or probabilistic models. The

concept of belief states is very similar to observer design in control

theory. Kalman filter is a popular observer design method. Likewise

in RL, recurrent neural networks (RNNs) are typically used to esti-

mate the belief states. In Chenna et al. (2004) , the performance of

RNN is compared with Kalman filter, showing both methods’ simi-

larities in performance, objective, and theory. 

Optimal solutions from FOMDPs and POMDPs work well in dis-

crete tasks where transition time is consistent and transition dy-

namics are unimportant; however, such topics are critical to suc-

cessful optimal control in the process industry. 

2.3.3. Semi-MDPs 

Typical MDPs are discrete representations of the optimal con-

trol problem and are sub-optimal in continuous tasks. Semi-

Markov decision processes (SMDP) are an extension of MDPs to

continuing tasks with unknown transition time and system dy-

namics. In SMDPs, the transition dynamics of the system are ex-

plicitly captured using reward function ( Bradtke and Duff, 1994 ):

R (x t , x t+1 , u t ) = 

∫ ∞ 

0 

∫ t 

0 

e −βs ρ(x t , π(x t )) d sd F x t ,x t+1 
(t| π(x t )) (10)

where R (x t , x t+1 , u t ) is the expected reward to be received when

transitioning from x t to x t+1 after action u t . The rewards, R , are

calculated at each time step in the transition period to explicitly

capture transition information. Then, the average reward of the

transition is used to update the agent. Here, ρ( x t , π ( x t )) repre-

sents the average reward during the transition following policy,

π . F x,x t+1 
(t, u ) denotes the probability distribution of the time re-

quired to transit from x t to x t+1 . Finally, β > 0 denotes the con-

stant discount factor in SMDPs, where higher β results in short-

sighted agents. In SMDPs, the discount factor is corrected for tran-

sition time during each update step. The corrected discount factor

is given by: 

γ (x t , x t+1 , u ) = 

∫ ∞ 

e −βt dF x t ,x t+1 
(t| πt ) (11)
0 
here γ (x t , x t+1 , u t ) is the expected discount factor that will be

pplied to the value of state x t+1 during the update step shown in

q. (1) . The value function for SMDPs is obtained from combining

qs. (10) and (8) : 

 π (x t ) = 

1 − e −βτ

β
R ( x t , x t+1 , π(x t )) + e −βτ v π (x t+1 ) (12)

here τ is the unknown transition time. Similarily, the action-

alue form is given by: 

 π (x t , u t ) = 

1 − e −βτ

β
R (x t , x t+1 , π(x t )) + e −βτ q π (x t+1 , u t+1 ) (13)

y representing control problems as SMDPs, control strategies re-

ulting in large overshoot, inverse response, or any other undesir-

ble dynamics behaviour can be minimized. Additionally, this rep-

esentation can handle systems with unknown transition time. An

ntuitive example illustrating the advantages of SMDPs in process

ontrol is as follows: 

Suppose a refinery company is operating a continuously stirred

tank reactor (CSTR). Objectively, the CSTR must maintain 200 ◦ C

for optimal performance. The temperature is controlled through

a heat exchanger using cold water. A RL agent was built to op-

timally control the flow of cold water to maintain the tempera-

ture at the set point. Suppose the CSTR starts at 220 ◦ C. Agents

using MDP representations may be overly aggressive and send

large input signals because the reward is only calculated right

before the next evaluation step. Therefore, input signals result-

ing in large overshoot or inverse response may not be reflected

in the reward. Contrarily, SMDP representation uses the average

reward accumulated along the trajectory to provide feedback to

the agent, allowing the transition dynamics to be explicitly cap-

tured. This way, input signals resulting in undesirable behaviour

can be captured and mitigated. Furthermore, SMDP representa-

tions can have flexible evaluation time (traditional representa-

tions evaluate after a set time period), enabling re-evaluation

during the transitional period and adjusts the discount factor in

accordance to the elapsed time from the last evaluation. 

.4. Solving the Markov decision process 

The optimal solution to a reinforcement learning problem refers

o the policy that generates the highest reward over a trajec-

ory. Formally, an optimal policy must satisfy the principle of op-

imality: the optimal policy π ∗ is optimal if and only if v π∗ (x ) ≥
 π � = π∗ (x ) for all x ∈ X ( Poznyak, 2008 ). Note that there may ex-

st many optimal policies, where v π∗
1 

= v π∗
2 

= . . . = v π∗
N 

. The opti-

al value function is denoted mathematically as: 

 

∗(x ) ̇ = max 
π

v π (x ) , ∀ x ∈ X (14)

imilarily, the optimal action-value function is denoted as: 

 

∗(x, u ) ̇ = max 
π

q π (x, u ) , ∀ x, u ∈ X , U (15)

n a more explicit form, the optimal value function and action-

alue function written in terms of Eqs. (8) and (9) are given, re-

pectively, by Sutton and Barto (2018) : 

 

∗(x ) = max 
u 

E [ R t+1 + γ v ∗(X t+1 ) | X t = x, U t = u ] (16)

 

∗(x, u ) = E 

[ 
R t+1 + γ max 

u t+1 

q ∗(X t+1 , u t+1 ) | X t = x, U t = u 

] 
(17)

ere, the max denotes that the optimal action will be taken in the

ext step and thereafter for the remaining of the trajectory. In the-

ry, the optimal value functions can be explicitly solved for all sys-

ems using the above equation; however, such a task would require

remendous amounts of computation power even in trivial tasks.
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Fig. 4. The sub-components of machine learning. 
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n the following section, three popular methods will be introduced

o estimate the value and action-value functions in reinforcement

earning. 

.5. Methods of reinforcement learning 

The three families of algorithms used to solve optimal policies

n RL are shown in Fig. 4 . Dynamic programming (DP) methods can

rovide exact solutions to the optimal policy, but requires a perfect

ystem model and has infeasible computational requirements for

on-trivial tasks. Comparatively, both Monte Carlo (MC) and tem-

oral difference (TD) methods approximate DP solutions using less

omputational power and does not assume the presence of a per-

ect system model. MC methods find the optimal policy through

veraging the value function over many sampled trajectories of

tates, actions, and rewards; however, the variance in the sampled

rajectories results in high variance in final results. TD methods

ombine the ideas of DP and MC methods into one unifying al-

orithm. TD methods learn from sampled data like in MC meth-

ds, while also being able to perform mid-trajectory learning, like

n DP methods; however, TD methods experience high bias due to

stimating values through previously estimated values (known as

ootstrapping). The general details of each method will be shown

hroughout this section. For a comprehensive introduction to each

lgorithm, see Sutton and Barto (2018) . 

.5.1. Dynamic programming 

Dynamic programming refers to a set of algorithms with the

bility to find optimal policies assuming a perfect model is avail-

ble. DP algorithms are in general not widely used due to their

ery high computational cost for non-trivial problems. The two

ost popular methods in DP are policy iteration and value itera-

ion. 

On a high level, policy iteration searches for the optimal policy

y iterating through many policies, π ∈ �, keeping only the policy

ith the highest cumulative returns. The optimal policy is found

hen the cumulative returns of π can no longer be improved (con-

ergence). Policy iteration includes two iterative steps: policy eval-

ation and policy improvement. Policy evaluation predicts the value

unctions for policy π through an iterative approach. Value func-

ions for all states are initialized as 0, and are updated using: 

 k +1 ,π (x ) = E π [ R t+1 + γ v k,π (x k +1 )] 

v 0 (x ) = 0 , ∀ x ∈ X (18) 

here k is the k th update step, and v k +1 ,π is the predicted value

unction following policy π after k + 1 update steps. As k → ∞ ,

 k ( x ) → v π ( x ) for all x ∈ X (i.e., the true value functions for π ).

owever, there may exist a π ′ where v π ′ (x ) ≥ v π , deeming π sub-

ptimal. The goal of policy improvement is to identify situations

here v π ′ (x ) ≥ v π for any state. Once identified, π will violate

he principle of optimality, hence disqualifying it from being op-

imal and π ′ will be deemed the new optimal policy. This proce-

ure will continue iteratively and infinitely until a policy where

 π∗ (x ) ≥ v π � = π∗ (x ) for all x ∈ X is found. 
A visualization of the policy iteration algorithm is shown in

ig. 5 and is as follows ( Sutton and Barto, 2018 ): 

0 
E −→ v π0 

I −→ π1 
E −→ v π1 

I −→ π2 
E −→ . . . 

I −→ π ∗ E −→ v ∗ (19) 

here 
E −→ and 

I −→ represent the policy evaluation and policy im-

rovement steps, respectively. From Fig. 5 , the agent starts with

ome arbitrary policy. Initially, there exists a large gap between V π

nd π , illustrating much room for improvement. As policy iteration

ontinues, the gap is reduced until V ( x ), π → V 

∗( x ), π ∗. Presently,

olicy iteration is rarely used due to its high computational ex-

ense for the required iterative steps for each policy evaluation. 

Value iteration finds the optimal policy through identifying the

ptimal value functions rather than evaluating many policies. In-

uitively, it is a special case of policy iteration where the policy

valuation is terminated after one step. After identifying the value

unctions, the optimal policy can be trivially extracted by simply

raversing through the states and identifying the actions corre-

ponding to the highest values. Note here that extraction of the

ptimal policy using V ( x ) is only possible if a perfect model of the

ystem is provided. Using the model, one can find the state tran-

ition probabilities, and subsequently identify the actions with the

ighest probabilities to traverse to the high value states. Without a

odel, Q ( x, u ) must be identified instead of extracting the optimal

olicy. The one-step policy evaluation for the value function and

ction-value function, respectively, is: 

 k +1 (x ) = max 
u 

E [ R t+1 + γ v k (x t+1 )] (20)

 k +1 (x, u ) = E [ R t+1 + γ max 
u t+1 

q k (x t+1 , u t+1 )] (21)

here the max operation ensures that each v k ( x ) is updated us-

ng only the maximizing action; thus, ultimately finding v ∗( x ). After

onvergence of all v ∗( x ), an agent can be initialized in any arbitrary

tate and still behave optimally as long as the agent takes the max-

mizing action in each successive state. Note that both policy and

alue iteration bootstraps its current estimate using previously cal-

ulated values, v k (x t+1 ) and q k (x t+1 , u t+1 ) . This concept is used by

L to increase data efficiency and allow updates to explicitly cap-

ure long-term trajectory information; however, the method also

ntroduces unintended biased updates. 

In industrial problems, both policy and value iterations have

imited utility because their updates are applied to all x ∈ X simul-

aneously (i.e., all value functions for all states are found simul-

aneously). In large multi-dimensional problems, performing even

ne iterative step may be infeasible. Asynchronous dynamic pro-

ramming methods try to avoid this problem by only updating fre-

uently visited states, while avoiding the update of states that are

ever visited. Doing so can reduce computation time considerably,

ut render the agents less useful in states that are rarely encoun-

ered. 

.5.2. Monte Carlo methods 

Unlike dynamic programming, Monte Carlo methods technically

o not require a model of the system (a characteristic known as

odel-free ). MC methods find the optimal policy by first estimat-

ng the average returns for different policies by sampling many

equences of states, actions, and rewards under said policy. As

nough samples are generated, v k (x ) → v π (x ) for all x ∈ X . The av-

rage returns are updated after each trajectory. Due to the nature

f MC updates, the most suitable systems are finite tasks with ex-

licit terminal states, called episodic tasks. Discrete manufacturing

s an example of an episodic task in process control. After the as-

embly of each object (cars, toys, etc.), the system terminates and

tarts anew. In episodic tasks, the value functions can be updated

aturally after each terminal state. Typically, episodic tasks are rare
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Fig. 5. A visualization of the policy iteration algorithm. Original image from Silver (2018) . 
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in process control because most control systems are required to

operate indefinitely. Processes with no terminal states are known

as continuous tasks. To train a continuous task agent using the MC

method, a maximum episode length should be initially specified so

the agent can stop and update its value functions at certain inter-

vals. In doing so, the agent can exploit its new learnings before

continuing onward. Note here that all estimated value functions

are independent and unbiased since no bootstrapping was used

(opposite of dynamic programming); however, MC methods may

suffer from large variances for systems highly corrupted by noise

( Sutton and Barto, 2018 ). Moreover, exploration is mandatory in

MC methods since the system model is not available to the agent.

Only through exploration can the agent discover the value func-

tions (state transition probabilities and rewards) for each action in

each state, and subsequently, the optimal policy. Typically, explo-

ration is conducted by starting in a random state at the beginning

of each episode. After a sufficiently large amount of episodes are

explored, all states will be visited sufficiently many times. 

Policy search in MC methods is similar to policy iteration. There

are three main differences: 1) not all states are updated simultane-

ously; 2) value functions are updated using sampled data from the

agent interacting with the environment; 3) q π ( x, u ) is identified in-

stead of v π ( x ). In MC methods, the action-value functions are iden-

tified instead because a model is not provided to the agent. The

value functions alone are not useful to the agent because the ac-

tions required to transition to the high value states are not known.

Instead, the action-values provide the agent with explicit informa-

tion on the expected returns for each action in each state. The it-

erative procedure to find the cumulative returns is given by: 

π0 
E −→ q π0 

I −→ π1 
E −→ q π1 

I −→ π2 
E −→ . . . 

