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A B S T R A C T

The internet data center (IDC) power system provides power guarantee for cloud computing and other in-
formation services, so its importance is self-evident. However, the occurrence time of malignant destructive
events such as lightning strikes, errors in operation and cyber-attacks is unpredictable. But the loss can be
minimized by formulating coping strategies in advance. So, identifying the vulnerable spots of the IDC power
system come to be the key to guarantee the normal operation of information systems. Generally, the IDC power
network can be modelled as a graph G, and then, the methods of finding nodes’ centrality can be applied to
analyse the vulnerability. By our experience, it is not the best approach.

Unlike the previous approaches, we do not solve the issue as the traditional graph problem. Instead, we fully
utilize the characteristics of the IDC power network and apply reinforcement learning techniques to identify the
vulnerability of the IDC power network. To our best knowledge, it is the first applying of artificial intelligence in
traditional IDC power network.

In this article, we propose PFEM, a parallel fault evolution model for the IDC power network, which can
accelerate the process of electrical fault evolution. Moreover, we designed an algorithm which can automatically
find the vulnerable spots of the IDC power network.

The experiment on a real IDC power network demonstrate that the impact of vulnerable devices derived from
our proposed algorithm after failure is about 5% higher than that of other algorithms, and tripping single-digit
electrical devices of the IDC power system with our proposed algorithm will lead to loss of all loads.

1. Introduction

A data center is the place to run various information systems, in-
cluding IT devices and power infrastructures. The power infrastructures
play an important role in providing power support for information
systems, whose reliable working is very important to the stable op-
eration of the information systems. Without the 7×24 h guarantee of
these infrastructures, information systems would not be able to perform
their functions, for example, cloud computing, artificial intelligence
learning, etc. These infrastructures involve power supply systems,
cooling systems, lighting systems, data center infrastructure manage-
ment systems, video surveillance systems, fire-fighting systems and
other auxiliary but very important systems. In these infrastructures,
power system is the most important. A typical data center power system
is shown in Fig. 1.

At the top of Fig. 1 is the transformers that convert high voltage to
low voltage. Below the transformers is the power supply bus system,

which is used for transporting power. Generally, it operates in single or
multiple busbars with segments, which backup each other by loop
switch. The uninterruptible power supply (UPS) [1] system in the
middle of Fig. 1 is used to eliminate surges, interruptions, spikes, fre-
quency fluctuations and other anomalies in the power grid. Generally
automatic transfer switches (ATS) [2], static transfer switches (STS) [3]
or manual transfer switches (MTS) [4] are laid out ahead of UPS for
redundant backup of power supply. On the right side of Fig. 1 is the
generator system, which is connected to the busbar through ATS or
MTS. The role of that system is to ensure the continuous operation of
important loads for a short time during power outage. At the bottom of
Fig. 1 is the IT load, which consumes the largest power in the data
center.

1.1. The importance of the data center power system

From Fig. 1 we can find that the data center infrastructure,
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especially power system, is the footstone of the information systems.
Correspondingly, once the power distribution system fails, it will di-
rectly affect the performance of the information services. Although the
reliability of single electrical equipment is high, the IDC power system
may turn into crash when some fault happens in the weak spots. Un-
fortunately, thunder and lightning, errors in operation of staff, fire,
hacker attacks occur from time to time, and what makes the matter
worse is that the occurrence time is unpredictable. Once these un-
predictable accidents occur in weak spots, the consequences may be
serious. For example, on July 3, 2009, a fire broke out in a power
distribution room in Fisher Square, Seattle, causing the paralysis of
Payment Portal, Authorize.net, Geocaching.com Service, Dotster Do-
main Name Registration Service, Microsoft Bing Travel Service and
dozens of other websites [5]. On 23 December 2015, someone made a
surprise cyber-attack on three Ukrainian regional electric power dis-
tribution companies, which cause several hours’ power supply inter-
ruption [6]. So, the power system is very important in the data center
infrastructure. If some key electrical devices are out-of-service, it would
lead some key information services to failure. So, how to strengthen the
protection of the IDC power system to avoid large-scale blackouts [7]
has become a key issue in power maintenance.

1.2. Definition of vulnerability of the data center power system

However, when the accident happens is terribly hard to predict. The
faults may be caused by computing, protection and control, human
factors, internal faults, or internet attack. But we can estimate how
much loads will loss before some fault happen. This can guide the
power network maintenance schedule, help maintenance staff keep a
watchful eye on critical devices which should be involved in targeted

maintenance plans and contingency plans. So, it is essential to know the
vulnerability of the data center power system. There are many defini-
tions and frameworks of power system vulnerability [8]. We aim to
quantify the vulnerability of the data center power system, so we define
the vulnerability of the data center power system as a measure of the
system's weakness with respect to a sequence of cascading events.

The vulnerable spots of the IDC power system are the devices which
fail may result in large-scale loss of load. The loss of load can be
evaluated by the following equation.
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where Loss is the ratio of lost loads in the IDC power network when
some devices fail, Tπ is the stable operating topology of the IDC power
network after some failure occurs. tl is the subset of load nodes of Tπ ,
which involves all the working loads. G is the topology graph of the
normal IDC power network without any failure. gl is the subset of load
nodes of G, which involves all the working and non-working loads. loadi
is the power load of load i. In this work, we use the following expression
as the quantitative description of vulnerability.
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Fig. 1. A typical data center power system including cooling systems, lighting systems, power supply systems, IT systems, etc.
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In this work, we look closely at the vulnerability of the power
system by examining the loss of loads caused by the failure of electrical
devices. Because of various factors, the probability of each electrical
device failure is different, so it is inappropriate to simply use the loss of
loads (Eq. (1.1)) caused by the failure of electrical devices to evaluate
the vulnerability of the power system. The vulnerability of the power
system should be expressed by the product of the probability of elec-
trical devices failure and the loss of loads caused by these failures. As
the electrical devices are generally reliable and the probability of
failure is low, the logarithm is used to obtain a large integer in Eq. (1.2)
to avoid the calculation errors caused by the computer. In this de-
scription the vulnerability of the power system is not only related to the
loss of load after faults, but also related to the probability of these
faults. Vul in Eq. (1.2) is the quantitative description of vulnerability.
Vul is the product of lost loads and the logarithmic failure probability of
the fault electrical devices. The electrical devices stop working one by
one, some stop working earlier and some stop working later. tr is the set
of initial sequential electrical devices with a fault, the earlier ones are
put into the front. re i( ) is the reliability of node i, which is the prob-
ability of no fault happen in electrical device i. Γ is the set of all the
possible events that may cause electrical device i failure, and j is one of
the events. pi j, is the probability of occurrence of event j on device i.
ξi j, is the weight of each probability pi j, . Loss is the same as Eq. (1.1). The
probability pi j, is evaluated for a specific time interval. But the time
intervals are different for different types of failures. For natural dis-
asters, the average failure probability is approximately constant from
one year to the next. Incidents with strong randomness such as human
error and equipment aging, the failure probability can be counted ac-
cording to the frequency of last year's occurrence. That is because the
probability of occurrence of such events is different with the increase of
years, and the frequency of occurrence of such events averaged over
several years cannot be used as an approximation. For irregular events
such as cyber-attacks, the failure probability can be estimated ac-
cording to what degree the power system exposes to the internet. This
kind of event is not random, but a small probability event. It depends on
the deployment of the data center power system. From Eq. (1.2), we can
find that the vulnerability of the power system includes both the lost
loads and the probability of losing these loads. It can also be found that
the reliability of electrical equipment consists of all types of fault
events. The probability of each type of fault events pi j, is determined by
the situation of the data center.

