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A B S T R A C T

This paper proposed a Deep Reinforcement learning (DRL) approach for Combined Heat and Power (CHP)
system economic dispatch which obtain adaptability for different operating scenarios and significantly decrease
the computational complexity without affecting accuracy. In the respect of problem description, a vast of
Combined Heat and Power (CHP) economic dispatch problems are modeled as a high-dimensional and non-
smooth objective function with a large number of non-linear constraints for which powerful optimization al-
gorithms and considerable time are required to solve it. In order to reduce the solution time, most engineering
applications choose to linearize the optimization target and devices model. To avoid complicated linearization
process, this paper models CHP economic dispatch problems as Markov Decision Process (MDP) that making the
model highly encapsulated to preserve the input and output characteristics of various devices. Furthermore, we
improve an advanced deep reinforcement learning algorithm: distributed proximal policy optimization (DPPO),
to make it applicable to CHP economic dispatch problem. Based on this algorithm, the agent will be trained to
explore optimal dispatch strategies for different operation scenarios and respond to system emergencies effi-
ciently. In the utility phase, the trained agent will generate optimal control strategy in real time based on current
system state. Compared with existing optimization methods, advantages of DRL methods are mainly reflected in
the following three aspects: 1) Adaptability: under the premise of the same network topology, the trained agent
can handle the economic scheduling problem in various operating scenarios without recalculation. 2) High
encapsulation: The user only needs to input the operating state to get the control strategy, while the optimization
algorithm needs to re-write the constraints and other formulas for different situations. 3) Time scale flexibility: It
can be applied to both the day-ahead optimized scheduling and the real-time control. The proposed method is
applied to two test system with different characteristics. The results demonstrate that the DRL method could
handle with varieties of operating situations while get better optimization performance than most of other
algorithms.

1. Introduction

Co-generation units plays an increasingly important role in the
latest power system for their high energy efficiency, excellent en-
vironmentally friendly performance and high flexibility. Considering
the mutual conversion between various energies, there is a plenty
headroom for us to optimize the current conventional CHP system,
despite some widespread concerns over the way to improve the
economy of the CHP operation [1,2].

The combined heat and power economic dispatch (CHPED) is a

significant brunch in CHP researches, which aims at minimizing the
total production cost or maximizing the operating income while
keeping all constraints satisfied. CHPED problem is generally descripted
as an optimization problem with one or more optimizing objectives and
a set of highly nonlinear and non-smooth constraints including energy
supply–demand balance, capacity limits and other constraints.

The researches on CHPED mainly concentrate on two aspect: models
and solutions. Several works have already been done in the CHP eco-
nomic dispatch models domain. A thermal-electrolytic coupling method
was proposed in [3], in which the CHP economic dispatch problem was
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decomposed into two heat and electricity sub-problems. Paper [4] and
[5] proposed the CHP dispatch models which considered the detailed
heat transfer process of the heat storage device and the cogeneration
unit respectively. [6] established a two-stage dispatch model based on
quantity adjustment and presented an iterative solution algorithm. An
integrated response method for electro-thermal demand was proposed
in [7] to improve the economy of CHP systems. An operational and
structural Model based on efficiency matrices was proposed in [8,9],
which was used for the dispatch of multi-energy system [10]. All eco-
nomic dispatch problems are ultimately mathematically transformed
into optimization problems, and the operation region of CHP systems
can be modelled either convex or non-convex. Convex operation region
is modelled by convex combination of electricity and heat extreme
points [11,12] while non-convex operation region is usually modelled
as mixed-integer model [13,14].

Some classical numerical methods have been successfully applied to
CHPED including two-layer Lagrangian relaxation technique [3], Effi-
cient Branch and Bound algorithm [15], dual and quadratic program-
ming [16], etc. However, these methods have been criticized for their
inability to cope with complex optimization problems which have
highly nonlinear objective function and constraints. On the contrary,
genetic algorithms, simulated annealing and evolutional algorithms
could solve non-linear, non-smooth and non-convex optimization pro-
blem efficiently. Evolution programming-based algorithm was adopted
in [17], in which the mutation search range could be controlled and the
neighborhood of the best individual in a population could be searched.
[18] presented multi-player harmony search algorithm for large-scale
CHPED problem and obtained better convergence performance. Cuckoo
optimization algorithm was powered by penalty function in [19]. This
algorithm could yield better evolution and constraints handling
methods. [20] improved basic genetic algorithm from avoiding ex-
cessive losses, excavating the information of parents and improving
crossed offspring’s quality three aspects. [21] applies newly proposed
exchanged market algorithm (EMA) on CHPED problem and the result
shows that the algorithm’s efficiency and reliability. In addition, there
are many excellent optimization methods in economic dispatch domain
[22,23].