I −→ π ∗ E −→ q π∗ (22)

Intuitively, training starts by the agent being initiated in an un-

known system. Here, the agent traverses through the state space

x 1 , x 2 , . . . , x n by performing actions u 1 , u 2 , . . . , u n under a policy, π ,

and collect rewards R 1 , R 2 , . . . , R n . Eventually, the agent will reach

a terminal state, concluding the first episode. Upon termination, a

sequence of returns G 1 , G 2 , . . . , G n −1 can be calculated via the col-

lected rewards throughout the trajectory using: 

G 1 = R 1 + γ R 2 + γ 2 R 3 + . . . + γ n −1 R n 

G 2 = R 2 + γ R 3 + γ 2 R 4 + . . . + γ n −2 R n 

G 3 = R 3 + γ R 4 + γ 2 R 5 + . . . + γ n −3 R n 

. . . 
 n −1 = R n 

r: 

 m 

= 

n ∑ 

i =0 

γ i R m + i (23)

here G m 

is the discounted cumulative return received on the m 

th 

tep. Next, the action-values, Q ( x, u ), are estimated for each step

y using the states, actions, and returns: 

 k +1 (x, u ) = Q k (x, u ) + 

1 

k 
[ G − Q k (x, u ) ] (24)

here Q k ( x, u ) represents the k th action-value update and G cor-

esponds to the sampled returns of performing u in x . Note that

q. (24) is unsuitable for non-stationary processes because as

 → ∞ , 1 
k 

→ 0 . For non-stationary processes, Eq. (24) becomes: 

 k +1 (x, u ) = Q k (x, u ) + α[ G − Q k (x, u ) ] (25)

here α ∈ (0, 1] is the learning rate (also called step size). Here, α
s lower bounded to prevent the update from approaching 0; there-

ore, continually adapting in non-stationary problems. Additionally,

should not be too high or the updates will be significantly af-

ected by short-term noise. After each update, a new episode starts

nd the above procedure is repeated. As the number of episodes

pproaches infinity ( k → ∞ ), Q ( x, u ) → q ( x, u ) (i.e., the estimated

ction-values, Q ( x, u ) approaches the true action-values, q ( x, u )).

nce the action-value functions reach convergence, the optimal

olicy can be extracted by: 

∗(x ) = arg max 
u 

q (x, u ) (26)

hat is, the optimal policy is simply performing the action corre-

ponding to the highest expected returns in each state. MC meth-

ds allow the agent to learn directly from trial-and-error experi-

nces without a system model; however, whole episodes must be

ompleted before the agent can update its knowledge base. Ad-

itionally, such a procedure is unnatural in continuous systems

most common in process control), severely disadvantageous in

ystems with long episodes, and is not intuitive to human be-

aviour. Humans typically learn immediately after feedback, not

n pre-set increments. Temporal difference methods combine the

deas of both dynamic programming and Monte Carlo methods to

ecome more human-like. 

.5.3. Temporal difference learning 

Temporal difference (TD) methods are the most widely used RL

lgorithm today because of its simplicity and relatively cheap com-

utational cost. TD methods combine the ability to learn from ex-

eriences (like MC methods) with bootstrapping (like DP methods).
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D methods do not require a model of the system, and will instead

earn the dynamics from interactions. Moreover, TD methods do

ot need to wait until the termination of an episode before updat-

ng its value functions. Instead, TD methods can update immedi-

tely after x t+1 and R t+1 are received. The TD update for value and

ction-value functions are given by Eqs. (27) and (28) , respectively

 Sutton, 1988 ): 

 (x t ) ← V (x t ) + α[ R t+1 + γV (x t+1 ) − V (x t ) ] (27)

(x t , u t ) ← Q(x t , u t ) + α[ R t+1 + γ Q(x t+1 , u t+1 ) − Q(x t , u t ) ] (28)

here ← denotes the update operator. Intuitively, the old value

unctions are corrected using the TD errors at each update by a

xed amount (dictated by α). The TD errors are given as: 

t = R t+1 + γV (x t+1 ) − V (x t ) 

t = R t+1 + γ Q(x t+1 , u t+1 ) − Q(x t , u t ) 

here δt denotes the TD error at time t , the two terms, R t+1 +
V (x t+1 ) , denote what the agent thinks the real value function is

ccording to the last interaction, and V ( x t ) is the old value func-

ion. After the agent traverse through each state-action pair many

imes, V ( x t ) → v ( x t ) (i.e., the estimated values converge to the true

alues). The action-values follow a similar paradigm. After conver-

ence, the optimal policy can be extracted via Eq. (26) . 

The algorithms presented in Eqs. (27) and (28) are called TD (0)

ecause the agent updates its knowledge after just one action.

D (0) is a special case of the more general TD( λ) algorithm. Like

P, TD (0) also experiences high bias due to bootstrapping. How-

ver, as TD (0) → TD (1), bootstrapping is reduced and at TD (1), the

lgorithm becomes the MC method. Details regarding this algo-

ithm can be abstract and will be omitted. A detailed description

f TD ( λ) and supplementary code can be found in Reis (2017) . 

Like MC methods, TD methods are also model-free ; therefore,

ction-values are typically learned and exploration is mandatory.

D methods typically explore using ε-greedy policies where the

gent performs a random action with ε ∈ [0, 1] probability and

erforms the returns-maximizing action otherwise. Furthermore, ε
s typically decayed throughout training and starts at a high value

uring the initial phase when the agent knows nothing. Eventually,

decays to a low value when training is almost complete. 

There are two popular TD methods with slightly different up-

ate steps: SARSA and Q-learning . SARSA is an on-policy algorithm

eaning that its behaviour policy is identical to its target policy.

arget policy refers to the policy the agent wants to eventually

nd. Typically, this will be the optimal policy. On the other hand,

he behaviour policy, b ( u | s ), is how the agent actually behaves. If

oth the target and behaviour policy are identical, the agent is on-

olicy. An on-policy agent (assuming the target policy is the op-

imal policy) during training may quickly converge to a local op-

imum and never explore (since exploratory policies are typically

ot the optimal), resulting in a sub-optimal solution. Contrarily,

ff-policy agents, such as Q -learning, may follow an equiproba-

le random policy (equal probability of selecting all actions in all

tates) during training to conduct deep exploration and switch to

he optimal policy online. Moreover, off-policy agents are guaran-

eed to find the optimal policy under the assumption that each

tate-action pair is visited infinite times and b ( u ∗| s ) > 0 (i.e., the

robability of picking the optimal action under behaviour policy

s not 0) ( Sutton, 1988 ). Since SARSA is an on-policy approach,

he action-value functions are updated through Eq. (28) with the

uintuple (x t , u t , R t+1 , x t+1 , u t+1 ) . Compared to SARSA, Q -learning

pdates by using only four parameters (x t , u t , R t+1 , x t+1 ) through

q. (29) while assuming u t+1 is a decision variable to maximize
he action-value function: 

(x t , u t ) ← Q(x t , u t ) + α
[ 

R t+1 + γ max 
u t+1 

Q(x t+1 , u t+1 ) − Q(x t , u t ) 
] 

(29)

n Q -learning, u t+1 is not used because the actual u taken at time

 + 1 might differ from the target policy since the algorithm is off-

olicy. To ensure Q -values are still updated towards the optimal

olicy, Eq. (29) uses the max operation to force the update into

sing the optimal u t+1 . Overall, TD methods unify the best parts of

P and MC methods, allowing the agent to learn purely based on

xperiences while still being able to perform inter-episode updates

o exploit the most recent learnings. 

.5.4. Summary of different RL methods 

A summary of the characteristics for the DP, MC and TD meth-

ds is shown in Table 3 . On a high level, dynamic programming re-

uires a model to learn the value functions while both MC and TD

ethods can learn from sampling state, action and rewards alone.

P and TD methods use bootstrapping to estimate value functions;

hat is, they estimate the current value function based on pre-

iously estimated value functions. This method is data efficient,

ut introduce unwanted bias to the estimates. On the other hand,

C methods estimate each value function independently through

ampling many trajectories to avoid estimation biases. However,

his method instead introduces high variance for noisy systems. In

erms of computational cost, DP methods require the most because

ll value functions are simultaneously updated. Comparatively, MC

ethods only update the value functions that were visited in the

ampled trajectories, and updates are conducted at the end of each

pisode. TD methods update the value function immediately after

n experience, and are also very efficient since it only updates the

alue functions in the visited states. For exploration, DP methods

o not require any because the model of the system (both transi-

ion probabilities and expected reward) is known to the agent at

ll times. For MC methods, exploration is conducted by starting at

andom states when episodes are reset. In TD methods, the agent

ill occasionally perform a random action. A detailed introductory

xample is provided in Section 3 to enhance additional intuition

nd understanding of the implementation procedure. 

.6. Function approximation methods 

Function approximation is widely used in applications of RL

n industry. Function approximation methods are briefly discussed

n this section to provide a more comprehensive overview of RL

ethods. 

Originally, RL was proposed to solve MDPs, which are discrete

epresentations of the optimal control problem. For discrete tasks,

he value functions are stored in a table, known as the Q -table,

ith the x- and y-axes being the states and actions. A visual rep-

esentation of the Q -table for a system with n states and m actions

s shown in Fig. 6 . However, the states and actions of a typical pro-

ess control application are both multi-dimensional and continu-

us. The storage of value functions in such complex tasks could be

ndefinitely large and intractable. Extending RL solutions to such

ystems require the value functions to be generalized using a pa-

ameterized functional form. Function approximation can be used

o address this issue. The approximate value function is given as:

ˆ 
 (x, w ) ≈ v π (x ) (30)

here ˆ v is a continuously differentiable approximation of the value

unction and w ∈ R 

d is the weight vector, where d is much smaller

han the number of states. Supervised learning models can be used

o approximate ˆ v and can be linear or nonlinear. In the tabular

ase, learning is decoupled – updates of one value function do

ot impact any other value functions – allowing the optimal value
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Table 3 

A comparison of DP, MC, and TD methods. 

Dynamic Programming Monte Carlo Temporal Difference 

Requires model Yes No No 

Estimate bias High Low High 

Estimate variance Low High Low 

Computational cost High Medium Low 

v ( x ) update All states simultaneously After a trajectory After an experience 

Exploration Not needed, all states update Random initialization Performing a random action 

Fig. 6. An example of the Q -table for a system with n states and m actions. 
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functions to be found for all states. This no longer holds in the ap-

proximation case. Instead, as an element of w , w i , is updated, all

approximate value functions utilizing w i will change accordingly,

making it impossible for all value functions to be exactly correct

( Sutton and Barto, 2018 ). As such, RL methods using function ap-

proximation can approach, but never achieve, perfect optimal con-

trol. To focus accuracy of the function approximation on the most

important states, the state distribution μ(x ) ≥ 0 , 
∑ 

μ(x ) = 1 must

be defined. Often times, μ( x ) can simply be the fraction of time

spent in x and can be computed trivially as: 

μ(x ) = 

η(x ) ∑ 

x ′ 
η(x ′ ) , ∀ x ∈ X (31)

where η( x ) is the amount of time spent in state x and �η( x ′ ) is

the total time spent in all states. Combining the state distribution

with mean squared error, the mean squared value error objective

function can be define as: 

 E (w ) = 

∑ 

x ∈X 
μ(x ) 

[
v π (x ) − ˆ v (x, w ) 

]2 
(32)

Ultimately, the goal for approximate value function methods is to

find the optimal weight vector w 

∗ for which V E (w 

∗) ≤ V E (w ) for

all w . The weights are typically identified using gradient meth-

ods such as stochastic gradient descent (SGD). SGD is a popular

method in machine learning due to its ease of use and advantages

in big data applications. SGD is a special case of the more gen-

eral gradient descent algorithm. In gradient descent, all available

data are used to compute the gradient; however, such a method is

computationally infeasible in big data applications. Instead, SGD is

used to randomly sample a subset of data for the gradient com-

putation. More detailed explanations about SGD can be found in

Goodfellow et al. (2015) . On each step, SGD adjusts the weights w

slightly (adjustment size controlled by α) with accordance to the

gradient of the loss function ( Bottou, 2010 ): 

w k +1 = w k −
1 

2 

α∇ 

[
v π (x t ) − ˆ v (x t , w k ) 

]2 
(33)

w k +1 = w k + α
[
v π (x k ) − ˆ v (x k , w k ) 

]∇ ̂

 v (x k , w k ) (34)
here w k +1 is the weight vector after the (k + 1) th update. Fur-

hermore, α and ∇ are the learning rate and gradient operator, re-

pectively. Larger α results in larger update steps and are typically

sed at the beginning of training. As k → ∞ , α → 0 to ensure that

he weights do not oscillate in noisy systems. In Eq. (33) , it was

ssumed that the true value v π ( x t ) was known; this is possible in

heory but not in real world applications. Instead, V k ( x ) is used in

ractical applications, where V k ( x ) is an unbiased estimate of v π ( x )

atisfying E [ V k | X t = x ] = v π (x ) . 

Now that the objective function and model optimization algo-

ithms are defined, the simplest function approximation approach

ill be introduced. Suppose that each state x can be represented

sing a feature vector: 

 (x ) = [ s 1 (x ) , s 2 (x ) , . . . , s d (x )] 

hat has the same length as w . Additionally, each component s i of

 (x ) is a function known as a feature of x . In linear methods, the

eatures form a linear basis for the set of approximation functions

nd are known as the basis functions ( Sutton and Barto, 2018 ). Us-

ng the basis functions, the value function can be approximated as

 linear basis function using: 

ˆ 
 (x, w ) = w 1 s 1 (x ) + w 2 s 2 (x ) + . . . + w d s d (x ) 

r 

ˆ 
 (x, w ) = w 

T s (x ) = 

d ∑ 

i =1 

w i s i (x ) (35)

ote that Eq. (35) is linear-in-parameter. Although such a model

oes not explore interaction effects between features, it is still

ffective for many value functions. The gradient of ˆ v (x, w ) from

q. (35) is nothing more than: 

 ̂

 v (s, w ) = s (x ) (36)

y combining Eqs. (36) and (34) yields: 

 k +1 = w k + α
[
V k − ˆ v (x t , w t ) 

]
s (x t ) (37)

his is a very simple and elegant solution that is easy to imple-

ent and interpret. Additionally, the solution to w 

∗ is unique due

o its linear structure. Lastly, the design of the basis functions will

e briefly explained. Here, the simplest basis function will be in-

roduced: the polynomial basis function . Polynomial functions offer

igh flexibility in its model structure and are intuitively to imple-

ent. The general structure of a two-regressor polynomial model

s given as: 

 = w 1 x 1 + w 2 x 2 + w 3 x 
2 
1 + w 4 x 

2 
2 + . . . . + w n x 

n 
2 

1 

+ w n +1 x 
n 
2 +1 

1 
+ w n +2 x 1 x 2 + w n +3 x 

2 
1 x 2 + . . . + w 0 (38)

here w i are the model weights and w 0 is the model bias. Here, x 1 
nd x 2 are states from an arbitrary system. A more illustrative ex-

mple for designing the features for an agent in a process control

roblem is shown below: 

Suppose we are tasked with optimally controlling the tempera-

ture of a CSTR with two states: mass flow rate x 1 , and tempera-

ture x 2 . Due to limited hardware and continuous states, the sys-

tem requires function approximation. The task is to construct a
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Fig. 7. Growth in search results of reinforcement learning on Google from 2007 - 2019. Figure from Trends (2017) . 
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Fig. 8. The architecture of the deep deterministic policy gradient algorithm 

( Lillicrap et al., 2015 ). 
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feature vector that captures both states. A trivial design would

be: 

s (x ) = [ s 1 (x ) = x 1 , s 2 (x ) = x 2 ] , 

where Eq. (35) becomes: 

ˆ v (x, w ) = w 1 x 1 + w 2 x 2 . 