1.3. Problem description and the proposed solutions

Then how to analyze the vulnerability is the key point. First, we
want to study how the failure spread (e.g., the power flowing along one
path is “transferred” to another path as the topology changes), then
detect the vulnerable spots (e.g., which fail may cause power crash),
and compute the lost load as well as the vulnerability in the end.

We believe that the larger the loss of load caused by the failure of
electrical devices, the weaker the electrical devices are in the IDC
power system. If the exhaustive method is applied, assuming that an
IDC power system has n devices, the time complexity of finding the
maximum lost loads caused by k fault devices is O C( )n

k . The problem
falls into the −N k problem [8]. For large data centers, this compu-
tational complexity is unacceptable. It is a NP-hard problem.

In contrast to general power systems, in order to ensure the unin-
terrupted and stable operation of information system, data centers
widely utilize ATS, STS, MTS, loop switch, generators, UPS and other
types of electrical devices with automatic switching or non-linear
power conversion. These devices can automatically transfer loads to the
backup route in a short time. The impact of different electrical equip-
ment faults varies greatly. Considering the characteristics of the data
center power system, a parallel fault evolution model PFEM and a
vulnerable spots identification method AIVDCN are proposed in this
paper.

The model PFEM is based on our previous work [9], and is based on
a recursive process for modeling the process of failure spread. However,
the previous model takes a long time to achieve the stable state that is
mean that no new electrical devices come to be out-of-service. There-
fore, in this article, we improve this model and propose a parallel fault
evolution model for the IDC power network (PFEM). This algorithm has
the following advantages:

It fully reflects the power system changes after the fault of IDC electrical equipment,
including electrical devices failure, load transferring, overload tripping, non-li-
near load conversion and linear load superposition.

There is a parallel processing of new faults in the process of fault evolution. The
parallel processing can shorten the time of reach the steady state of the power
system.

The established algorithm for automatic identifying the vulnerability of
the data center power network (AIVDCN) is based on the Actor-Critic
[10] framework of reinforcement learning. The key points of AIVDCN
are as follows:

characterizing the working state of the power system
constructing each action by the serial number of the fault equipment
constructing rewards by the quantitative representation of vulnerability

The advantage of AIVDCN is that it can automatically search for the
weaknesses of the IDC power system without prior knowledge. The
objective of AIVDCN is that it produces the devices whose failure would
result in the greatest loss of load. In other words, strengthening the
maintenance of the weak devices which are associated with vulner-
abilities of the power system will reduce the probability of large loss of
loads. By applying the algorithms on a real data center power network,
the impact of vulnerable devices derived from AIVDCN after failure is
about 5% higher than that of other algorithms.

The rest of this paper is organized as follows: Section 2 introduce
the related works and contributions which involves the classification of
blackouts and the methods to analyze the vulnerability of the power
systems. In Section 3, we design a parallel fault evolution model for the
IDC power network (PFEM). In Section 4, we propose an artificial in-
telligent algorithm AIVDCN to identify the vulnerable spots of the data
center power network. In Section 5, we present the experimental re-
sults. Finally, conclusions are provided in Section 6.

2. Related works and contributions.

2.1. Events causing power outage

Since almost all the devices in the data center are powered by
electricity, the impacts are tremendous when the power system outage
[11]. There are mainly three categories of power system failures, which
are natural disasters [12,13], random failures [14,15], intentional at-
tacks [16,17,18,19,20]. Natural disasters, e.g. lightning, earthquakes,
extremely cold or heat weather, often typically damage components of
the power system, and the scope of influence can be enormous. The
interruptions of power usually last for a long time, ranging from hours
to days, resulting in heavy losses. Random failures, e.g. due to power
system facility aging [15], incorrect removal of the power system
components, human errors [14], usually make local damage of the
power system. Intentional attacks, e.g. tripping transmission lines,
sudden bursts of electromagnetic pulse [17], cyber attacks [19], target
the critical elements of the power system. So the impact of blackouts
may be significant. For example, attacking a selected set of nodes,
edges, or paths in the power network may sabotage the power system
[18]. As the supervisory control and data acquisition (SCADA) [21]
systems are typically used in modern power system, it becomes possible
for intentional attackers to remotely monitor power flows and make
corresponding attack strategies to cause blackouts. Many strategies can
be applied to achieve the malicious purpose. Cuffe compared eight
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attack strategies in [16], which are standard genetic algorithm, method
of minimized fitness function by link survivability [22], mixed integer
linear programming method, random method, removing the most-
heavily loaded K lines, electrical betweeness method, betweeness
centrality method and topological metric of edge range method.

The problem of how to identify the vulnerable spots of such power
system falls within a body of work on the identification of severe/cri-
tical multiple contingencies [23,24], also sometimes framed as a net-
work interdiction problem, here applied to so-called cascading outages
in a data center power system.

Multiple contingencies are the phenomenon that some failures occur
simultaneously or in short succession. In the field of power grids, only a
small number of facility outages (e.g., 3–5) can cause catastrophic
blackouts. The problem of identifying the most vulnerable set of devices
of the power system falls into the N-k combinatorial problem. The
objective of the optimization is to find the minimum k nodes in N
nodes, so as to maximize the lost loads.