In addition to models and algorithms, [24,25] try to solve the un-
certainty problem by updating optimization time horizons dynamically.
In these works, data prediction errors are modeled and model pre-
dictive control (MPC) is introduced to reduce the impact of prediction
errors on optimization results.

These pioneering researches laid the foundation for the optimal
dispatch of CHP system. However, it is worth noting that the solutions

proposed by the existing research depend upon strict description of the
CHP system. When the operating state changes, the strategy generated
according to the original optimization problem is no longer the optimal
strategy. In addition, Optimization methods do not achieve good en-
capsulation in engineering applications because the user needs to adjust
the optimization target and constraint equation according to the oper-
ating state of the system.

We aim to address both of the two challenges by modeling CHP
system as MDP problem and solving it by deep reinforcement learning
(DRL) method. MDP is a discrete time stochastic control process and
provides a mathematical framework for modeling decision making in
situations where outcomes are partly random and partly under the
control of a decision maker [26]. At each time step, the process is in
some CHP operating state, and the decision maker may choose any
control action that is available for the current state. The process will
return a corresponding reward to evaluate the quality of this question.
By solving MDP, the decision maker could learn to choose optimal ac-
tion for the current state to achieve maximum cumulative reward. By
this model, the user only needs to consider the input of the system and
the corresponding output, without having to consider the complex
mathematical description of the system while retaining strict con-
straints.

DRL methods have so far attracted great attentions to apply them to
power system optimization. [27] combined the artificial neural network
and the Q-learning algorithms to achieve the optimal management of
operation and maintenance of power grids. [28] applied the fuzzy re-
inforcement learning to energy trading process to improve the users’
economy. [29] presented two variants of RL algorithms to solve eco-
nomic problem and tested their performance on the IEEE 30 bus system.
In this paper, a variant of Distributed Proximal Policy Optimization
(DPPO) algorithm [30] for CHP economic dispatch problem has been
introduced to our research. This algorithm is capable of handling dif-
ferent operation conditions without sacrificing stability or accuracy.
When the system parameters change, the dispatch strategy can be di-
rectly given without long-term calculation by the chosen optimization
methods. The Asynchronous Advantage Actor-Critic (A3C) [31] based
agents and the Clipped Surrogate Objective [32] are adopted to im-
prove the learning efficiency and stability. A comparison has been
performed between the performance of this algorithm and two other
common benchmark algorithms in CHP dispatch problem. Furthermore,
the algorithm has been applied to day-ahead dispatch and real-time
dispatch in our research, and the result has been compared with that
from the mathematical optimization method. The contribution of this
paper could be summarized as the following:

Nomenclature

S State of CHP system
A Action for devices.
I Indicator function
o Equipment operating status vector
d Power mismatch vector
v Random variables.
R Reward function
V s( )t Value function
A : Advantage function.

( ) Expected return
t The t-th time slot.
pwind Wind power
pgrid Trading electricity with grid
p ,l Electricity load
h ,l Thermal load

Thermoelectric conversion efficiency of the GT
c c ce m k Natural gas cost /The grid interaction cost

gas tou unitprice of natural gas/time of use price respectively
Reasonable operating capacity
Network parameter

z ( )t Probability ratio of updating parameter
Clip hyperparamert
Discounting factor

Pe
max Maximum power output of power only units

Pe
min Minimum power output of power only units

Pm
max Maximum power output of CHP units

Pm
min Minimum power output of CHP units

hm
min Maximum heat output of CHP units

hm
max Minimum heat output of CHP units

hk
min Maximum heat output of heat only units

hk
max Minimum storage capacity of heat only units

htst
min Maximum storage capacity of TST

htst
max Minimum storage capacity of TST

a s( ) Parameterized policies
r Reward

+ [ ]a s ,t t, 1 actions are sampled a s( )t t
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1) The CHP economic dispatch problem is modeled as Markov Decision
Process (MDP). we have strict treatment towards constraints and
objective functions which ensures that the results obtained by MDP
are still the optimal solution in the feasible domain.

2) A variant DPPO algorithm for economic dispatch problem has been
developed to improve algorithm exploring ability, which ensures the
performance of optimality and convergence. The paper gives de-
tailed proof of the convergence of this algorithm.

3) The proposed method can be reused under a variety of operating
scenarios without re-calculation, which improves the adaptability
and provides more convenience for users. When the operating states
change or emergency happen, users only need to input the current
status to get an optimal control strategy instantly, instead of re-
writing the constraint equation.

4) The proposed method has time scale flexibility. It can be applied to
both day-ahead economic dispatch and real-time control.

This paper begins in Section 3 by describing the CHP system and the
MDP model. Section 4 details the completion of the DPPO algorithm
and the proof of its stability. Case studies are presented in Section 5 and
Section 6 gives the conclusions.

2. Problem statements

In this section, the CHP economic dispatch environments and
learning scenes are described.