Such a design is simple and intuitive, but does not explore the

interaction effects between x 1 and x 2 . In chemical reactors, the

interaction effects between mass flow rate ( x 1 ) and tempera-

ture ( x 2 ) can be critically important for control and is used

to estimate the enthalpy of the reaction ( Borgnakke and Son-

ntag, 2008 ). Moreover, the system may be affine and does not

depend on either x 1 or x 2 . In such a case, the relationship is

lost when both x 1 and x 2 are 0 because ˆ v (x, w ) must equal 0.

To accommodate for these factors, the feature vector could in-

stead be: 

s (x ) = [ s 1 (x ) = 1 , s 2 (x ) = x 1 , s 3 (x ) = x 2 , s 4 (x ) = x 1 x 2 ] 

where s 1 (x ) = 1 captures affine relationships and s 4 (x ) = x 1 x 2 
captures interaction effects. 

There exists many more advanced basis functions and func-

ion approximation methods such as Fourier basis functions, coarse

oding, tile coding, radial basis functions and nonlinear neural

etwork function approximation. For detailed information regard-

ng these methods, please refer to Chapter 9 in Sutton and Barto

2018) . 

.6.1. Emergence of deep reinforcement learning 

This subsection introduces major contributions in the deep RL

eld, where deep neural networks are used for function approxi-

ation in Q -learning. 

Fig. 7 shows the interest in RL worldwide from 2007 - 2019.

t can be seen that RL had rather stagnant interest until 2015,

hen significant growth began. The first contributing factor to this

rowth was the publication of Mnih et al. (2013) in 2013, where

he authors introduced a deep RL algorithm, called deep Q -learning

etwork (DQN), that was able to play many Atari games from im-

ge inputs alone using the same algorithm (though the agent had

o be re-trained for each game). Performance of the agent was

ompared to human players after training for 10 million frames

approximately 56 hours of continuous play time 1 ). To ensure a fair

omparison, the skill of the agent was handicapped by human fea-

ures such as delays in response time and was only able to see in-

ormation presented on the screen. DQN surpassed human level in

alf of the games. DQN used Q -learning with deep neural networks

or function approximation; the complete details can be found in

nih et al. (2013) . In DQN, continuous states can be used, but the

ctions were discrete because Atari games typically had discrete

nputs. Furthermore, like other TD methods, DQN experienced high
1 Assuming Atari 2600 games ran at 50 frames per second ( Monfort and Bo- 

ost, 2018 ). 

t  

u  

p  

a  
ias. The algorithm was a massive contribution in RL literature but

acked continuous actions required for process control. 

The first RL algorithm that can handle both continuous states

nd actions naturally was developed in Silver et al. (2014) . The al-

orithm, called deterministic policy gradient (DPG), was a policy

teration method trained using Monte Carlo methods. DPG deter-

inistically maps continuous states to continuous actions through

 neural network that approximates the optimal policy. Although

PG can handle both continuous states and actions and is another

ajor contribution, it is very computationally expensive, experi-

nces high variance, and is unnatural for continuous tasks due to

he Monte Carlo training method. More details regarding the DPG

lgorithm can be found in Silver et al. (2014) . 

In 2015, RL had evolved again into an algorithm that may be

uitable for online optimal control. Lillicrap et al. (2015) pushed

he boundary of RL literature through unifying the ideas of

nih et al. (2013) and Silver et al. (2014) into one actor-critic RL

lgorithm known as the deep deterministic policy gradient (DDPG).

he general architecture is shown in Fig. 8 . Here, the DPG was

sed to map states into actions and was known as the actor . More-

ver, the DQN was the critic and was used to identify the action-

alues to update the DPG without using MC methods. Originally,

QN and DPG suffered from high bias and high variance, respec-

ively. However, by unifying the two algorithms, both the bias and

ariance can be significantly reduced ( Lillicrap et al., 2015 ). Addi-

ionally, policy gradient methods are typically trained using Monte

arlo methods at the end of episodes ( Sutton et al., 1999 ); however

n DDPG, this limitation is overcome through training the DPG by

he gradient of the critic (i.e., the derivative of the Q values with

espect to the model weights) using gradient ascent. Intuitively,

he DPG’s weights are updated to maximize the action-value, Q ( x,

 ). Traditionally, continuous action RL algorithms struggle in ex-

loration because techniques such as ε-greedy assumes a discrete

ction space. DDPG explores through the Ornstein-Ulhenback ex-
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ploratory noise given by: 

u 

′ (x t ) = u (x t | w t ) + N (39)

where u ′ ( x t ) is the input signal corrupted by the Ornstein-

Ulhenback exploratory noise, N , given by the following stochastic

differential equation ( Uhlenbeck and Ornstein, 1930 ): 

d x t = θx t d t + σd W t , (40)

where θ > 0, σ > 0, and W t denotes a special case of a continuous

time stochastic process, known as the Wiener process. Detailed in-

formation regarding the Wiener process and its properties can be

found in Karatzas and Shreve (1991) . Sometimes, Gaussian white

noise is used for exploration; however, de-correlated random sig-

nals are ineffective for deep exploration since the signal has zero

average effect resulting in no displacement in any particular direc-

tion and simply introduces oscillation in the process. Intuitively, N 

is a temporally correlated process that promotes deep exploration

and needs to be tuned to suit different environments. More de-

tailed theoretical overview of the DDPG algorithm can be found in

Lillicrap et al. (2015) . 

In DDPG, four neural networks are used collectively when iden-

tifying the optimal policy. Furthermore, the neural networks are

implicitly trained upon each others weights, which potentially

causes function approximation errors and leads to sub-optimal

policies. In Fujimoto et al. (2018) , the authors introduced a novel

way to minimize the errors by delaying policy updates. The new

algorithm was also tested on different benchmark environments

and showed better performance in each case. 

DDPG was the first RL algorithm that effectively solved many

high-dimensional continuous control tasks. Indeed, most previ-

ous actor-critic or policy optimization RL algorithms were never

demonstrated to work on high dimensional state and action spaces

due to instability caused by catastrophic interference (a symp-

tom where newly learned information would undesirably over-

write previously learned knowledge) or were simply learning too

slow for industrial applications ( Deisenroth and Neumann, 2013 ).

Instead, the abilities of DDPG were demonstrated on many high

dimensional control problems in the MuJoCo physics environ-

ment, some being as large as 102 observations and 9 actions

( Lillicrap et al., 2015 ). 

At around the same time, Schulman et al. (2015) proposed an-

other deep RL method utilizing policy optimization. This algorithm

was also shown to be effective on high-dimensional continuous

control tasks. The algorithm, known as trust region policy opti-

mization (TRPO), guarantees monotonic improvements after each

update step through careful parameter updates governed by ap-

plying a KL divergence threshold on the new policy compared to

the existing policy. More specifically, the update constraint guaran-

tees that the new policy lies within the trust region : a subspace in

which the local function approximations are reliable. Unlike DDPG

where there exist an actor and a critic, TRPO identifies the poli-

cies directly. In doing so, Lillicrap et al. (2015) believe that TRPO

is much less data efficient. Moreover, the parameter updates must

be solved using a conjugate gradient method, due to the update

constraint, which may be difficult to implement. 

To improve upon the previous flaws of TRPO,

Schulman et al. (2017) published a new RL algorithm in 2017

called proximal policy optimization (PPO). Compared to TRPO, PPO

was much simpler to implement, more general, and has improved

data efficiency. Specifically, PPO implements the update constraint

directly in the objective function as a penalty. In doing so, SGD can

be used instead. Test cases showed that PPO was able to achieve

much better performance compared to TRPO after training for

the same time on various continuous control tasks. Unfortunately,

Schulman et al. (2017) did not compare its performance against

DDPG, making it difficult to conclude if it is a better algorithm. 
In 2018, Haarnoja et al. (2018) introduced a new actor-critic

lgorithm to improve the sample efficiency and convergence fac-

ors of previously introduced methods. In the new actor-critic al-

orithm, both expected reward and action randomness are maxi-

ized together during optimal policy search. Ultimately, this new

lgorithm was shown to surpass state-of-the-art performance on

arious continuous control benchmarks while being stable during

ts learning process. 

A complete time line of popular deep reinforcement learning

ethods is shown in Fig. 9 . Deep RL methods began with contin-

ous states and discrete actions but quickly evolved to accommo-

ate for continuous actions as well. Unfortunately, the MC meth-

ds were required to train the method, resulting in high variance.

DPG was introduced to resolve this shortcoming; deep algorithms

rom 2015 there-forth can handle both continuous states and

ctions. For a comprehensive performance comparison between

tate-of-the-art continuous control deep RL algorithms, please refer

o Henderson et al. (2018) . 

.6.2. Deep RL and its implications on industrial control 

The implementation potential of RL before the emergence of

eep function approximation was quite limited due to its ap-

lication being confined to discrete state and action systems.

sing deep function approximation, RL succeeded in solving

arious complex tasks such as in Lillicrap et al. (2015) and

nih et al. (2013) . However, most deep RL applications thus

ar have been in simulated environments and were not imple-

ented in safety-sensitive industrial settings. Furthermore, using

eep learning for function approximation require proper tuning of

he neural networks and results are not repeatable because neu-

al networks are typically initiated with random weights and the

xploration phase is also stochastic. Moreover, training agents that

everage large neural networks can take up to several days depend-

ng on the computation power available. Assuming that the deep

unction approximations are tuned properly, two major hurdles for

eep RL still exist: i) the black-box nature of the control policy; ii)

he connectivity of RL to the industrial distributed control system

DCS). 

Firstly, the black-box nature of RL introduces risks to process

perations because predicting the behaviour of RL may be difficult.

n MPC, the control actions could be understood through analyzing

he system model. However, in RL, it is nearly impossible to under-

tand why or how the agent learned the control policy. One could

est the behaviour of RL by providing different operating condi-

ions and observing the response of the agent; however, control

olicies using deep function approximation are likely to be highly

onlinear. This implies that operating conditions close to the tested

oints may still result in very different behaviours. Secondly, re-

iable RL communication with industrial DCS systems might pose

hallenges because there exists no industrially accepted RL soft-

are as of 2020. Moreover, deep learning control policies cannot

e directly imported in modern industrial DCS because of a lack

f support for large, interacting, neural networks. One possible so-

ution is to build the RL agent in an external software and lever-

ge Open Platform Communication (OPC) to communicate to mod-

rn control systems used by AspenTech’s Advanced Process Control

uite ( AspenTech, 2019 ). 

Due to the stochastic and black-box nature of deep learning and

he difficulty of implementing such a system into modern control

ystems, deep RL may still require further research before it is in-

ustrially ready. 

. Applications of reinforcement learning 

This section starts with a literature review of the most influ-

ntial RL papers. Then, RL will be compared to traditional control
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Fig. 9. Date of significant breakthroughs in deep reinforcement learning. 
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rameworks. Afterwards, a detailed tutorial where RL was applied

nto an industrial pumping system will be shown. Finally, a liter-

ture review of other potential applications of RL in the process

ontrol industry will be introduced. 

.1. Renowned triumphs 

RL first gained massive publicity after the publication of

nih et al. (2013) and Mnih et al. (2015) , where a general

gent was able to successfully conquer many ATARI video games

sing image inputs alone. Unfortunately, such games are near-

eterministic and the state space was sufficiently small allowing

ven rules-based methods to be feasible in such systems (though

o previous algorithms can learn the games through a general al-

orithm). Although the algorithm was impressive, previous meth-

ds were also able to approach the ultimate performance achieved.

o conquer a task never done before, Silver et al. (2016) and

eepMind (2016a) were published in early 2016. The two stud-

es introduced a RL algorithm to conquer Go, a board game in-

ented more than 30 0 0 years ago in China. Go is known as the

ost challenging game for AI due to its massive state and action

pace (more than 10 170 possible states), and the requirement to de-

eat random opponents with different play styles. Modern AI so-

utions to Go struggle against even amateur players; however, Al-

haGo was able to convincingly defeat the world’s best Go player,

e Jie. At the beginning, the algorithm used supervised learning to

btain fundamental knowledge from amateur level players. Then,

xpert level players were used to learn advanced strategies. After

onfidently surpassing the experts, the agent continued to perfect

tself through self-play, ultimately becoming the world’s best Go

layer ( Silver et al., 2016; DeepMind, 2016a ). Intuitively, these ex-

eriments demonstrate the potential of RL to identify hidden pat-

erns and provide valuable contributions to modern engineering

eyond what is already known. 

The original AlphaGo contained human engineered features that

ere believed to aid the agent in learning. Interestingly, DeepMind

elieved the opposite. That is, DeepMind believed that the agent’s

kill was handicapped by said features; thus, leading to the publi-

ation of AlphaGo Zero (zero referring to zero human knowledge),

 different version of AlphaGo without human bias ( Silver et al.,

017b ). In AlphaGo Zero, all human engineered features were re-

oved, leaving only the locations of the black and white stones

s states. Within 40 days of training, AlphaGo Zero, starting tab-

la rasa , was able to surpass the best performance ever achieved

y AlphaGo through pure self-play, a feat only achievable through

L. Moreover, only 3 days of training was needed for AlphaGo Zero

o achieve world championship level. The changes also made Al-

haGo Zero more efficient, consuming less than 10% of power and

sing only 4 tensor processing units (TPUs) compared to the 48

sed previously. 