2.2. Relevant models of cascading outages of power systems

Before solving the problem of identifying the most vulnerable set of
devices of the power system, we mention that many models for the
cascading outages has been studied [25,26]. Vaiman, et al. studied the
cascading outages from the risk assessment perspective [25]. Junjian,
et al. proposed a blackout model which considers the slow process at
the beginning of the blackouts. The model has two layers of iteration,
which are the inner iteration that reflect the fast dynamic process and
the outer iteration that reflect the long-term slow dynamics [27]. Jun,
et al. proposed a new metric that considers the voltage stability and the
rotor angle stability principles of power grids into the power flow-based
cascading failure simulators. Some authors applied quasi-steady-state
power flow models [28,29] to describe cascading overloads, which does
not reflect nonlinear mechanisms. And then Jiajia, et al. proposed a
dynamic model that applies both protection systems and power net-
works [30].

2.3. Relevant methods of identifying the vulnerable spots of the power
systems

Many methods have been considered to identify vulnerable spots in
power systems. The methods of identifying the vulnerable spots of the
power network focus on three classes, one is the power network to-
pology perspective, the second is the operation parameters of electrical
devices perspective and the last is based on the artificial intelligent
method. Analytical method and Monte Carlo method have been applied
in this problem, which mainly utilize the operating parameters of
electrical devices. Methods that utilize the function representing the
energy flow of the power system have been presented in article [31,32].
Some authors identified the vulnerable spots of power system by ana-
lyzing the reliability parameters of electrical devices [33,34]. Donde,
et al. classified the problem as a −N k problem [8] which can be cast as
a mixed integer nonlinear programming (MINLP) problem. Then they
solve the problem through a two stage analysis [23]. Pinar, et al. stu-
died the problem in a static sense which examines the operating point
of the power system. Then they also cast the problem as a bilevel MINLP
problem. The optimality conditions of the Karush-Kuhn-Tucker (KKT)
conditions, the power flow Jacobian, and the Mangasarian-Fromovitz
constraint qualification (MFCQ) conditions were analyzed to solve the
identifying the vulnerability of the power system [24]. Delgadillo, et al.
proposed a method based on Benders decomposition [35]. López-Le-
zamaa, et al. proposed a new model which is based on the interaction of
two agents. The first agent maximizes the load shedding by performing
attacks, and the other minimizes the load shedding by modifying the
generation dispatch [36].

Complex network theory has also been applied in solving this pro-
blem. For example Stubna studied the occurrence mechanism of power

blackouts by HOT model [37], Koeunyi and JieChen studied the hidden
failures in the power system respectively [38,39], Dobson applied
Cascade model [40] and OPA model [41]. Some scholars researched the
vulnerable spots of large-scale power grid based on the small-world
topological method [42,43,44]. They found that nodes with high degree
and betweenness make the power network well connected. And in the
meantime, these nodes play a key role in the fault evolution process.
Cuadra, et al. reviewed the use of complex network approaches for
analysing the robustness of power grids [7]. Bompard, et al. reviewed
literature from topology perspective [45]. Crucitti analyzed the to-
pology of the Italian power system by applying the complex network
method and neglecting electricity transmission details [46]. As the
purely topological methods may lead to inaccurate results due to lack of
peculiarities of the power networks, so some authors combine the
complex network with power engineering concepts [47,48]. Through
review of many kinds of approaches by using complex networks con-
cepts, Lucas, et al. find that small-world networks seem to be the best
topology [7].

With the improvement of the performance of artificial intelligence
algorithms, more and more researches have been done to solve the
problem of identifying the vulnerable spots in the power system by
applying artificial intelligence, and many promising results have been
achieved. There are also recent publications considering reinforcement
learning methods in an optimization approach to identify critical con-
tingencies [49,50]. Reinforcement learning [51] belongs to a category
of semi-supervised learning algorithms, whose main components are
state, action, reward. This algorithm updates the objective function Q
by exploration and exploitation the best actions. Zhen, et al. [49]
searched for the optimal sequential attack strategy by maintaining a Q
table assigned to every state action pair (s a,t t). −ε greedy policy
strategy was applied to chose the best attack/action (line switching).
The reward value was set to be +1 when the lost load target was
reached. And the state st was set to be a vector of line status, the ele-
ment value of which was set to be 1 when the corresponding line was
out-of-service. On the contrary, it would be set to be 0 when the cor-
responding line was in-service. Other similar methods can refer to
[52,53].

2.4. Contributions

On the vulnerability analysis of the power system, a lot of promising
results have been achieved in the above literature.

The major contributions of this paper are as follows:

(1) We propose a parallel fault evolution model PFEM for data center
power system in this paper. The basic framework of this model is
the same as that of our previous work, which utilize graph theory to
establish the relationship between devices in the power system as
well as consider the changes of power flow when some faults occur.
The innovation in this work lies in adopting parallelization tech-
niques to accelerate computations.

(2) In this paper, an automatic algorithm of identifying the vulnerable
spots of the data center power network (AIVDCN) is proposed,
which adopts the basic framework of reinforcement learning, i.e.
sequentially tripping some devices, observing the reward after
failure, and updating the value function Q with the reward.
However, considering the characteristics of large amount of elec-
trical devices in the data center power network, we adopt the
Gaussian Radial Basis Function (GRBF) to generalize the value
function Q instead of maintaining a huge Q table. At the same time,
according to the characteristics of the power system, a novel
method for calculating parameters of GRBF is proposed.

(3) Unlike the previous reinforcement learning method, which get + 1
reward when blackouts happen in the power system (most of the
time, the reward is 0), this paper uses the quantitative representa-
tion of vulnerability when some faults occur as a reward. The

C. Kang, et al. Electrical Power and Energy Systems 121 (2020) 106145

4



proposed method can obtain positive reward immediately after
each node is tripped, which can avoid no updating the parameters
of the algorithm for a long time. Thus, the proposed method can
accelerate the search speed of the most vulnerable set of devices of
the power system.

(4) The other researchers’ previous works which also based on the re-
inforcement learning algorithm used ε-greedy algorithm to select
the equipment to be tripped, which select one equipment to be
tripped equally and randomly from N -1 nodes by the probability of

− ε1 where N is the total number of alternative equipment. Differ
from this method, we adopt the Actor-Critic [26] method that up-
dates the tripping probability of each electrical device while up-
dating the value function Q. Thus, the tripping effect is increased.