In a CHP system, the electricity and heat networks are linked
through the coupling components (e.g., CHP units, heat pump, electric
boilers and circulation pumps). These coupling components allow the
flows of energy between the two networks. These coupling components
increase the flexibility of the electricity and heat supply system [33].

CHPED aims to minimize total fuel cost of all CHP units while
meeting heat power and electric power demand and other constraints.
Mathematically, the problem is to minimize the following objective
function:
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where

c is the unit production cost;
p is the unit electrical power generation;
h is the unit heat generation;
hd and pd are the system heat and power demands;
e,m, k, w and tst are indices of conventional power units, CHP units,
heat-only units, renewable energy source and thermal storage tank
(TST) respectively;
ne, nm, nk, nwand ntst are the numbers of the kind of units mentioned
above;
pmaxand pminare the unit electricity power capacity limits;

hmaxand hminare the unit heat capacity limits, in particular, htst
max and

htst
min are the charge/discharge rate limits of TST;

Usually, the production cost of different unit types defined as:

= + +c p p p h( ) ( ) ($ ),e e e e e e e
2 (9)

= + + + + +c p h a p b p c d h e h f p h h( , ) ( ) ( ) ($ ),m m m m m m m m m m m m m m m
2 2

(10)

= + +c h h b h c h( ) ( ) ($ ),k k k k k k k
2 (11)

where e, e and e represents the cost coefficients of the conven-
tional power units; am, bm, cm, dm, em and fm are cost coefficients of co-
generation unit; k, bk, and ck are heat-only units’ coefficients.

For simplicity, the operating cost of the units could be calculated by
gas price and time of use price directly:
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where andgas tou are unit price of natural gas and time of use electricity
price respectively, tdenotes one timestep in economic dispatch.

Fig. 1 shows the schema diagram of the CHP network, two units are
chosen as heat slack node and electricity slack node to guarantee the
heat and electricity demand [33].

A. Problem modelling

The CHP economic dispatch problem is to determine the minimized
unit cost of generating heat and power on the foundation that the heat
and power loads along with other constraints are all met. To achieve the
first-rate control strategy, optimal methods are publicly applied in CHP
economic dispatch area, where the problem is described as a series of
constraints and one or more objective functions [34]. Varieties of op-
timization algorithms [1] could be used to find optimal solution in
feasible operation region.

MDP model is chosen in this research for its simplicity and com-
putational efficiency, in which an agent interacts with environment
over several time steps. Fig. 2 gives an illustration of MDP process: At
each time step t , the agent receives a stateS and selects an actionA

according to its policy . After performing the selected actionA , the
agent, in return, receives the next state and receive a scalar reward r .
The agent then repeats the above process until the set conditions are
met. The goal of the agent is to maximize the expected return from each
state. In this paper, we modeled CHP system operation as an infinite-
horizon discounted Markov Decision Process (MDP), defined by the
tuple r( , , , , , )0S A P , whereS is an array of states,A is the array
of actions, × ×P: S A S is the transition probability

Fig. 1. Schematic diagram of the combined electricity and district heating
networks.
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distribution, r S: is the reward function, :0 S is the dis-
tribution of the initial state s ,0 and (0, 1) is the discount factor. The
detailed relationship can be described as the following:

= I o d v( , , , ),S (15)

= p p h h( , , , ),e m k tstA (16)

=

+ <
= = =r c p c p h c h

d I d s

( ) ( ) ( ) 0.5

5 [ ] 0.1 ( )
e

n
e e m

n
m m m k

n
k k
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1 1 , 1

2 2 2

e m k

(17)

1. states: The system operating status contains four parameter vectors,
including power mismatch, equipment information and random
variables.

IB. is an indicator function which represents the degree of im-
balance between supply and demand. In a training episode, I equals to
1 if power mismatch is lower than the limit for more than N con-
secutive time steps, otherwise I equals to 0. The stability of the strategy
is improved by I .

=o p p h p p p[ , , , , , ]e e e tst grid wind C. is the normalized equipment oper-
ating status vector, indicates the output of all devices

=d p p h h p h[( ), ( ), , )]d s d s d d D. is the power mismatch vector
and indicates the difference between the energy production and the
load demand, where pd is the electricity load, ps is the electricity sup-
plied, and dd is the heat load and hs is the heat supplied.

=v tst rtp[ , ]i E. denotes the value of random variables, where tsti is
the initial state of the TST and rtp is time-of-use price.

2. action: A suggests an action set for the decision variables which
denotes the change amount of the normalized decision variables in
every single time step.