By late 2017, AlphaZero was released following the ideas of

lphaGo Zero, where a general agent taught itself how to play

hess, Shogi, and Go and was able to defeat the world champion

rogram in each respective case ( DeepMind, 2016b; Silver et al.,
017a; 2018 ). The world’s best Chess player in history, Magnus

arlsen, had a peak FIDE ELO (measurement of skill assigned by

IDE, a world renowned Chess organization) of 2882. Using tra-

itional methods such as supervised learning, the ideal AI would

e capped at 2882, representing zero replication error. Within just

0 0,0 0 0 training steps, AlphaZero was able to achieve an ELO

bove 3300 from pure self-play. Within 30 0,0 0 0 steps (4 hours

hysical time), AlphaZero surpassed the world’s best Chess en-

ine, Stockfish ( Chabris, 2015 ). Comparing the two Chess engines,

tockfish required decades to refine by expert engineers. AlphaZero

as simply initiated tabula rasa , and after 4 hours, it became the

est. Most impressively, AlphaZero demonstrated RL’s ability for

ong-term decision making, that is, it sacrificed many pieces in the

arly game to obtain a significant advantage in the end game some

hirty steps in the future. Furthermore, AlphaZero only searches

0 4 ’s moves per turn compared to traditional Chess engines that

earches up to 10 7 ’s moves. Moreover, the same algorithm was

sed to learn Shogi and Go and was able to defeat the respective

est game engines, Elmo and AlphaGo Zero. 

The achievements of RL up until this point are nothing short of

mazing; however, all previous applications assumed a perfect in-

ormation system where all system states are perfectly observable.

or example, you cannot hide the location of your pieces in Chess

rom your opponent. Additionally, large amounts of time were al-

owed for the computer to find the optimal action. Unfortunately,

ystems in the real world may contain fast dynamics and are lit-

ered with incorrect, unmeasurable, and/or unreliable information.

o demonstrate RL’s ability to perform in a real time partially mea-

urable settings, AlphaStar was released in late 2018 ( DeepMind,

019; Vinyals et al., 2019 ). Here, the agent played a game called

tarCraft II, a real-time strategy game where the player is the gen-

ral of an army and is tasked with building various structures for

ilitary, resource, or energy needs in order to ultimately defeat the

pponent. Compared to previous games, StarCraft poses a highly

hallenging (most humans would find it difficult to play) and real

ime environment where the opponent’s moves are hidden and un-

nown. Additionally, the number of states and actions are near

nfinite. Here, the agent must evaluate fast enough to win real

ime battles while managing the required resources of its army.

fter training, AlphaStar was able to decisively defeat two of the

est StarCraft II players using pixel inputs alone. Moreover, AlphaS-

ar was not given any information unavailable to players and was

andicapped to be at human level (e.g., the agent cannot perform

housands of actions per second, etc.). AlphaStar showcased RL’s

bility to react to unexpected situations, real-time high dimen-

ional action selection, and hierarchical long-term planning. Such

haracteristics could be very applicable in industrial process con-

rol for fault-tolerant control or high dimensional multi-variate op-

imal control. 

All of the above applications assumed a single agent environ-

ent. In industrial process control, the agent must also understand

he consequences of its actions on the overall system. RL’s abili-

ies in multi-agent partially measurable systems was first demon-

trated on DotA 2 by OpenAI. DotA, like StarCraft, is a real-time
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Fig. 10. The traditional control architecture. 
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high dimensional strategy game where each team tries to defeat

the opponent. Unlike StarCraft, there are five players per team;

therefore, the agent’s interaction effects with other agents must

also be considered. Additionally, the time horizon per game can

be up to 80,0 0 0, a dramatic increase compared to Chess or Go,

which typically ends within 150 turns ( OpenAI, 2018b ). At each

time t , the agent observes 20,0 0 0 continuous observations and has

access to 10 0 0 different actions. The reward function of the agent

contains two components: individual performance and team per-

formance. To enhance cooperation among the independent agents,

a separate hyper parameter called team spirit , denoted here as φ,

was used to specify the importance of the individual reward func-

tion compared to the team reward function. Throughout the game,

team spirit will be annealed from 0 to 1 to communicate that in

the end game, only the team reward function matters. The reward

function is given as: 

r(x, u ) = φ · team reward function 

+ (1 − φ) · individual reward function (41)

As of April 2019, OpenAI Five was able to defeat the best DotA 2

teams in the world ( OpenAI, 2018a ). 

State-of-the-art RL research was first applied to near-

deterministic low dimensional systems, eventually transitioning

to complex video games that reflect the uncertain and stochastic

nature of the real world. RL was shown to effectively handle

partially measurable, long horizon, and high dimensional systems.

Additionally, RL can quickly react to unexpected situations, learn

to behave optimally in a team environment and is feasible for

real-time applications with fast dynamics. Most importantly, RL

was shown to be a general algorithm that can be used for different

applications. Such characteristics hold huge implications for useful

applications in industrial process control. 

3.2. Comparison with common advanced control frameworks 

A typical control framework is shown in Fig. 10 . Real-time opti-

mization (RTO) situates in the top layer and solves complex steady-

state optimization problems to find the optimal steady states with

respect to a desired performance metric ( Huesman et al., 2008 ).

Typically, this layer evaluates on the hourly time scale. The optimal

steady states are then communicated to the MPC layer, where dy-

namic optimization is performed on a minutes scale to identify the

optimal state and input trajectories to arrive at the optimal steady

states. Typically, the objective function in this layer is given by: 

J = 

H ∑ 

i =1 

x T i Q mpc x i + �u 

T 
i R mpc �u i (42)
ue to its convex nature ( Mayne and Rawlings, 2017 ). Here, H de-

otes the prediction and control horizon. Q mpc and R mpc are the

uning matrices for the state and input costs, respectively. Often

imes, plant managers do not allow for direct manipulation of the

rocess actuators by MPC due to safety concerns. In these scenar-

os, the state trajectories are computed from the process model us-

ng the ideal input trajectory determined by the MPC and are com-

unicated to the regulatory control layer, where PIDs are typically

sed to track the set points. On a simplified level, RTO identifies

he optimal set points for economic objectives to be met while

PC finds the optimal trajectory to achieve the desired set points.

ore recently, researchers began to intertwine ideas from RTO

ith MPC where the economic objective of RTO is placed directly

nto the MPC objective function. Such a strategy is now known as

conomic model predictive control (EMPC) ( Ellis et al., 2014 ). 

The gain in optimality after the addition of each control layer

s shown in Fig. 11 . The objective of each additional layer is to

ncrease the control optimality with respect to performance met-

ics. In typical processes, an optimal operating condition exists

t a boundary. However, the optimal operating point cannot be

chieved because of uncertainty and other factors. 

For each control layer, there exists a set of distinct algorithms

uch as PIDs for regulatory control and a variant of MPC for the

pper layers. Theoretically, the flexible nature of RL may enable it

o potentially replace any of the above layers due to its general

ature. For example, if RL were to replace MPC, the agent’s reward

unction simply has to be the negative of Eq. (42) , with the ac-

ions being the recommended set points. For the regulatory layer,

he reward function can remain the same, but the action would

esult in direct control of the system’s actuators. Finally, RL as an

MPC would have the economic objective added onto Eq. (42) as

he reward function. However, proper design of the state space, ac-

ion space, and reward function must all be considered during the

esign of the agent and will most likely be more challenging com-

ared to implementing the simpler algorithms. 

Perhaps one of the biggest advantages of RL is its rapid online

omputation time. Using most solvers, MPCs have a computational

omplexity of O (H 

3 (n + m ) 3 ) , where n and m are the dimensions

f the states and actions, respectively ( Richter et al., 2012 ). Even

fter exploitation of problem heuristics, MPCs’ computational com-

lexity improves only to O (H(n + m ) 3 ) ( Dunn and Bertsekas, 1989;

right, 1997; Wang and Boyd, 2008 ). Therefore, the online compu-

ation time may be infeasible for large systems and/or for systems

ith long control horizons. On the other hand, RL’s optimal policy

s pre-computed offline , making online evaluation extremely fast.

uch a method is very similar to the concept of parametric pro-

ramming from explicit MPCs ( Bemporad et al., 2002 ). Although,

L still has to be trained offline to identify the optimal policies and

ay require hundreds of thousands of interactions before reaching

 near-optimal policy. For applications where offline computation

ime is not of concern, RL might be the preferred method. 

Another significant difference is that RL is model-free . That is, a

odel is only required for initial training of the agent simply to

educe training time, and is not used during real-time implemen-

ation. In contrast, the identified model will be used exclusively

nline in MPC and can potentially lead to sub-optimal control. Off-

et free control is used in MPCs to overcomes offset errors in MPCs

hrough online model modification ( Pannocchia et al., 2015 ); how-

ver, it may not work well for very noisy processes. Furthermore,

ome complex process dynamics might be difficult to explicitly

odel and could increase online computation time. Adaptation in

L is conducted by changing the control policy directly and occurs

fter each control input. Model identification is not required and

ould be advantageous for systems where accurate process mod-

ls are not mathematically identifiable. However, the continually

daptive control policy of RL is black box by nature and could pose
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Table 4 

A comparison between RL, MPC in literature, and industrial MPC software. 

Reinforcement Learning Model Predictive Control Typical Industrial DMC 

Performance Close to optimal Optimal with perfect model Close to optimal 

Online comp. cost Low High High 

Offline comp. cost Policy & model identification Model identification Model identification 

Reliance on model Only for training At all times At all times 

Online calibration Exploratory moves Various methods Exploratory moves 

Sensitivity to tuning Low High High 

Fig. 11. Optimality of each control layer. 

Fig. 12. The FLUIDMechatronix experiment from Turbine Technologies 

( Technologies, 2019 ). 
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afety concerns. Moreover, the speed of adaptation is a function of

he learning rate and must be tuned. A low learning rate would

ender the adaptive feature meaningless. Contrarily, a high learn-

ng rate may result in unstable control of the process, especially in

rocesses with poor signal-to-noise ratios because the agent will

earn inaccurate system dynamics. 

In terms of optimization window, MPC considers each future

tage to be equally important when computing for the optimal

nput trajectory. On the other hand, traditional RL considers each

onsecutive stage to be of less value (due to the discount factor).

ecently, Asis et al. (2020) published an RL algorithm formulated

n a fixed-horizon fashion identical to MPC. In doing so, the au-
hors also demonstrated the increased stability and effectiveness

f the new algorithm. 

Lastly, RL has very few hyper parameters in the tabular case;

owever, initial design of RL typically require process experts to

onfigure. First of all, the state and action spaces must be prop-

rly configured to the regions of operation. Additionally, the re-

ard function require careful design so unintentional behaviour

oes not occur. For example, if the reward function does not con-

ain a cost for manipulating inputs, the agent may continuously

hange the input for noisy systems. This may lead to unwanted os-

illation and equipment wear in the process. As for convergence of

he control policy, as long as the learning rate is annealed to near

ero, RL should converge sufficiently well for most cases. 

A high level comparison between RL and MPC is shown in

able 4 . In addition to the above comparisons, RL was also com-

ared to industrial MPCs currently available on the market because

hey exist as proven technology, and not just academic studies.

ost industrial MPCs are in the form of dynamic matrix control

DMC), an early variant of MPC. In any real applications, the pro-

ess models are never perfect, resulting in a near-optimal solution.

dditionally, the online computation time for DMC is high, espe-

ially for nonlinear systems. RL can perform at the same speed

egardless of the system linearity. For online implementations, RL

ust explore random actions to adapt (an idea that sounds risky

or live processes). Interestingly, industrial DMCs indeed performs

andom actions online for model adaption. Typically, DMCs are ini-

ialized in the smart step mode, where the system will perform

andom step tests to calibrate the identified model to the real pro-

ess. Afterwards, the operators will switch the system to the cal-

brate mode. In calibrate mode, the system continues to perform

tep tests; however, they are much more infrequent and are lower

n magnitude. Such a model adaptation technique is identical to RL,

here exploration is plentiful initially, but is eventually annealed

o near zero. Currently, one major flaw that could be preventing

L from industrial wide adoption is the non-interpretable nature of

ts control policy. For a more detailed, explicit comparison between
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Fig. 13. General procedure for implementing industrial reinforcement learning. 

Fig. 14. The RL set-up for the FLUIDMechatronix experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Q -matrix of the Mechatronix system. 
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MPC and RL, see Gorges (2017) . Although RL may appear to have

many advantages compared to traditional optimal controllers, RL

literature is still embryonic compared to MPC and lacks solutions

to many fundamental problems. A list of shortcomings currently

barring RL from industry wide adoption is provided in Section 4 . A

summary of RL compared to literature MPC and industrial MPC is

shown in Table 4 . 

3.3. A RL control experiment: Optimal control of a pump system 

This section introduces an illustration on how to implement RL

onto a pilot-scale industrial process control system 

2 . A tabular Q -

learning RL agent will be implemented onto the FLUIDMechatronix

system from Turbine Technologies (machine shown in Fig. 12 ) for

set-point tracking. The system is equipped with a variable fre-

quency drive to regulate the output pressure. The output pressure,

P , and pump RPM (manipulated input) will be used for this exam-

ple. The operating ranges of the pressure and pump RPM are: 

0 kP a ≤ P ≤ 45 kP a 

0 Hz ≤ RP M ≤ 60 Hz 

A FOMDP will be used to describe this system because the system

measurements are available and system dynamics are fast. The ini-

tial conditions of the system are given by: 

P 0 = 41 kP a (43)

RP M 0 = 60 Hz (44)

The steps required for implementation of RL algorithms are

shown in Fig. 13 . The RL set-up for this example is shown in

Fig. 14 . The RL agent will track the pressure set-point by chang-
2 Supplementary code for results generated in this section can be found here: 

https://github.com/RuiNian7319/Research/tree/master/2.RL _ Codes/Mechatronix 

i  

e  

s  

w  
ng the pump RPM on the single-input single-output (SISO) sys-

em. Specifically, the state and action of the agent are the current

et-point tracking error: 

 = P t − P t,sp (45)

nd the change in pump RPM �u , respectively. In Eq. (45) , P t de-

otes the pressure at time t and P t,sp denotes the corresponding

ressure set-point. This use of the change of RMP as the action al-

ows the agent to track multiple set-points. If the action was the

ump RPM instead, then the agent can only track one set-point

ince it simply maps different tracking errors to the steady state

ump RPMs. The reward function of the agent is given by: 

(x, u ) = max (−ε 2 − | �u | , −200) (46)

here �u is the change in input (i.e., changing the input has a

ost). Additionally, the reward is capped to -200 to avoid numerical

ssues and unexpectedly large bootstrapping errors. The agent will

valuate every five seconds to ensure that the system has reached

teady state before the consecutive action is made. Five-second

as selected because it was the longest observed transition time

https://github.com/RuiNian7319/Research/tree/master/2.RL_Codes/Mechatronix
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Fig. 16. Performance of the identified system model on a test data set. 