3. PFEM: Parallel fault evolution model

When the electrical devices fail, they act independently (i.e. there is
no direct relationship between the tripping of two switches). And then
the fault changes the power system topology (the dual-input devices
switch automatically), which affects the distribution of power loads
(loads transfer with the action of automatic switching). Because of the
large amount of computation, we adopt a parallel fault evolution
method to shorten the time of computing the steady state of the power
system when multiple devices failure.

3.1. Model of the IDC power network

In large-scale IDC power network, there are various power loads as
well as various electrical devices. All kinds of electrical devices are
connected by buses or cables to transmit electricity. The power can only
be transmitted from the power sending-end (power grid) to the re-
ceiving-end (load).

Therefore, the topology of large-scale IDC power network can be
modelled as a directed graph =G V E( , ). V is the node set which is
abstracted from electrical devices including transformers, switchgears,
circuit breakers, ATSs, MTSs, STSs, UPSs and so on. And = ×V VE is
the directed edge set which is abstracted from transmission cables and
power buses. =e x y( , ) in set E is an electrical line connecting two
devices x and y.

In IDC power system, there are four main connection relationships
between nodes and edges: single input and single output, single input
and multiple output, two input and single output, two input and mul-
tiple output, corresponding to circuit breaker, ATS, STS, etc. The typical
structures of nodes with edges like the following relationship between
node d and its edges are shown in the following Fig. 2.

Unlike the power transmission network, the data center power
distribution network has a tree structure. A device receives only one
power input, that is, a node only has a single input. Only when the

power supply at the upper end of this node fails, it can automatically
switch to another power input. The connection relationship between
nodes in the operation of the power distribution system is as the fol-
lowing Fig. 3: the red solid edge is the input power supply of node d, the
green solid edges are the outputs of node d, and the black dotted edge is
the standby power supply of node d. The standby edge works only when
the edge e loses power. In this work, we define the power source device
as “front-end” which likes “u1” and “u2” in Fig. 3, and we define the
power receiving device as “back-end” which likes “d” in Fig. 3.

3.2. Characteristics of the IDC power network.

(1) In contrast to information networks, electrical devices can not
automatically restore after overload tripping, that is to say, the equip-
ment connected to these devices will be power-down after the failure of
these devices. From the view of graph, the edges of the back end of the
fault nodes disappear from the graph.

(2) In contrast to the traditional power system, the IDC power
network applies lots of automatic switching electrical devices such as
loop switch, ATS, MTS and STS by the reason of redundancy and mutual
standby. When the power supply of one front-end of this kind of
equipment loses power, the power load will automatically switch to the
other power supply. At the same time, the power loading of all the
devices in the backup supply path increases, which increases the
probability of overload tripping of other devices [54,55].

3.3. Changes of the power system when faults occur

When the electrical equipment (u) fails by itself or trips because of
overload, if the back-end equipment is a single-input device, then the
back-end equipment directly loses power. For example, if node u fails in
Fig. 4, node d in the back-end of this fault equipment loses power.

The ATS and STS can be modeled as node d in Fig. 5. If the electrical
equipment (u1) fails and its back-end equipment is ATS or STS, such as
node d in Fig. 5, then the power supply source of u1 is automatically
switched from u1 to u2. In the meantime, all the power load of d is
transferred to (…u2, d…) route. After the load is transferred, if any
electrical equipment is overloaded at the upper end of d in (…u2, d…)
route will lead to a power failure of d. Then the electrical loads linked
to d are powered off. At this time, the operation status of equipment d is
shown in Fig. 6.

For convenience, we define the symbols and its definitions in
Table 1.

In the case of load transferring, according to the superposition
theorem [56], the load current of each linear node is added linearly.
The following equations should be satisfied when the node d works
normally:

Fig. 2. Typical structure of nodes with its edges.
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Uninterruptable power supply (UPS) devices are widely used in the
data center power system. They have two main uses, one is to filter out
the abnormal situation of the power grid, such as surge, spike, ab-
normal frequency and so on, and the other is to switch to battery power
supply instantaneously when power failure or electrical equipment
failure occurs to ensure the stable operation of IT loads in a short time.
The main components of UPS are rectifier, inverter and filter. Because
the power factor correction circuit is used in uninterruptable power
supply (UPS) devices, the input current’s vector value of an UPS should

Fig. 3. Connection of adjacent nodes in normal power networks.

Fig. 4. Power loss of single input and output node.

Fig. 5. Load of A is transferred from u1 to u2.

Fig. 6. Node u2 is tripped in the reason of overload.
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not be simply and linearly superimposed, it should be calculated as Eq.
(3.2). When modelling the UPSs in the grid topology, there is little
difference with other electrical devices, but one should pay attention to
the current calculation method.

=
∑ =I

L cosθ
η cosθu̇

in x
N

x x

u u

1
u

(3.2)

3.4. Proposed model PFEM

In this paper we propose a new model, namely, PFEM (a parallel
fault evolution model for the data center power network), which tries to
incorporate all the above characteristics of the IDC power network.
Consequently, we would like to capture the following properties:

1) The topology of the IDC power network is a tree when working normally.
2) If several nodes fail at almost the same time, their parallel actions are executed

sequentially according to the occurrence order of the faults, and the time interval
between the parallel processes is very short. The processes will change the shared
topology of the power system.

3) When a node fails, the back-end cables lose power. From the graph G view, the
edges between the node and its child nodes disappear.

4) If the fault node is one of the inputs of the dual-power equipment, the power source
of the dual-power equipment is automatically switched to the standby route. The
load is transferred at the same time.

5) After the load transfer, if the nodes with superimposed power load exceed there
rated value, they trip immediately. And the tripping nodes are incorporated into the
new fault nodes.

6) The new fault nodes follow the same fault evolution process, that is, the IDC power
fault process is a recursive process.

The framework of PFEM is shown in Fig. 7.
The input of this model is a set that consists of the serial number of

sequential faulted nodes, and the outputs are the stable topology and
the lost loads of the IDC power network. The algorithm is described in
detail as follows:

(1) The initial stable topology of the IDC power network is T, and the
input = ⋯T v v v{ , , , }r nn1 2 is a ordered set which consists of the in-
itial fault nodes. The node in the front will be tripped earlier.

(2) Open nn processes that correspond to nn fault nodes, which share
the working power network’s topology T. Each process removes
the connection edges from the fault node to its back end nodes.
The process of dealing with the front fault node starts earlier, and
the time interval between the parallel processes is very short.

(3) nn processes make use of depth-first search (DFS) algorithm to
compute the set ⋯s s s{ , , , }nn1 2 that consist nodes directly con-
nected to the back end of the fault nodes.

(4) Calculate the parent nodes for each node in the affected child
nodes’ set sm in process m in the IDC power network graph G. And
then, enable the edge from normal parent node t to node i which
belongs to sm.

(5) When all processes are finished, the initial set of new fault nodes is
set to ← ∅Tr

' , the edges connected to the nodes in Tr are removed

within the power system’s operation topology, and the working
topology is transferred from T to T '.

(6) Calculate the shortest path for every load ∈l Li from power grid to
load li in T '.

(7) And then calculate the input current of UPS u by applying Eq.
(3.2).

(8) With regard to the load of the middle nodes between source nodes
and UPSs in the shortest path of load li, it should be superimposed
by the input of UPS (Iu̇

in). And the load of the other middle nodes
between UPS and load li can be superimposed by the load of li.

(9) Inspect the working load of all the middle nodes in graph T ', and
judge whether it satisfies the Eq. (3.1). If any one of the middle
nodes does not satisfy the Eq. (3.1), put it at the end of the new
sequential fault nodes’ set Tr

' . Then the working topology of the
IDC power network is turned into T ''.

(10) If there are new fault nodes, go back to step 2) with the sequential
fault nodes’ set Tr

' . Else the IDC power network works in stable
stateTπ . Easily the lost loads’ set (LL) can be derived by DFS whose
route from the power source is empty.

The proposed parallel model is based on our previous model
DCNFEM [9]. Parallelization reduces the computation time approxi-
mately by a factor equal to the number of parallel processes.

4. AIVDCN: an automatic algorithm of identifying the vulnerable
spots of the data center power networks

In this work, the power system's fault process is approximated to
having the Markov property. A reinforcement learning task is called
Markov decision process (MDP) if it satisfies Markov property. A MDP is
process of making sequential decisions of actions to carry out, where
actions influence not just immediate rewards, but also subsequent
states, and through those future rewards. Thus, MDP involve delayed
reward and there is need to tradeoff delayed and immediate reward.

There are four properties in the MDP, which is defined as
< >S A P R, , , . S is the space of the state of the environment that is the
power system in this work. A is the action space, which involves all the
possible alternative actions. R is the reward function, which is the
feedback of the environment. = =+r r s s( | )s t t1 is the expectation of
reward under state s. P is the state transition probability matrix, which
characterize the dynamics of a MDP. = = =+p s s s s( | )ss t t1

'
' represents

the probability of the power system transferring from one working state
s to another one s'. The agent that selects actions and the environment
interact at each of a sequence of time step = ⋯⋯t 0, 1, 2, that is the
time passed from the time of the failure of an electrical device.

At each time step t , the agent receives the state ∈s St , and selects
one action ∈a At on that basis, then agent receives a new state +st 1 and
a numerical reward ∈r Rt . rt is the reward from the environment at time
t . The agent and MDP together give rise to a trajectory which likes this:

⋯s a r s a r s a r, , , , , , , , ,0 0 1 1 1 2 2 2 3 (4.1)

As the topology of the power system is clear to the maintenance

Table 1
Symbols and definitions.

Symbol Definition Symbol Definition

Id Tripping current of node d. Iu̇ Vector of output current of UPSu.

ij
a Working current of phase a of load j. Lj̇ Vector of working current of load j.

ij
b Working current of phase b of load j. Lj Apparent value of working current of load j

ij
c Working current of phase c of load j. ηu Working efficiency of UPSu .

Nd The number of nodes connected to noded Nu The number of nodes connected to UPSu .
θx Power-factor angle of loadx. Vector of input current ofUPS .u
θd a, Power-factor angle of phase a of noded θd b, Power-factor angle of phase b of noded.
θd c, Power-factor angle of phase c of noded
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staff, and it is sufficient information to define the state of the power
system, we utilize the adjacency matrix of the power system’s graph G
to define the state s, where:

=

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

−

−

−

s i j

if node i is in

service and there is one edge from i to j

so node j can get power from node i

at time t
if node i is out of

service or there is no edge from i to j

so node j cannot get power from node i

at time t

( , )

1,

,

0,

,

t

(4.2)

The state space S is the set of all possible states s i j( , ), where
∈ …i j n, [0, 1, , ]. n is the max serial number of all electrical nodes. A

simple example of s i j( , )t is shown in Fig. 8.
An action is defined as the serial number σ of the selected power

network node. The action a σ( ) will be sent to the PFEM model where
the edges connected to node σ will be removed. That is to say the child
nodes cannot get power from the fault node σ . The action space

= …A n[0, 1, , ] is the set of all possible actions a σ( ), where ∈σ A. A
simple example of action a (0) is as Fig. 9.

Under state s of a power system, if an electrical device fail (action
a σ( ), which the edges connected to would be tripped) because of some
reasons. The probability of next possible power system state s' is

= = ′ = =+p s s s s a σ( | , ).σ
t t tss 1' The expected value of lost loads is

= = = ′ =′ + +r r s s s s a σ( | , , )ss
σ

t t t t1 1 . The policy adopted in selecting
action a σ( ) is recorded as π , = = =π σ s a σ s s( | ) ( | )t t . During learning,

it is necessary to estimate how well the policy π performs. This esti-
mation is called policy evaluation, the result of which is called the value
function. We utilize the state-action value function Q s σ( , )π , which
obeys the Bellman equations [10] in the form of Eq. (4.3). In the
equation, ∈γ (0, 1) is a discount factor, the extent to which the algo-
rithm considers the long-term rewards.

Q σ(s, )π

= = =r s s a σ( | , )π t t t

 ∑= ⎛

⎝
⎜ = = ⎞

⎠
⎟

=

∞

+ +γ r s s a σ| ,π
k

k
t k t t

0
1

(4.3)

Fig. 7. Framework of PFEM.

Fig. 8. A simple example of s i j( , )t . =s (1, 0) 1t denotes that the edge from node
0 to node 1 is in-service.
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∑ ∑ ∑= + ′ ′ ′ ′
′

′ ′
′∈

[ ]π s σ P r γ π σ s Q s σ( , ) ( | ) ( , )
σ s

ss
σ

ss
σ

σ A
π

∑ ∑= + ′ ′ ′ ′
′∈

′
′∈

r γ P π σ s Q s σ( | ) ( , )s
σ

s S
ss
σ

σ A
π

Because the value of Qπ is relevant to the policy π , we can solve
maximum =∗Q s σ max Q s σ( , ) ( , )π

π to find out which electrical devices
that will cause the largest loss of load when they fail.