Table 5 

Summary of the agent’s hyper parameters in the Mechatronix experiment. 

Hyper Parameter Value 

States, x ε = [ −20 , −19 , . . . , 20] 1 ×41 

Actions, u �u = [ −10 , −9 , . . . , 10] 1 ×21 

Reward, r max( −(ε 2 + | �u | ) , -200) 

Learning rate, α [0.001, 0.7] 

Discount factor, γ 0.9 

Exploratory factor, ε [0.1, 1] 

Evaluation interval 5 seconds 

System representation FOMDP 
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equired for the system to reach steady state. The very short dy-

amic transition is not to be considered in this experiment. 

The hyper parameters of the agent are summarized in Table 5 .

n this example, the states and actions are discretized as: 

 = [ −20 , −19 , . . . , 20] 1 ×41 (47)

 = [ −10 , −9 , . . . , 10] 1 ×21 (48)

nd the Q -matrix corresponding to the action-value functions is

iven in Fig. 15 . Initially, all action-values are initiated as 0. The

tates and actions, x and u , correspond to ε and �u , respectively.

he discount factor, γ , of the agent was 0.9. Overall, the agent

as trained for 2,0 0 0,0 0 0 time steps corresponding to approxi-

ately 23 days of continuous operating experience. After every

00 th time step, the agent was reset back to the initial states given

n Eqs. (43) and (44) to prevent controller saturation during initial

pisodes. Such a long continuous training time on a live process

s unreasonable; therefore, a crude model of the system was first

dentified and was used to initially train the agent in simulation.

he identified model had a mean squared error of 0.056 on the

xperimental data and is given as: 

 t = 0 . 012 · RP M 

2 + 0 . 024 · RP M − 2 . 073 (49)

he model fit on a normalized test data set is shown in Fig. 16 . 

Exploration-wise, the agent starts with an equiprobable random

olicy ( ε = 1), which decays linearly until ε = 0 . 1 by the 50 0,0 0 0 th 

ime step. Likewise, the learning rate, α, is initiated at 0.7 and de-

ays linearly until 0.001. 
The agent will behave as follows: initially, the agent observes

t and performs action �u t , that is, the agent observes the cur-

ent tracking error and then changes the previous input by some

mount. Next, the input signal corresponding to u t = u t−1 + �u t 
ill be sent to the Mechatronix experiment. After waiting for five

econds to ensure the system reached steady state, the agent will

eceive reward R t+1 and observe the new tracking error, ε t+1 . Then,

he agent uses Eq. (29) to update its current knowledge, and the

ycle starts anew. A numerical example is provided below: 

Suppose the agent discretized the system into five states and

three actions corresponding to: 

x = [ −21 , −10 , 0 , 10 , 21] 1 ×5 

u = [ −10 , 0 , 10] 1 ×3 

The Q -matrix was initialized as: 

Q(x, u ) = 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

⎞ 

⎟ ⎟ ⎠ 

where rows 1–5 correspond to the five states and columns 1–

3 correspond to the three actions. After the initial set-up, the

agent has to be trained. RL agents are typically trained through

a series of episodes, where each episode consists of multiple

update steps. In this example, the agent will be trained through

10 0 0 episodes, where each episode consists of 20 0 0 seconds

(2,0 0 0,0 0 0 seconds of total training time). Furthermore, the Q -

matrix is updated after every 5 seconds, resulting in 400 update

steps per episode. At the end of each episode, the agent will be

reset to its initial states. Note that simulations were used for

initial training. Total simulation time was only a few minutes

for the entire 10 0 0 episodes. 

The initial set-point of the system was set to 30 kPa. At

t = 0 , the system was at steady state with 15 kPa and 37 RPM,

resulting in ε = −15 . The agent receives the error and rounds

it to the nearest state, x = −10 . Given this state, the agent then

picks the action that coincides with the highest Q value from

the Q -matrix: 

Q(−10 , u ) = [0 , 0 , 0] 
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where the first, second, and third value correspond to the cur-

rent predicted Q values for selecting actions �u = −10 , 0 , 10 ,

respectively. Because the agent was not provided with any prior

information about the system, the agent must first pick an ac-

tion arbitrarily to identify more information. During scenarios

where the highest Q values are identical, ties must be broken

arbitrarily to avoid biasing one action over others. 

If u = −10 was picked: the system will transition to a steady

state of 7.4 kPa after five seconds and the new error would be

-23. Clearly, this is a sub-optimal action but the agent was not

equipped with prior knowledge of this. Additionally, the agent

would receive reward: 

r 1 = max (−23 

2 − | − 10 | , −20 0) = −20 0 

and x 1 = −21 . From this newly learned knowledge, the agent

would update the Q -matrix using Eq. (29) : 

Q(−10 , −1) 

← Q(−10 , −1) + 0 . 7[ −200 + γ Q(−21 , 0) − Q(−10 , −1)] 

Q(−10 , −1) ← 0 + 0 . 7[ −200 + 0 . 9 · 0 − 0] 

Q(−10 , −1) ← −140 

and the updated Q -matrix would be: 

Q(x, u ) = 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 

−140 0 0 

0 0 0 

0 0 0 

0 0 0 

⎞ 

⎟ ⎟ ⎠ 

Notice here that all three u ’s are the maximizing action for

Q(x t+1 , u t+1 ) ; therefore, the ties are broken randomly here as

well to avoid unnecessary bias. Suppose the first episode was

terminated early and the system was reset back to x 0 = −10 .

This time: 

Q(−10 , u ) = [ −140 , 0 , 0] 

meaning that picking �u = −10 is a sub-optimal action com-

pared to �u = 0 or 10 . Here, the agent would pick either �u =
0 or 10 , instead. 

After traversing through the state space many times, the Q -

matrix is now given by: 

Q(x, u ) = 

⎛ 

⎜ ⎜ ⎝ 

−278 −231 −202 

−66 −59 −48 

−31 −22 −33 

−52 −62 −68 

−209 −244 −291 

⎞ 

⎟ ⎟ ⎠ 

This time, the agent has much more information about the sys-

tem and can begin acting optimally. After, once again, resetting

the agent back to 15 kPa and 37 RPM, the decision making of

the agent this time around is deterministic. Given action val-

ues: 

Q(−10 , u ) = [ −66 , −59 , −48] 

the agent would pick �u = 10 corresponding to Q(−10 , 10) =
−48 and transition the system to P 1 = 25 . 6 kPa and yield re-

ward r 1 = −(4 . 4 2 ) − | 10 | = −29 . 4 . Now, the system’s state is

closest to x = 0 . In x = 0 , the optimal action-value is Q(0 , 0) =
−22 . The new update step is given as: 

Q(−10 , 1) ← −48 + 0 . 001[ −29 . 4 + 0 . 9 · −22 + 48] 

Q(−10 , 1) ← −48 + 0 . 001[ −1 . 2] 

Q(−10 , 1) ← −48 
Here, the α is 0.001 due to decay throughout the training pro-

cess. Furthermore, the TD error is at −1.2, signifying that the

agent’s value functions are very close to optimal and the agent

is well trained. All TD errors will eventually converge to near-

zero and the agent’s policy will become optimal. 

After simulating the system for many steps, the reward ob-

ained by the agent during the training phase is shown in Fig. 17 .

he reward never converged to zero because the lower bound of ε
as set to 0.1, meaning that the agent continued to explore sub-

ptimal actions during training. As for the desired set-point during

raining, the agent’s set-point is drawn from a Gaussian distribu-

ion N (30, 5). 

After 2,0 0 0,0 0 0 update steps, the agent was applied onto the

eal process and was tasked to track pressure set-points of 35 and

. The pressure trajectory of the Mechatronix experiment is shown

n Fig. 18 a and b. The mean squared tracking error (MSE) for set-

oints of 35 and 5 are 14.2 and 15.5, respectively. In both cases,

he initial pressure of the system was about 5.5 kPa above the de-

ired set-point to ensure fair MSE calculations. The agent behaves

uch like a linear self-tuning PID where the RL maps tracking er-

ors to changes in input. Such a set-up only works well locally for

onlinear systems because the system is locally linear. As the agent

oves away from the local linear region, the performance deteri-

rates significantly, as shown in Fig. 18 b. The agent’s performance

s significantly better when tracking P = 35 because the set-points

uring training were biased towards the upper range. Additionally,

t can be seen in Fig. 16 that the controller gain changes signifi-

antly at lower pressures, making the optimal policy for the higher

ressure range sub-optimal in the lower pressure range. There also

xists a large off-set between the set-point and pressure trajec-

ory. This is caused by the discretization error; there is no action

u that can get the system to exactly P = 35 or 5 kPa . To over-

ome this, the action space can be more finely discretized, but will

ncrease the training time and space complexity required by the

gent. Another simpler way will be introduced later on in this ex-

mple. 

One simple way to extend the current agent to nonlinear sys-

ems is to approximate the system using piecewise linear functions

s shown in Fig. 19 . Communication wise, the agent will receive

his information through a second state : 

 

(2) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 , if P ≤ 10 

2 , if 10 < P ≤ 20 

3 , if 20 < P ≤ 30 

4 , if 30 < P ≤ 50 

5 , P > 50 

nd the new state space for the agent is given by: 

 = [(−20 , 1) , (−20 , 2) , (−20 , 3) , . . . , (−19 , 1) , . . . , (20 , 5)] 1 ×205 

(50)

here 1, 2, 3, 4 and 5 for the second state correspond to the re-

ion the agent is currently in. Here, the Q -matrix will instead be

nitialized as 0 (41 · 5) × 3 to accommodate for the second state. In-

uitively, the agent now observes the current tracking error and the

egion in which this tracking error has occurred. Since each region

s locally linear, the control law is also linear allowing the agent’s

olicy to be applied along each region ( Seborg et al., 2013 ). Such

n idea is similar to linear parameter-varying models or multimode

odels. Here, the agent’s policy changes depending on the region

t is currently in. 

After training the new agent for 2,0 0 0,0 0 0 steps, the agent

as again implemented onto the Mechatronix experiment. The

ew pressure trajectories for tracking P = 35 and 5 are shown in

ig. 20 a and b with MSEs of 14.2 and 12.5, respectively. It can be
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Fig. 17. Loss curve of the agent during training. 

Fig. 18. Pressure trajectory of the Mechatronix experiment. Solid line represents the average of 10 runs to ensure reproducability. Shaded area correspond to one standard 

deviation. 

Fig. 19. Approximating the nonlinear Mechatronix system. 
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Fig. 20. Pressure trajectory using the nonlinear agent. Solid line represents the average of 10 runs to ensure reproducability. Shaded area correspond to one standard 

deviation. 

Table 6 

A comparison between RL, MPC in literature, and industrial MPC software. 

Normal Q -learning Two-state Q -learning Two-state interpolated Q -learning 

MSE (High/Low SP) 14.2 & 15.5 14.2 & 12.5 13.6 & 11.7 

Offset Yes Yes No 

Nonlinear No Yes Yes 
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seen that the performance for tracking the lower set-point has dra-

matically improved; however, the offset still exists. 

Because the nonlinear system was approximated using linear

components, both the system and control law are locally linear.

Using this characteristic, the optimal control action can be inter-

polated using the linear interpolation equation ( Meijering, 2002 ):

u = u low 

+ (x − x low 

) 
u high − u low 

x high − x low 

(51)

where x is the actual state from the system; typically, x is not

included in the discretized states X and is instead between x high 

and x low 

. For example, suppose the discretized states are x =
[0 , −5 , −10] . If the current state is -3, x high and x low 

would corre-

spond to 0 and -5, respectively. Likewise, u high and u low 

correspond

to the greedy action (i.e., return maximizing action) for x high and

x low 

, respectively. For example, given the action space u = [ −5 , 0 , 5]

and Q−matrix: 

Q(x, u ) = 

( −5 2 1 

4 1 −2 

−2 0 3 

) 

, 

and u high and u low 

would be 0 and −5 (actions corresponding to

the index of the highest Q -value), respectively. The optimal action

for x = −3 would be: 

u = −5 + (−3 + 5) 
0 + 5 

0 + 5 

u = −3 

By adding the interpolation technique onto the two-state RL

agent (without re-training the agent), the new pressure trajecto-

ries are shown in Fig. 21 a and b with new MSEs of 13.6 and 11.7,

respectively. Now, the off-set is eliminated and the system can op-

erate optimally. 

A summary of the simple RL solutions and their respective char-

acteristics are shown in Table 6 . In this illustration, implementation
f a simple RL agent onto a pilot-scale industrial experiment was

ntroduced. Techniques to extend the agent’s ability to nonlinear

ystems and for off-set free control were also shown. The agent’s

erformance on the live systems were replicated 10 times for each

lgorithm to ensure reproducability; the resultant standard devia-

ion in the pressure trajectories was very narrow, representing high

eproducability. 

RL agents typically only provide the control action for the im-

ediate future. This is similar to traditional methods like MPC

here only the first input is used during each step; however, MPC

s implemented in a receding horizon fashion and also calculates

n input trajectory for future steps making open-loop control pos-

ible for short horizons. RL can also be implemented in such a way.

uch RL methods are called planning methods or model-based RL

nd require a model of the system. In receding horizon RL, the

gent outputs the immediate control action, uses the model to

dentify the next state, identifies the optimal control action for the

ext state, and continues the cycle thereforth. 