There are many methods to solve the above problem by reinforce-
ment learning [57], for example, Dynamic programming, Monte Carlo
method, Temporal-Difference Learning, and so on. They fall into three
categories that are critic-only, actor-only, or actor-critic algorithms. As
the complexity of the data center power network is considered, the
actor-critic method is selected in this work, in which the policy gra-
dients have lower variance [10]. The actor-critic method has two in-
dependent components which are “actor” component that learns po-
licies to select action and “critic” component that criticizes the
performance of the actor’s choices. The reward rt at time t from the
environment is sent to the value function Q, and then the temporal-
difference error (TD error) is derived which can be represented by

= + −+ + +δ r γQ s σ Q s σ( , ) ( , )t t t t t t tt 1 1 1 . The Q value function in critic and
the policy π in actor can be updated by TD error simultaneously. The
next action can be chosen by the updated policy, which will be sent the
environment to perform some work that represents tripping the corre-
sponding electrical device in this work, and then the next state of the
environment can be observed which will be sent into Q value function
and policy π simultaneously. The above process is executed iteratively
until the predetermined number of iterations is reached. The typical
framework of an actor-critic method is illustrated in Fig. 10.

We propose an automatic algorithm to identify the vulnerable spots
of the internet data center power network (AIVDCN) based on the
Actor-Critic framework. We utilize the Gaussian Radial Basis Function
(GRBF) [58] to construct the eigenvector of the power system’s working
state, use the softmax [59] method to select actions and propose a novel
method for calculating parameters of GRBF. This algorithm sequentially
trips the alternative electrical devices one by one. And the reward refers
to the quantitative representation of vulnerability (Eq.1.2) caused by
the tripped device is used to update the Q value and the selection policy
π. Some key components of our AIVDCN algorithm are as follows.

4.1. Q value design

We define the number of electrical devices in the power system is n
and the number of sequential fault devices is k. Then the dimension of
state space S is n2 and that of action space A is n. If exhaustive method
is used, the time complexity of finding the maximum lost loads caused
by k devices fault is O C( )n

k . The search space of ∗Q s σ( , ) is n3. If the
method of using a Q table that consists of the state-action pair s σ\;( , ) is
applied to store and update Q value for large-scale data center power
systems, the computational complexity and memory occupancy are
unacceptable. Generally, the value function Q s σ( , ) is a big table stored
in the computer memory, a typical storage form is illustrated in Fig. 11.

This Q table is dived into two segments. The first half represents the
working state of the power system, and each bit represents the working
situation of two corresponding electrical devices. 1 represents the
power supply relationship between the two corresponding nodes, and 0
represents the connectionless relationship. The second half stores the Q
value of each action/tripping under this state st, and each Q value is
stored by 32-bit memory. Assuming that the number of states corre-
sponding to st stored in memory afterN iterations isK ( ⩽ 2n2

K ) bit,
the memory occupied by this Q table is +/32/8 *(32/8)2K K Byte. The
simulation environment in this paper has 594 nodes. Assume that Q
value is stored by this table. K is assumed to be 104 bit after ∗2 104

iterations, which is much smaller than 25942
bit. Thus, the memory oc-

cupancy of this table is 35.8G Byte. Obviously, the memory occupied by
this Q table is unacceptable, and the searching time for the best action
in this table is also unacceptable.

Therefore, we apply the generalized method to approximate the
state-action value function Q s σ( , ), and update the value function by
gradient descent method. We define the Q value of t step in the linear
representation as follows:

=
→

∅→Q s σ θ θ( , ; )t t
T

s (4.4)

where ∅→s is the eigenvector of working state s of the power system, and

the parameters
→
θt

T
has the same number of components as ∅→s . Because

the dimension of the power system state s is very large, it is difficult to
construct the eigenvector by ordinary linear coding method. So, we use
GRBF to construct the eigenvector. The function is as follows:

Fig. 9. A simple example of action a (0). a (0) denotes that node 0 is selected to
be tripped. The edges from node 0 to node 1 and node 2 will be removed in the
power system topology.

Fig. 10. The typical framework of an actor-critic method.
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− −

s u eΨ( )
s u

ρ
|| ||

2

2
2 (4.5)

There are two hyper parameters in GRBF. One is the center u, which
is the mean value of Gaussian function, and the other is the width ρ. As
the state of the power system is very large, in order to cover as more
features of the state s as possible but limit the complexity, we introduce
GA GRBFs and of which all the centers are set to be 0 of n dimensions.

=GA n/100, where n is the dimension of the state s and GA is derived
by rounding down. The last hyper parameter is the width ρ, which is
important in calculating the eigenvector of working state s. And the
innovation of this part is that we design a method to compute the width

∈ … −ρ g GA( [0, 1, , 1])g .
From the Fig. 12 of a simple example of one-dimensional GRBF, we

can see that proper width of GRBF should cover the largest state s
whose elements are 1 except diagonal ones. Otherwise, the generalized
value function Qt cannot represent the states correctly. For example, if
the largest state s locates at the dash line, the GRBFs whose widths are 1
and 0.5 cannot capture the features of the state s. We introduce the
method of calculating the width ρg as follows:

= ∗ − = ∗ − ∈ … −ρ GA s u
n

GA n
n

g GA
2

|| ||
2 2

1
2

, [0, 1, , 1]g g
max

g
2

(4.6)

where we can see that the nominator is related to the distance between
the largest state and the center u, the denominator is related to the
dimension of the states. On the left side of the fraction is a geometric
series, which is related to the amount of GRBFs. The left side of the
fraction is used to balance the distribution of eigenvectors.

We define the process of obtaining all the eigenvectors of the state s
as building process, which involves three steps. First calculate the
center ug and width ρg of each GRBF, second disassemble each GRBF
into multiple eigenvectors by Taylor series [60], in the end combine all
the features of every GRBF. Details are as follows:

Fig. 12. A simple example of one-dimensional GRBF. The dash line indicates
the position of state s with 1 dimension.
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(1) Set the center ug of each GRBF to be 0 with n dimensions. The width
ρg can be calculated by Eq. (4.6).

(2) Mapping the current state s to eigenvectors by each GRBF. In order
to reduce the computational complexity, we take the first =w 100
eigenvectors. The decomposition process is as follows:

−s uΨ (|| ||)g g

= −
−s u

ρ
exp(

|| ||
2

)g

g

2

2
(4.7)
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s u
j ρ ρ

s
ρ

u( )
!

exp 1
2

|| || exp 1
2

|| ||
j

w T j

g
j
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2
2 2

2

∑= ∅
=
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j
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g
0

(3) Combine all the eigenvectors ∅g one by one.

∅ = ∅ ∈ ∈ …j for all g GA j w[ ( )] ; , [0, 1, , ]s g (4.8)

Where, the eigenvector ∅s capture the features of the state s and
∅ j( )g are the elements of the eigenvector ∅s.

The weight vector of eigenvector in Eq. (4.4) is updated by gradient
descent method. The parameter α is the learning rate.

→
=

→
+ + − ∇+ + + + →θ θ α r γQ s σ Q s σ Q s σ[ ( , ) ( , )] ( , )t

T
t
T

t t t t t t θ t t t1 t 1 1 1 t (4.9)

4.2. Action policy design

In order to converge as soon as possible and avoid falling into
endless exploration, the selection policy π adopts the softmax method
[59]:




=

∑
π s σ e

e
( , )t

s σ

b
s b

( , )

( , ) (4.10)

Where the probability  σ(s, ) of selecting an action a σ( ) (only one
electrical device is selected in each action iteration) under the state s
also adopts the generalized method. Its state eigenvector is the same as
that of Q σ(s, )t , which is ∅→s. The updating method of the corresponding
weight vector is the same as Eq. (4.9), which is shown in Eq. (4.12).

 =
→

∅→s σ σ( , ; ϑ) ϑ ( )t
T

s (4.11)

→
=

→
+ + − ∇+ + + + →σ σ α r γQ s σ Q s σ Q s σϑ ( ) ϑ ( ) [ ( , ) ( , )] ( , )t

T
t
T

t t t t t t t σ t t t1 1 1 1 ϑ ( )t
T

(4.12)

4.3. Reward design

Unlike the previous methods, which get +1 reward when blackouts
happen in the power system (most of the time, the reward is 0), this
paper uses the quantitative representation of vulnerability when some
faults occur as a reward. The proposed method can obtain positive re-
ward immediately after each node is tripped, which can avoid no up-
dating the parameters of the algorithm for a long time. Thus, the pro-
posed method can accelerate the search speed of the optimal solution.
This paper proposes the following reward function:

=r s σ Vul tr( , ) ( )t t t (4.13)

= …tr σ σ σs.t. [ , , , ]t0 1

Where Vul is given by Eq. (1.2).

4.4. Details of the whole AIVDCN algorithm

The framework of AIVDCN is illustrated in Fig. 13:

The detail of AIVDCN is as follows:

Step1. Model the IDC power system by weighted digraph =G V E( , ).
Step2. The operation state T of the IDC power system is represented

by the adjacency matrix s of the modeled graphG in step 1, and
the eigenvector of state s is calculated according to Eq. (4.8).

Step3. All the initiated values of parameter θ of the value function Q,
parameter ϑ of policy π, number of starting fault devices x ,
number of starting iteration episode, and vulnerable nodes’
vector VUL are set to be zero. The dimension of the vector VUL
is set to be 10 in this work which is long enough.

Step4. Initialize the initial normal working state of the IDC power
system to be s, whose situation is that no equipment or power
load fails.

Step5. Select an electrical device (only one electrical device) to make
it trip in all the alternative devices under the current state s.
The selection method is as follows: in all the value functions
Q s σ θ( , ; ) of state s, the policy π s σ θ( , ; ) is used to select action
σ that will be tripped next and its corresponding Q value.

Step6. Execute the above action σ , i.e., transfer current IDC power
system topology and the selected action σ to the above PFEM
algorithm in this paper.

Step7. By observing the topological structure of the temporary stable
power network at this time, the next working state ′T and the
corresponding adjacency matrix ′s of the power network are
obtained.

Step8. Based on depth-first search (DFS), the reward r under ′s is
calculated easily.

Step9. Select another electrical device ′σ under the current state ′s , the
selection method is the same as step5.

Step10. Update the parameters of the value function Q and the policy π
by Eq. (4.10) and Eq. (4.12).

Step11. Add one to the number of devices that have been tripped, that
is = +x x 1. If <x 10, execute step 12, else judge episode. If
episode is smaller than the maximum number N, add one to it,
and then go to step 4. Else if episode is equal to N, go to step 13.

Step12. Set ′s to be s, and return to step 6.
Step13. Output the vulnerable nodes’ sequence: Execute episode once

again from step5, but the selecting policy of action σ is set to be
argmaxQ s σ θ( , ; ) in each step x , and put it in the x -position of
VUL.

Step14. For any k elements in VUL that is the set of vulnerable nodes,
there are C k

10 combinations. All the sequential combinations are
put into the PFEM algorithm independently, and then the
combination which makes the largest quantitative representa-
tion of vulnerability is the most vulnerable k devices in the IDC
power system.

The flow chart of this algorithm is shown in Fig. 14:

5. Experiments and discussion

In this paper, Networkx [61] which is a tool for complex network is
applied to model and simulate a real IDC power network. This IDC
power network consists of 719 edges, 594 nodes and 205 power loads.
The modeled graph G of this IDC power network is shown in Fig. 15.

The probability of each type of fault events pi j, (in Eq. (1.2)) is de-
termined by the situation of the data center. For example the prob-
ability of human errors is higher in a new data center, the probability of
equipment aging is higher in a data center that has operated for more
than 5 years, the probability of lightning strikes is higher in a data
center that is located in the tropics, the probability of cyber-attack is
higher in a data center that utilize the public wireless network for data
transmission and downloading control instructions. The corresponding
weights are determined by the data center infrastructure maintenance
staff according to the possibility of each type of events, which can be
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determined by fuzzy theory, experience or other methods. The experi-
mental case in this paper is located in Beijing, China, where the climate
is relatively stable, natural disasters are rare, and power grid is rela-
tively stable. At the same time, the data center has been put into op-
eration for 5 years, and the condition of electrical equipment is rela-
tively stable. So, the probability and weight of equipment failure caused
by natural disasters, human errors, etc. are lower. However, due to the

use of a large number of intelligent devices with network commu-
nication, the probability of cyber-attacks is higher, but the maintenance
staff attaches great importance to network security, so the weight of
this fault is low. Because of the good condition of electrical equipment,
the probability of failure caused by equipment aging is low, but because
of the large quantities, it is more likely to occur than other types of
failure, so the corresponding weight is larger. According to experience,

Fig. 13. The framework of AIVDCN.