Because the example shown here is for illustration purposes,

he example is simple, evaluates at a preset intervals and does

ot consider system dynamics or unmeasured states. For systems

ith variable transition times and system dynamics consideration,

MDPs should be used. The SMDP Q-learning algorithm is given by

radtke and Duff (1994) : 

Q(x, u ) ← Q(x, u ) + α

[
1 − e −βτ

β
r(x, x t+1 , u ) 

+ e −βτ max 
u t+1 

Q(x t+1 , u t+1 ) − Q(x, u ) 
] 

(52)

here r(x t , x t+1 , u ) is the reward rate and is given in Eq. (10) . For

ystems with unmeasured states, concepts of POMDPs provided in

ection 2 are required. 

If a deep RL algorithm, such as DDPG, was used in this par-

icular example, the major difference would be the design of the

tate and action spaces. In DDPG, the two states and control action
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Fig. 21. Pressure trajectory of the nonlinear agent using interpolation action selection. Solid line represents the average of 10 runs to ensure reproducability. Shaded area 

correspond to one standard deviation. 
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Fig. 22. CARLA: An RL-powered automatic PID tuning algorithm. 
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ould instead be continuous and be given by: 

 1 ∈ [ −20 , 20] 

x 2 ∈ [0 , 60] 

u ∈ [ −10 , 10] 

n this set-up, there would naturally no discretization error be-

ause both the states and actions are continuous. However, note

ere that the search space for the optimal policy is much larger

ompared to the tabular case and will require significantly more

ime before a near-optimal policy is found. 

.4. Automated PID tuning 

Proportional-Integral-Derivative (PID) controllers are 

idespread throughout industry due to their effectiveness and

ase of implementation. The general PID formulation is given by

eborg et al. (2013) : 

 (t) = K p ε(t) + K i 

∫ T 

0 

ε(t) dt + K d ˙ ε (t) (53)

here ˙ ε (t) is the derivative of the error at time t, K p , K i , and K d 

re hyper parameters corresponding to the proportional gain, inte-

ral gain, and derivative gain and should be well tuned for accept-

ble controller performance. However, depending on the process

o be controlled, this tuning process may be difficult and time-

onsuming, especially in MIMO systems where control loops are

ntertwined (i.e., tuning of one control loop results in de-tuning

f another). Many methods exist for initial tuning, such as the

iegler-Nichols method. But in most cases, the final controller per-

orms well below optimal, especially in industry where engineers

re time constrained ( Howell and Best, 20 0 0 ). Instead, an RL agent

an be used to automatically and optimally tune the PID parame-

ers. 

One of the earliest studies on automated PID tuning using con-

epts from RL was published by Howell and Best (20 0 0) in 20 0 0

architecture shown in Fig. 22 ) where the authors automated the

uning of a Ford Motors Zetec engine. The algorithm here, named

ontinuous Action Reinforcement Learning Automata (CARLA), was

sed to fine tune PIDs after initial parameters were set using meth-

ds like Ziegler-Nichols. Results showed a 60% reduction in the cost

unction after RL tuning. CARLA works as follows: Initially, each

ystem parameter is associated with one CARLA. The action of each

ARLA is the recommended system parameter and is drawn from
 corresponding probability density function, f ( x ). For example, in

 system with one PID, there would be three CARLAs correspond-

ng to the three PID parameters. The action of each CARLA is the

ecommended parameter and is implemented into the process. Af-

erwards, the performance of the system with respect to the de-

ired performance metric is observed. Performances better than

he mean performance will cause the distribution means to be

hifted towards the recommended parameters, vice versa for lower

erformances. Exploration in CARLA is conducted in a similar way

s DDPG, except Gaussian white noise is injected into the action

ather than the Ornstein-Uhlenbeck noise. More detailed informa-

ion regarding the CARLA algorithm can be found in Howell and

est (20 0 0) . Such a method is simple, but may not be scalable to

arge MIMO systems due to the vast numbers of CARLAs required. 

By 2006, Wang et al. (2006) developed a more advanced PID

uning method through utilizing an actor-critic RL algorithm. In

his algorithm, the agent’s states are given as: 

 = [ ε t , �ε t , �
2 ε t ] 

ε t = ε t − ε t−1 

2 ε t = ε t − 2 ε t−1 + ε t−2 
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and the actions are: 

u = [ K i , K p , K d ] 

Notice that the three states correspond to the integral, propor-

tional, and derivative errors of the discrete PID formulation. The RL

formulation here maps the current error, and the first- and second-

order difference of errors to some optimal PID parameters at each

time t (i.e., the PID parameters change at every time t ). Intuitively,

the agent observes the current errors and outputs the optimal PID

parameters at current time t . The PID is then re-parameterized us-

ing these new parameters and is used to calculate �u t : 

�u t = K i ε t + K p (ε t − ε t−1 ) + K d (ε t − 2 ε t−1 + ε t−2 ) (54)

where K i , K p , and K d are outputted by the agent and may change

for each time t . From �u t , u t can be calculated by: 

u t = u t−1 + �u t 

From the original paper, simulation results showcased the algo-

rithm’s adaptability, robustness and ability to perfectly track com-

plex nonlinear systems. By 2008, Sedighizadeh et al. (2008) applied

this adaptive PID to a wind turbine experiment, yielding near per-

fect tracking performance in the industrial application. Complete

applicational details can be found in Sedighizadeh et al. (2008) .

In 2015, the algorithm was implemented again, this time on an

under-actuated robotic arm ( Akbarimajd, 2015 ). The robotic arm

has fast dynamics and lacks adequate actuators for ideal control.

Such a study allows for the exploration of the RL tuned PID’s fault

tolerant characteristics. In the experiments, the robotic arm’s goal

was to maintain a formation, but was exposed to many distur-

bances. Traditional control methods typically lead to overshooting

and other undesired behaviours; however, the RL tuned PID did not

exhibit any such behaviour and showed significantly better perfor-

mance in terms of disturbance rejection and response time com-

pared to traditional approaches. By 2017, a Q -learning variant of

this proposed algorithm was used in Gurel (2017) to tune a race

track robot. Compared to manually tuned PIDs, the RL tuned PID

robots achieved up to 59% faster lap times. 

In 2010, Brujeni et al. (2010) leveraged the SARSA RL algorithm

to dynamically tune a PI-controller used to control a continuous

stirred tank heater. The agent was first pre-trained on an estimated

model for the process and was then implemented to continuously

tune the tank heater online. The agent aimed to reject disturbances

and track the set-point. In the end, the authors compared the per-

formance of the RL tuned controller against internal model con-

trol tuning methods. It was found that RL was the superior tuning

method due to its continuous adaptive nature. 

In 2013, Hakim et al. (2013) implemented an automated tuning

strategy similar to the one proposed above for a multi-PID soccer

robot. The agent’s states were altered. Instead of receiving the er-

ror signals, the agent received the state it currently resides in for

the soccer game. Intuitively, this allowed the agent to understand

its current situation, and tune its characteristics accordingly. For

example, the robot may require faster speed while running down

the field compared to when it is ready to take a shot. In an indus-

trial setting, such ideas may be useful for an event triggered con-

trol system. For example, if the weather conditions are poor, the

control system should be more conservative and have less gain.

Ultimately, the paper demonstrated the superior performance of

the RL tuned robots compared to robots tuned using the Ziegler-

Nichols method. 

On the more advanced side, RL was also shown to be ef-

fective in a model-based PID tuning strategy where the con-

troller was tuned based on a finite horizon cost. Ultimately, this

method was found to work on nonlinear MIMO systems with ar-

bitrary couplings. The method was tested on Apollo, a real-life

robot with imperfect low-level tracking controllers and unobserved
ynamics. More details regarding this method can be found in

oerr et al. (2017) . 

Over the past 3 years, many more automated PID tuning meth-

ds using RL were published and are not all presented here. The

deas are very similar to the ones presented above with only slight

lterations of the agent set-up. 

.5. Various simulated process control applications 

One key advantage of RL in optimal control probably is its direct

daptive characteristic. Optimal control methods aim to extremize

he functional equation of the controlled system and have shown

o be less tractable both computationally and analytically com-

ared to tracking or regulations problems. Consequently, adaptive

ptimal control has received relatively less attention, with existing

tudies mostly focusing on indirect methods ( Sutton et al., 1991 ).

utton et al. (1991) showed that RL can overcome this dilemma by

erving as a direct optimal control method. Here, indirect methods

efer to process re-identification methods whereas direct methods

lter the control policy directly. Direct adaptive optimal control

ould be especially useful for systems where accurate models are

ot available. In such scenarios, RL can update the control policy

irectly through interactions with the system, eventually adapting

o the optimal policy. This was shown in Moriyama et al. (2018) ,

here the authors applied an RL algorithm to a data-center cool-

ng application where accurate system models are very difficult

o identify even with sufficient data. However, the RL agent was

ble to find an optimal policy to control the system after suffi-

ient online interactions. The agent resulted in 22% reduced power

onsumption compared to previous model-based methods. In an-

ther work, Raju et al. (2015) showed that RL was able to adapt

o changing load fluctuations in power systems, eventually result-

ng in optimal control after sufficient online interactions. Wireless

etworking is another system with non-identifiable dynamics. In

an et al. (2019) , the authors achieved increased energy efficiency

sing deep RL by allowing the agent to learn the optimal policy

nline instead of mathematically modelling the system. 

For general applications of RL in simulated control environ-

ents, Hoskins and Himmelblau (1992) was perhaps the first

nstance where reinforcement learning was used for process

ontrol (in a set-point tracking sense). The authors trained a

eural network based agent to control a CSTR. More recently,

pielberg et al. (2017) showed that DDPG can be used to success-

ully control arbitrary SISO and MIMO systems so long as the re-

ard functions are properly formulated. In Spielberg et al. (2017) ,

he agents mapped states, x = [ y t , y sp ] , to actions u = [ u t ] . In

ang et al. (2017) , an actor-critic RL method was applied to con-

rol the temperature of a building heating, ventilation, and air con-

itioning (HVAC) system, resulting in 2.5% reduction in energy us-

ge and 15% increase in thermal comfort. The same HVAC sys-

em was also optimized using a proximal actor-critic RL agent in

ang et al. (2018) . All previous applications formulated the agent

o perform set-point tracking; however, RL is very flexible and can

e used for optimal control (i.e., optimize an economic objective)

y changing the reward function to be in terms of an economic

bjective. The viability of RL has also been shown in fault-tolerant

ontrol (FTC) ( Nian et al., 2019 ). It was illustrated that RL agents

ere able to mediate faults and were able to adapt to changing

perating conditions. 

.6. RL and chemical engineering 

In as early as 2005, Lee and Lee (2005) investigated two ap-

roximate dynamic programming (ADP) algorithms, J -learning and

 -learning, for optimal control of a CSTR. In both cases, the learn-

ng algorithm attempted to identify the optimal policy offline.
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Table 7 

Time required for RL agents to learn tasks. 

RL algorithm Approx. time required 

OpenAI Five Hundreds of years 

AlphaZero 10000 ′ s of games 

DQN Days of continuous play 

DDPG Millions of steps 
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ompared to MPC, these methods were shown to have lower on-

ine computational burden and the ability to control model extrap-

lation when computing for the optimal control actions. The per-

ormance of these algorithms were then compared to proportional-

ntegral controllers, a successive linearization MPC, and nonlinear

PC on a CSTR. First, an nonlinear auto-regressive with exogenous

nput (ARX) model was identified for the CSTR. Then, each con-

roller was applied in simulation to control the process. In the end,

he performance of the two ADP methods were superior compared

o its counterparts. In this particular example, MPC struggled to

chieve closed-loop stability due to large model extrapolations dur-

ng online optimization. 

Joy and Kaisare (2011) built upon previous findings and applied

he J -learning and Q -learning techniques to an adiabatic plug flow

eactor. In this example, the plug flow reactor was modelled using

hree partial differential equations. Two different PIDs and three

ifferent linear MPCs were applied onto the system along with the

DP control algorithms. In the simulation cases presented, the ADP

ontrol algorithms were able to achieve superior control perfor-

ance compared to the PIDs and linear MPCs. 

By 2018, Sidhu et al. (2018) demonstrated the capabilities of

n ADP method to optimally control the proppant concentration

or hydraulic fracturing. It was shown that traditional optimal con-

rollers were not ideal due to the high sampling time and large-

cale nonlinear system. The proposed ADP controller was first

rained on a simulation model of the reservoir to gain preliminary

rocess insight. After training, the ADP optimal controller was used

o generate an online pumping schedule while being able to han-

le plant-model mismatch within the rock formation. 

.7. Electricity optimization at Google data centers 

One of the only, and most impressive in terms of achievement

nd value creation, live implementation of reinforcement learning 3 

as achieved by Google DeepMind where the agent succeeded in

educing electricity usage of Google data centers by up to 40%. In-

irectly, this also reduced the carbon footprint of all companies us-

ng Google’s services. Services such as Google Search, Gmail, and

ouTube, are all ran on servers powered by Google’s data centers

nd generate enormous amounts of heat. Consequently, the data

enters’ primary source of energy usage is cooling. Cooling is ac-

omplished using industrial equipment such as heat exchangers,

umps, and cooling towers. The difficulty comes from the problem-

tic dynamics of the environment caused by DeepMind (2016c) : 

1. Highly complex, multi-dimensional environment with nu-

merous nonlinear interactions. Such an environment ren-

ders traditional system identification approaches ineffec-

tively. Additionally, human operators simply cannot intu-

itively understand all the complex interactions. 

2. Highly variable internal and external conditions (such as

weather, server load, etc.) rendering rules- and heuristics-

based approaches fruitless. 

3. All data centers have unique set-ups, requiring custom-

tuned models for each individual environment. Such a

dilemma requires an artificial general intelligence set-up

where one algorithm can learn many different scenarios. 

To overcome this, DeepMind research scientists first used his-

orical operating data from the data centers to train neural net-

ork models for different operating conditions. The inputs to the
3 Google DeepMind did not explicitly state the technology used to achieve the 

avings, only machine learning. However, DeepMind is a company that focuses on 

einforcement learning approaches and there were many mentions of creating a 

eneral algorithm for all the data centers in the article; therefore, it was assumed 

einforcement learning was used. More specifically, meta-RL was most likely used 

ue to the construction of many simulators and the agent’s adaptation speed. 
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eural networks were sensor information such as temperature,

ump speeds, etc., and the output was the power usage effective-

ess (PUE) defined as: 

 UE = 

Total building energy usage 

IT energy usage 
(55) 

The neural networks were used as simulators for the physical

ata centers. Different agents were trained on different data cen-

ers and during different operating conditions to minimize the PUE

ver a long hoirzon. Initially, only recommendations were provided

y the algorithm. The PUE of a data center with and without im-

lementing the agent’s recommendations is shown in Fig. 23 . By

018, the agents were allowed to fully control the data centers af-

er safety modifications were added. Specifically, a RL agent obtains

easurements from sensors throughout the data center once ev-

ry five minutes and replies with the optimal inputs that satisfy a

obust set of safety constraints ( DeepMind, 2018 ). The inputs are

hen verified with the local control operators to ensure that the

ystem remains within constraint boundaries. Over the first few

onths of live implementation, the agents were able to success-

ully reduce electricity consumption by an average of 30% and are

xpected to get better as they learn online. 

.8. Sequential anomaly detection 

Anomaly detection is another field where reinforcement learn-

ng has gained traction. In industrial processes, anomaly detection

s a proactive risk management strategy to identify and localize

otential hazards before loss incidents occur. RL anomaly detec-

ion’s sequential (time-series) nature and ability to self-learn pro-

ide an attractive edge. One of the earliest papers regarding RL-

ased anomaly detection was presented in Cannadey (20 0 0) (archi-

ecture shown in Fig. 24 ), where the author used concepts of rein-

orcement learning to build an adaptive neural network to learn

nd identify new cyber attacks. The architecture was similar to

ime-series anomaly detection. The system was represented as a

OMDP where the agent optimally mapped the observations o =
 x t−n , x t−n +1 , . . . , x t ] to actions u = [ Normal , Anomalous ] , guided

y a scalar reward. Observations were an augmentation of past

tates to give the agent access to time-series information. Cor-

ectly identifying anomalies yielded +1 reward while any mis-

lassification yielded -1 reward. More recently, Zighra (a on-

ine security company) deployed the proposed algorithm from

annadey (20 0 0) into a product called SensifyID. Although the idea

as originally applied to network systems, a very similar concept

as proposed in Nian et al. (2019) where the algorithm was in-

tead used as a general fault detection tool for process control sys-

ems. 

By 2010, Xu (2010) extended the original ideas by first

epresenting the system as a partially measurable Markov re-

ard process (MDP with no actions). The states remained o =
 x t−n , x t−n +1 , . . . , x t ] and there were no actions in this system. In-

tead, the authors proposed the agent to learn the probabilities of

ach state transitioning into an anomalous state given as: 

 a (x ) = P { o t+1 ∈ A| o t } (56)

here P a ( x ) denotes the probability of transitioning into an anoma-

ous state a given observation o t . A is a set of anomalous states.
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Fig. 23. Power usage effectiveness with and without ML control. Original figure from DeepMind (2016c) . 

Fig. 24. A sample anomaly detection architecture. 
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If P a ( x ) > μa , an anomaly was deemed imminent, where μa is a

threshold hyper parameter. High values reduce false positives, but

may miss anomalies. On the other hand, low values increase true

positives, but also increase false alarms. The value function of this

approach is represented as: 

 (x ) = 

n ∑ 

i 

P (o t+1 ∈ A| o t ) · r(o t ) (57)

where r ( o t ) is the reward obtained in o t . If o t ∈ A , r(o t ) = 1 , oth-

erwise 0. In this setup, states with high values have higher chance

of being anomalous. In the end, Xu (2010) also compared the RL

anomaly detection algorithm to other classification algorithms such

as support vector machines. Results showed that RL anomaly de-

tection resulted in a higher detection accuracy compared to all

other methods, although all algorithms scored an accuracy above

99.8% on the selected data sets including linear methods like lo-

gistic regression. 

More recently in 2018, Huang et al. (2018) proposed a recur-

rent neural network (RNN) RL anomaly detection algorithm with-

out the need to tune μa . Overall, the algorithm was very similar

to Cannadey (20 0 0) where a policy, π ( u, x ), was identified to map

states to actions u = [ Normal , Anomalous ] . In this representation,

the classification is binary so no threshold is required. Compared

to Cannadey (20 0 0) , the system from Huang et al. (2018) was still

a POMDP; however, a long short term memory (LSTM) recurrent

neural network (RNN) was used to memorize previous states in-

stead of using the state augmentation strategy. The differences in

performance between the two strategies have yet to be explored

in literature. Ultimately, the algorithm was implemented onto the

Yahoo anomaly detection benchmark data set ( Laptev et al., 2015 )

and was able to identify all anomalies with no false alarms. 

3.9. Temporal credit assignment 

Another advantageous difference exhibited by reinforcement

learning is its credit assignment capabilities. There are three forms

of credit assignments: 
1. Temporal credit assignment: Given a sequence of

x 0 , u 0 , x 1 , u 1 , . . . , properly assign values based on a desired

performance metric to different state-action pairs. For example,

the reason a company went bankrupt is rarely caused by the

actions of the CEO during the day of the bankruptcy. Most

likely, a chain of poor decisions ultimately resulted in this

outcome. 

2. Transfer credit assignment: Ability to generalize one action

across many tasks, e.g., driving a car in Canada should be very

similar to driving a car in the United States. 

3. Structural credit assignment: Identifying the effects of individual

parameters on the ultimate outcome. For example, increasing

the temperature would increase the output flow rate by some

amount. 

Transfer credit assignment and structural credit assignment

re mainly used in transfer learning and supervised learning, re-

pectively. Reinforcement learning conducts temporal credit as-

ignment through assigning values to different state-action pairs

 Minsky, 1973 ). RL conducts temporal credit assignment through

nteractions and understanding the system dynamics. After training

assuming an accurate simulator), the agent’s value functions for

ach state might be useful to aid process operators in determin-

ng the current state of the plant. States with high value functions

enote good plant operation while states with low value functions

ay denote sub-optimal operation. 

For example in alarm management, RL can assign values to

larms when they go off based on the system’s state or state tra-

ectory. In doing so, each alarm corresponds to a respective value

nd alarms can be sorted based on priority. Additionally, alarms

ailing to meet a certain value threshold can be filtered out alto-

ether to mitigate alarm flooding from nuisance alarms. Other ap-

lications requiring temporal credit assignment, such as root cause

nalysis, should also be feasible using RL although no studies have

een conducted so far on this topic. 

. Shortcomings of reinforcement learning 

Although the potential of RL seems promising, there are still

everal problems hindering it from industry wide adoption. Some

hortcomings include: data inefficiency, un-established stability

heory, model-free state constraint handling, and the requirement

f a representative simulator. 

.1. Data inefficiency 

Table 7 shows the time required for popular RL algorithms to

earn specific tasks. Perhaps the most controversial topic of re-

nforcement learning is its poor learning efficiency. For example,

penAI Five accumulated over 180 years of experience per day, but

till required training for many days before becoming competent
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n DotA ( OpenAI, 2018b ). Likewise, AlphaZero was trained for tens

f thousands of games to master Chess, Shogi, and Go ( DeepMind,

016b; Silver et al., 2017a; 2018 ). In process control, plant man-

gers cannot wait for such an lengthy period of time for the initial

gent training; therefore, the training of RL agents is infeasible if

imulators cannot be used or are too inaccurate. Compared to a

uman, the learning speed of reinforcement learning seems unrea-

onably slow. For example, DQN required days of continuous play

o become skilled at the game. A task that took most humans a

ew minutes. One main difference between RL and humans is that

L starts tabula rasa while humans are equipped with almost all

f the knowledge required before learning a new task. For exam-

le, when a human learns to drive, they already understand the

unctionality of the car’s pedals, the street signs, and the ultimate

oal. On the other hand, RL starts by knowing nothing – not even

he purpose of driving. Intuitively, this scenario is comparable to

asking a newborn baby to drive a car. 

One method to inject prior knowledge into the agent is called

ransfer learning . The agent’s weights are initiated from some pre-

iously trained agent whose task was similar. For example, the

nowledge of an agent trained for set-point tracking of a pump

ould be transferred to an agent doing a similar task on a con-

rol valve. The topic of transfer learning is very popular in tradi-

ional deep learning, especially in image tasks where training is

xtremely computationally expensive. A survey on transfer learn-

ng in deep learning can be found in Tan et al. (2018) . For a survey

f transfer learning catered to reinforcement learning tasks, refer

o Taylor and Stone (2009) . 

Another popular way to increase data efficiency is the concept

f a replay buffer (also called experience replay) first introduced

n Lin (1992) . DQN was the first deep RL method to leverage a re-

lay buffer ( Mnih et al., 2013; 2015 ). One of the advantages of RL

s its ability to update the agent using tuples of experiences. For

xample, Q -learning can be updated by the following tuple of ex-

eriences: 

(x t , u t , r t+1 , x t+1 ) 

he replay buffer is a large archive (often times 1,0 0 0,0 0 0 records)

f previous experiences and is used to train the agent on de-

orrelated random experiences from the past. The buffer ensures

hat the agent’s policy does not overfit the current operating

egime during time correlated tasks and enhances data efficiency

hrough learning the same experiences many times, a similar con-

ept to running through many epochs in deep learning. During up-

ates, random mini-batches of previous experiences are sampled

rom the replay buffer to update the agent. Relating to humans, a

eplay buffer is similar to hippocampal replay, where the memories

f experiences are replayed over and over sub-consciously. Indeed,

hat is one theory of how humans learn so efficiently ( Schuck and

iv, 2019 ). One flaw is that the experiences are sampled randomly.

o overcome this, Schaul et al. (2015) proposed the prioritized ex-

erience replay algorithm to extend the original concept and bi-

ses sampling to experiences exhibiting large TD error. Such ex-

eriences can be intuitively understood as shocking because the

utcome was significantly different than what was expected. For

umans, shocking experiences are naturally remembered and re-

layed more often. The agent’s learning speed using prioritized ex-

erience replay was compared to the original concept on playing

TARI games. Results show that the agent learned faster in 41 out

f 49 games. 

Eligibility traces is a third way to increase learning efficiency.

he use of eligibility traces is equivalent to combining TD and

C methods into a unifying algorithm. On a high level, eligi-

ility traces allow agents to update multiple value functions per

tep, like in MC methods, without the termination of an episode.
 detailed overview regarding eligibility traces can be found in

utton and Barto (2018) . 

It is also possible to speed up training through exploiting

he heuristics of the environment. An heuristically accelerated RL

HARL) algorithm uses an external heuristics function H : X × U →
 to guide the agent’s action selection ( Reinaldo et al., 2008 ). Intu-

tively, during action selection, HARL agents observe the following

alues instead: 

(x t , u ) = [ Q(x t , u 1 ) + H(x t , u 1 ) , Q(x t , u 2 ) + H(x t , u 2 ) , . . . ] (58)

here H is the heuristics function that adds some value to each

ction-value to promote or discourage its corresponding action.

euristics functions are very flexible. For example, an upper con-

dence bound heuristics function promotes exploration of poten-

ially optimal states, instead of random exploration such as in ε-

reedy, and is given by ( Garivier and Moulines, 2008 ): 

 t = arg max 
u 

[ 

Q t (x, u ) + c 

√ 

ln t 

N t (x, u ) 

] 

(59) 

here c is the degree of exploration and N t is the number of

imes that u was selected prior to time t . As N t ( x, u ) → ∞ ,

he corresponding Q ( x, u ) value becomes very accurate and H →
 . Heuristically accelerated Q-learning was first introduced in

einaldo et al. (2004) , showing significantly better results when

pplied onto mobile robots. For the design of a heuristic func-

ion compatible with eligibility traces, see Reinaldo et al. (2012) .

erreira et al. (2014) introduced a heuristics function to ac-

elerate training in multi-agent multi-objective environments. In

artins and Bianchi (2014) , the performance of popular HARL al-

orithms is compared with their non-heuristic counterpart. It was

ound that the heuristics variant significantly improved the perfor-

ance of the original algorithm. 

Lastly, a newer topic called meta RL was introduced recently to

mprove the calibration time of the agent. Specifically, meta RL tar-

ets industrial applications where accurate simulators are difficult

o identify. In such situations, the agent requires a long online cali-

ration time even after being pre-trained in simulation because the

imulator-process mismatch is large. By applying meta-RL, this cal-

bration time can be significantly reduced. Meta-learning was first

ntroduced in Hochreiter et al. (2001) , but the ideas were first ap-

lied to RL in Wang et al. (2016) ; Duan et al. (2017) . In meta RL,

he agent learns a general policy through interacting with many

ifferent simulation models (different models capture model un-

ertainty). During testing, the general policy should have the abil-

ty to adapt to new similar tasks quickly. The framework of meta-

L is nearly identical to normal RL; the state and action spaces of

he agent do not change across the different simulators. However,

he identified policy in meta-RL is given by: 

(u t−1 , r t−1 , x t ) → u t (60)

hat is, the agent uses the previous action and reward in conjunc-

ion with the current states to obtain the current action. Intuitively,

 t−1 and r t−1 provide the agent with intuition on what the objec-

ive of the current task may be, creating a near-Markovian setting.

dditionally, RNNs are used to provide the agent with a mem-

ry of past states; hence, not needing it as an explicit input. For

ore information regarding meta-RL, see Wang et al. (2016) and

uan et al. (2017) . 