Fig. 14. Flow chart of AIVDCN algorithm.
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this data center’s maintenance staff determines the fault probability and
the corresponding weight of various types of electrical equipment as
Table 2.

In this paper, we simulated the power system of this real data center
by applying the proposed parallel fault evolution model PFEM and
vulnerable nodes’ identification algorithm AIVDCN. Fig. 16 below
shows the average ratio of lost power loads of each round of 20,000
episodes. We can find that the average ratio of lost power loads gra-
dually converges to 40%-78% after 15,000 episodes. That is to say the
proposed algorithm can identify the devices which will cause at least
40% power loss when they fail through evaluating 15,000 states of the
power system at most, and the complexity of AIVDCN algorithm is
much smaller than O C( )n

k . Fig. 17 shows the number of times each
device has been tripped. The more the device has been tripped, the
more likely it will cause huge load lost after its failure. It can be seen
that the electrical devices that has been tripped more often are double
power automatic transfer switches, which plays the role of bridge in the
power system.

In this paper, after convergence of the proposed AIVDCN algorithm,
the lost loads caused by vulnerable devices obtained by five other al-
gorithms are compared. The six algorithms are: AIVDCN, node degree
[62] centrality, random algorithm, node eigenvector centrality, node

betweenness centrality [11] and node closeness centrality [11]. The
comparative experiment has three steps. The first step gets the vul-
nerable nodes’ vector VUL of the six algorithms respectively. And then
sequentially tripping any k electrical devices in VUL of every algorithm,
the load loss is derived correspondingly. In the end, the load loss of any
k electrical devices of each algorithm is sorted from large to small.

Fig. 18 shows the relationship between the percentage of lost loads
(Eq. (1.1)) and the number of initial fault nodes. Fig. 19 shows the
relationship between the quantitative representation of vulnerability
parameter (Eq. (1.2)) and the number of initial fault nodes. From the
results we can find that:

(1) Deliberate tripping of electrical devices can significantly affect the
power supply of the IDC power system. There would be more than
15% power loads loss when one (0.17%) electrical device has been
tripped, which make clear that there are vulnerable spots in the IDC
power network.

(2) AIVDCN algorithm can find more vulnerable nodes: after more than
two initial equipment fail, the loss of load is at least 5% higher than
that of other algorithms.

(3) Tripping seven (1.18%) electrical devices of the IDC power system
with the proposed AIVDCN algorithm will lead to crash of all loads.

Fig. 15. The modeled graph G of a real data center power network. This graph has the following characteristics: (1) it is a directed graph pointing from the power
supply node to the power receiving node; (2) a few nodes connect a large number of other nodes; (3) some nodes act as bridges for energy flow although they are less
connected with other nodes; (4) the same load has multiple power supply routes; (5) some nodes are clustered together, which connect with other nodes through
some key nodes. In this figure, the green nodes are transformers, the yellow nodes are switchgears, the blue nodes are non-information loads, and the red nodes are IT
loads. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Fault probability and the corresponding weight of various types of electrical equipment.

Electrical Equipment Disaster Cyber-attack Human Error Aging reliability

Weight Probability Weight Probability Weight Probability Weight Probability ∑Weight*(1- Probability)

Power grid 0.1 0.0000001 0.2 0.0000262 0.1 0.0000001 0.6 0.0002968 0.99981666
Diesel generator 0.15 0.0000001 0.01 0.0000500 0.3 0.0005000 0.54 0.0000716 0.9998108
Transformer 0.1 0.0000001 0.2 0.0000002 0.1 0.0000002 0.6 0.0000274 0.999983492
ATS 0.1 0.0000001 0.15 0.0000800 0.3 0.0008000 0.45 0.0000562 0.999722691
STS 0.1 0.0000001 0.15 0.0000800 0.3 0.0008000 0.45 0.0000262 0.9997362
UPS 0.1 0.0000001 0.15 0.0000900 0.3 0.0009000 0.45 0.0000572 0.99969077
High voltage circuit breaker 0.1 0.0000001 0.2 0.0000800 0.3 0.0000600 0.4 0.0000001 0.999965948
Low Voltage Circuit Breaker 0.1 0.0000001 0.15 0.0000002 0.4 0.0009000 0.35 0.0000001 0.99963991
Switchgear 0.1 0.0000001 0.15 0.0000020 0.3 0.0009000 0.45 0.0000220 0.99971979
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But other algorithms can't do it. That is to say AIVDCN has ad-
vantages of finding the vulnerability of the IDC power system.

(4) Our novel AIVDCN algorithm is better than other vulnerable spots’
identifying algorithms in terms of both lost loads and quantitative
representation of vulnerability.

6. Conclusions

The power system in the data centers is very important. The failure
of some electrical devices may lead to large-scale power outage, which
will affect the operation of information systems directly. Therefore, it is
necessary to identify such devices in advance. In this paper, the fault
evolution model of the power system is parallelized, and the AIVDCN
algorithm is proposed to identify the vulnerable spots of the power
system. The proposed PFEM model make full utilize the characteristics
of the IDC power system, which has parallel acceleration advantage.

The proposed model can simulate the power fault evolution process,
such as the transfer of power (from one path to another following to-
pological changes) and electrical device tripping. Through this model,
the fault nodes can be selected arbitrarily and the corresponding lost
loads can be observed. The proposed AIVDCN algorithm can find more
vulnerable spots whose failure may cause loss of loads at least 5%
higher than that of other algorithms.

As it applies a generalized representation of the power system’s
states, AIVDCN algorithm can be applied to various IDC power network
topologies especially large-scale ones. Furthermore, as the proposed
model PFEM is specifically tailored for data center power systems, so it
is not applicable to power transmission systems. But the proposed
AIVDCN algorithm is not limited to the IDC power system, so it is also
applicable to power transmission systems. The only thing that needs to
be done is redefining the state space and action space when applying
this algorithm to power transmission systems.

Fig. 16. Average percentage of lost power loads in a real IDC power system.

Fig. 17. Times of being tripped for each electrical device.

Fig. 18. Relationship between lost loads and the number of initial fault nodes.

Fig. 19. Relationship between the quantitative representation of vulnerability
and the number of initial fault nodes.
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