Normally, RL algorithms are initiated tabula rasa , and are very

ata inefficient. With the addition of a replay buffer, eligibility

races, heuristics, and more recently meta-RL, applications of RL

nto industrial process control systems are now more feasible for

mall scale applications. 
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4.2. Scalability 

Historically, the exact solution to MDPs required dynamic pro-

gramming and was cursed by dimensionality (i.e., the compu-

tational complexity increased exponentially as the states and/or

actions increased) ( Bellman, 1957a ). However, rapid advance-

ments in nonlinear function approximation for the value func-

tion, as demonstrated in Mnih et al. (2013) , Mnih et al. (2015) ,

Silver et al. (2014) , Lillicrap et al. (2015) , Schulman et al. (2015) ,

and Schulman et al. (2017) , has largely solved the scalability is-

sue for systems with a reasonable number of states (i.e., systems

with less than 100 states). For larger systems, multi-agent RL ar-

chitectures can be used, as demonstrated in OpenAI (2018b) , to

achieve optimality in an overall system. One flaw with function

approximation approaches, especially using deep learning, is their

lack of explainability. If an incident were to occur, identifying the

root cause is nearly impossible due to the black-box nature of the

policy function. Conversely, explainable algorithms, such as tabu-

lar Q -learning, becomes infinitely large as the states and actions

increase and are infeasible for most problems. For deep RL meth-

ods to truly be explainable, more fundamental problems must be

solved in the literature of deep learning; therefore in the near fu-

ture, industrial applications of RL may be limited to small scale or

safety-insensitive systems if explainability is mandatory. 

4.3. Stability 

Stability guarantees are also typically required for optimal

control projects to be commissioned. The literature of RL in

the process control space is quite embryonic with most pa-

pers explicitly studying stability stemming from 2017 onwards.

Berkenkamp et al. (2017) was the first influential paper regarding

RL stability where the authors developed a model-based RL algo-

rithm with stability guarantees. More specifically, the proposed al-

gorithm was proved to be stable given a Lipschitz continuous set-

tings with reliable system models. Additionally, it was assumed

that the system is initiated in the region of attraction: a for-

ward invariant subspace where all state trajectories stay within

it and eventually converges to a goal state. The region of attrac-

tion is asymptotically stable and is initially found using the sys-

tem model. As the agent explores, the zone of attraction will in-

crease in size. However in control theory, it has been shown that

the region of attraction is very difficult to find for large nonlin-

ear systems ( Zecevic and Siljak, 2009 ). In Jin and Lavaei (2018) ,

a stability-certified RL method was introduced. The input-output

gradients of the policy during updates were regulated to obtain

strong guarantees of robust stability. Furthermore, the authors ap-

plied the proposed algorithm to a multi-flight formation and a

power system frequency regulation task to demonstrate its effec-

tiveness in terms of performance, learning speed, and stability. For

a more theoretical overview, Busoniu et al. (2018) provides a great

overview of RL’s stability theory compared to traditional optimal

control methods such as H ∞ 

, linear quadratic regulator (LQR), or

linear quadratic Gaussian (LQG). 

4.4. Convergence 

Convergence of tabular reinforcement learning algorithms for

MDPs can be guaranteed given learning rate 0 ≤ α < 1,

bounded reward function | R n | ≤ R max and satisfying ( Sutton and

Barto, 2018 ): 
∞ ∑ 

i =1 

αi (x, u ) = ∞ , ∀ x, u (61)

∞ ∑ 

i =1 

α2 
i (x, u ) < ∞ , ∀ x, u (62)
q. (61) is a condition to ensure that short term noise can be

vercome. Subsequently, Eq. (62) imposes a condition to ensure

eventually becomes sufficiently small for convergence to occur.

uch conditions are strict but are required given the stochastic

onditions ( Marti, 2008 ). For POMDPs, convergence guarantees are

ifficult because the agent does not know its current true states. 

Linear function approximation methods were also proven to

onverge and can be found in Sutton and Barto (1998) . No proofs

urrently exist for the convergence of nonlinear function approxi-

ation cases where value functions are updated using direct meth-

ds. Direct methods refer to algorithms that perform gradient de-

cent updates assuming model weights affect only Q ( x t , u t ), and

ot Q(x t+1 , u t+1 ) . The lack of proofs stem from the flawed assump-

ion. In function approximation cases, parameter updates would

ost definitely affect both Q ( x t , u t ) and Q(x t+1 , u t+1 ) because they

re often calculated using the same weights. Tabular methods do

ot suffer from such an assumption because each action-value was

xplicitly stored in the Q -table, and each update is independent.

n the other hand, convergence of RL algorithms using residual

radient descent, where both Q ( x t , u t ) and Q(x t+1 , u t+1 ) are con-

idered during weight updates, has been shown to converge, even

n the POMDP case ( Baird, 2013; 1995 ). 

.5. Constraints 

For nearly all industrial control applications, both state and in-

ut constraints are required to address safety concerns ( Arendt and

orenzo, 20 0 0 ). In RL, input constraints are trivial. Conversely, state

onstraints (i.e., guaranteeing the avoidance of certain states) can

e very challenging. One could implement soft state constraints

nd design a reward function to discourage policies resulting in

rrival of such states. Indeed, humans are trained in such a way

here guardians discourage undesirable behaviour; however, such

 weak condition does not satisfy the strict safety requirements of

ndustrial process control. 

The earliest study of constrained RL was conducted in

ltman (1999) where the author introduced the constrained

arkov decision process (CMDP). In CMDPs, there exists an addi-

ional value function called the constrained value function, C , and

s identified concurrently with V π . During action selection, the se-

ected action must satisfy: 

max V π

.t C π ≥ c 

here c is a real value threshold. Typically, C is represented as a

robability of exceeding some constraints and is given as: 

 r(C ≤ c) ≤ pr 0 

here pr 0 is the maximum allowable probability of violating the

iven constraints ( Geibel, 2006 ). CMDP systems are solved us-

ng linear programming due to multiple reward functions. Fur-

hermore, CMDP RL is usually model-based methods and many

olutions are intractable for high-dimensional problems. More-

ver, nearly all recent progress of constrained RL uses concepts

rom constrained optimization to perform a policy search ( Achiam

t al., 2017; Andersson et al., 2015; Bhatia et al., 2018 ). For

xample, Achiam et al. (2017) introduced solution to continu-

us CMDPs using a constrained policy optimization method. In

hatia et al. (2018) , authors developed three different optimiza-

ion approaches on top of DDPG to handle resource allocation con-

traints. 

More recently, system constraints are handled through a new

eld of study in RL named safe reinforcement learning where au-

hors attempt to design agents to solve tasks without violating

afety characteristics of the system. Typically, there are two meth-

ds: i) The first way modifies the optimality criterion of the agent
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Fig. 25. State trajectories of the two RL agents applied to system 1 and system 2 and the real system . 
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Table 8 

Two data sets collected from an arbitrary pro- 

cess. 

y (1) u (1) 
1 

u (1) 
2 

y (2) u (2) 
1 

u (2) 
2 

10 1 3 6 2 −4 

18 3 3 8 3 −7 

12 2 2 10 4 −12 
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ith a safety factor; ii) the second way is to provide the agent

ith external heuristics of the system or to guide the agent us-

ng a risk metric. For example, Berkenkamp et al. (2017) trained an

gent to solve the inverted pendulum problem without the pendu-

um ever falling down. A survey of safe RL methods can be found

n Garcia (2015) . 

.6. Accurate simulator 

Overall, it seems that the most impressive applications of RL

i.e., agents that were easily and decisively able to triumph human

evel performance) were all applied onto video games with very

imited applications elsewhere. The main reason is twofold: games

ave explicit rules that are well understood and the lack of accu-

ate simulators for industrial settings. 

Firstly, even the most complex games are known completely

y the designers of the games; therefore, it is much simpler to

esign reward functions because the ultimate goal is known. In-

eed, an agent pursing the true ultimate goal without unnecessary

ias is demonstrated to be vastly superior as shown by AlphaGo

ero and AlphaZero ( Silver et al., 2016; 2017b ). However, when

onsider even the simplest SISO control tasks, it is not explicitly

nown whether a controller with oscillations but superior track-

ng performance is better compared to more conservative counter-

arts. As such, designing a good reward function is very challen-

in because the true objective is often unclear. Notice that even

n Google DeepMind’s case, the ultimate objective was not just to

inimize electricity, but rather to minimize PUE. The implications

f this were not provided, but one can assume minimizing elec-

ricity costs may lead to unintended consequences. 
Secondly, most major triumphs of reinforcement learning were

pplied to systems with a perfect simulator. That is, the perfor-

ance achieved by following specific policies in the training phase

an be exactly achieved during online application. Additionally, the

apping of arbitrary simulated states to actions is exactly repre-

entative of what would occur in the real world. Without a doubt,

uch a condition is somewhat achievable in the real world for

ome tasks. For example, astronauts and pilots are first trained in

imulation before deployment; however, the production of such a

imulator in industrial process control is time consuming, costly,

nd often times, impossible. In fact, this might only be econom-

cally feasible for small scale systems or if the agent was given

he opportunity to directly manipulate the industrial distributed

ontrol system. Moreover, if such models were identifiable and

an be represented using mathematics, model based optimal con-

rol methods (known as planning methods in RL literature) such

s MPC may be the superior choice assuming feasible computa-

ion times. In previous sections, it has been shown that RL can be

rained on sub-optimal models and eventually adapt its policy to

he environment (a significant advantage over traditional model-

ased approaches); however, this topic has yet to be thoroughly

xplored outside of simulations. 
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Table 9 

Hyper parameters for the agents controlling an arbitrary 

system. 

Hyper Parameter Value 

States, x ε = [ −15 , −14 , . . . , 15] 1 ×31 

Action 1, u 1 �u 1 = [ −5 , −4 , . . . , 5] 1 ×11 

Action 2, u 2 �u 2 = [ −5 , −4 , . . . , 5] 1 ×11 

Reward, r Eq. (66) 

Learning rate, α [0.001, 0.7] 

Discount factor, γ 0.95 

Exploratory factor, ε [0.1, 1] 

Evaluation time 1 seconds 

System representation FOMDP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 10 

Cumulative reward of the agents. 

Agent 1 on System 1 −150 

Agent 2 on System 2 −156 

Agent 1 on Real System −6255 

Agent 2 on Real System −10698 

Table 11 

Most influential advantages and disadvantages of reinforcement learn- 

ing. 

Advantages Disadvantages 

Online computation time Accurate simulator required 

Can learn many tasks Reward design can be difficult 

Direct adaptive optimal control Stability theory lacking 

Engineered features not needed State constraints are difficult 
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Most importantly, the identified system model must be repre-

sentative of the real process during process identification. If not,

the optimal policy identified during training will perform poorly

and could potentially become a safety concern on the real process.

Consider the following quantitative example: 

Suppose there exists a simple arbitrary system given by: 

y = u 

2 
1 + u 2 + 6 (63)

Table 8 shows two data sets collected for the system de-

scribed by Eq. (63) . The first and second data sets were then

used to identify Eqs. (64) and (65) , respectively. In both cases,

the MSE of the model was zero given their respective data sets.

Despite zero modelling errors given their respective data sets,

it can be seen that both models do not represent the real sys-

tem, shown in Eq. (63) , in the slightest. In fact, Eq. (65) does

not even consider u 2 in the system model. To avoid confusion,

the system described by Eqs. (64) and (65) will be referred to

as system 1 and system 2 , respectively. Furthermore, the actual

system shown in Eq. (63) will be denoted as the real system .

Moreover, the RL agent trained on systems 1 and 2 are denoted

as agent 1 and agent 2 , respectively. 

y = 4 u 1 + 2 u 2 (64)

y = 2 u 1 + 2 (65)

Suppose that this arbitrary system requires a controller for

set-point tracking, with the objective described by the following

reward function: 

r(x, u ) = −(y − y sp ) − �u 1 − �u 2 (66)

where �u 1 and �u 2 denotes the change in controller input be-

tween t − 1 and t . For this task, two different RL agents were

trained on the system models provided by Eqs. (64) and (65) .

Both agents were trained for 50,0 0 0 update steps and shared

the same hyper parameters shown in Table 9 . 

Fig. 25 a and c show the state trajectories of the agents

trained using Eqs. (64) and (65) applied to their respective

training systems. Fig. 25 b and d show the trajectories of the

actual system when the two agents are implemented. The cu-

mulative reward of the different agents is shown in Table 10 .

It can be seen that both agents performed poorly on the real

system due to the non-representative training model. 

Ultimately, the poor performance by the RL agents were

caused by the non-representativeness of the data and/or poor

selection of the model structures. The optimal policy identified

by agents trained on either model is not reliable because the

models do not resemble the real system; therefore, it is critical

to ensure the training model is, at least somewhat, representa-

tive of the real system. 
g

. Conclusions 

Reinforcement learning has demonstrated to have great poten-

ial in surpassing human level performance in many complex tasks

ssuming an sufficiently accurate simulator exists or can be con-

tructed. It was shown to possess the ability to learn many differ-

nt tasks using the same algorithm. This may imply great poten-

ial in engineering where custom design of similar projects result

n significant cost and time expenditure. Moreover, reinforcement

earning also exhibits the ability to self-learn, significantly reducing

evelopment time. 

With a proper problem formulation, RL has also been success-

ully simulated in process control problems with regulation or set

oint tracking objectives. Optimal control problems have also been

hown to be feasible for RL and ADP methods in literature. A gen-

le first step towards industrial scale RL implementation could be

o use RL for PID tuning. Indeed, many methods have been pro-

osed to re-configure PID parameters as a function of proportion,

ntegral, and derivative errors, achieving superior control perfor-

ance compared to other tuning methods. For more ambitious

rojects, a closely monitored RL agent might be feasible for contin-

ous adaptive optimal control. Google was one of the first movers

o do so, resulting in up to 40% electricity savings in their indus-

rial data centers. Another potential advantage of RL is its direct

daptive characteristic. Compared to traditional adaptive optimal

ontrol frameworks where model re-identification is required, RL

s model-free and adapts the policy directly. Lastly, RL can solve

he temporal credit assignment problem where values are assigned

o each state to denote its desirability. This information could have

otential implications in alarm management, root cause analysis,

nd other related applications. The most influential advantages

nd disadvantages of reinforcement learning are summarized in

able 11 . 

As a closing note, the truly greatest characteristic of RL is its

eneral nature, allowing for learning of nearly anything through a

eneral algorithm. Although modern RL still faces many shortcom-

ngs, it is expected that RL will play an important role in industrial

rocess control in the near future. 
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