3. reward: r represents the reward agent gets from system, where d is
the power mismatch vector, I [ ] is the indicator function, is the
maximum cumulative power mismatch, stst is the current heat sto-
rage capacity of the heat storage tank and is the reasonable op-
erating capacity. In a MDP, all objective function mentioned in
optimization problems can be described as maximizing the expected
cumulative reward signal [35]. Reasonable rewards must be set in
order to guide the algorithm to continuously learn from the target.
In this research, the rewards for all operational status were kept
simple and consistent in different environments (i.e. different output
of wind turbine, different electricity load, different heat load and
different time-of-use price). The reward consists of 3 sub-targets in
“(17)”: 1) minus total operating costs

= = =c p c p h c h( ) ( ) ( )e
n

e e m
n

m m m k
n

k k1 1 , 1
e m k : encouraging the

agent to reduce the operating cost; 2) power mismatch
( + <d I d0.5 5 [ ]2 2 ): besides the penalty of power mis-
match, additional rewards were added when the system reached a
power balance, encouraging the agent to minimize the power mis-
match; 3) storage tank status ( s( )tst

2): the penalty for heat sto-
rage was added in order to guarantee the stored heat is in a safer
range, i.e. there should be enough storage to deal with unexpected
situations but not too much storage.

B. Constraints

Constraints are essential part in the mathematical optimization
problem. The premise of the optimal solutions is to set the allowable
range for the constraints. To simulate the real operation of the CHP
system, the strict constraints are set in state transition of MDP. In this
section, we demonstrate how we handle constrain in MDP model. For
example, if the GT output has reached the maximum in current state S
and the action choose by decision maker is still increasing the output of
GT, the output of the GT in next state is still maximum to meet
equipment operation limit.

Power demands: Electric and thermal power need to reach a
supply and demand balance (Eqs. (2) and (3)).

As we mentioned in Fig. 1, usually, two units are chosen as heat
slack node and electricity slack node respectively to guarantee the de-
mand. Besides, we convert this part constrains to part of reward in
equation (17).

Equipment operation limit: all units must meet their upper and
lower limits of output (Eqs. (4)–(7)). In particular, the CHP unit needs
to be within the feasible range. Fig. 3 shows the heat-electricity feasible
operation region of a coupling unit. The feasible operation region is
enclosed by the boundary curve ABCDEF.

In a practical generation unit, steam value admission effects lead to
the ripple in the production cost. In order to model this effect, a sinu-
soidal term is added to the quadratic cost function (9) [36]:

= + + +c p p p p p( ) ( ) sin( ( )) ,e e e e e e e e e e
min

e
2 (18)

where e and e are cost coefficients for modeling valve-point effects.
In MDP, if devices output in next state is beyond restriction, the

probability of moving from the current state to next state
× ×P s a s: t t1 is 0 which means that the agent would not take action

that will cause the device to exceed the limit.
Energy storage device constraint: Energy storage device oper-

ating constraints are in (8).
The constraints on charge and discharge rate are reflected in the

action h[ ]tstA in the MDP model: < <h q h[ ]dis char
min

tst dis char
maxA . The

treat to heat storage capacity limits is same as Equipment operation
limit.

C. Proof of Optimality

Let denote a stochastic policy where agent collects action from,
the value of a s( ) is the probability distribution of action a at state s.
The following are standard relationship between the return function R ,
the value function V , and the advantage function Q . The return
function R is the total discounted reward from time t . Value functionV
denotes the expected return of the agent that acting in accordance with
policy from state st .

Fig. 2. Illustration of MDP process.

Fig. 3. Heat-Power Feasible Region for a CHP unit.
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=
+

+ +R s a r s a( , ) ( , ) ,t t s a t

t l l
t t, ,t t1 1 (19)

=
+

+V s r s( ) ( ) ,t a s t

t l l
t,t t, 1 (20)

where the notation + [ ]a s ,t t, 1 indicates that actions are sampled
a s( )t t . is the discount factor.

Bellman expectation equation are adopted to describe the recursive
relationship of value function and return function:

=V s a s R s a( ) ( ) ( , ),t a t t t t
t A (21)

= + +
+ +R s a s a P V s( , ) r( , ) ( ),t t t t s s s

a
t 1

t t t
t

1 1S (22)

Recursive relationship of value function itself: By inserting Eq.
(22) into (21) (For simplicity of the following formula, the subscript t
will be omitted):

= +V a P V(s) ( s) r (s ) ,s
a

s s
a

a s
'

' 'A S

(23)

Recursive relationship of return function itself: By inserting Eq.
(21) into (22):

= +R s P a s R s a( , a) r ( ) ( , ),s
a

s s
a

as
' ' ' '

' ' 'S A (24)

Then is the definition of the optimal value function and the optimal
return function. The optimal value function is the maximum value
function over all policies, the optimal return function is the maximum
return function over all policies:

=V V(s) max (s), (25)

=R R s(s, a) max ( , a), (26)

According to Eqs. (14) and (15):

=V V(s) max (s)

= =a R Rmax ( s) (s, a) max (s, a)
a aA

= + P Vmax r (s )s
a

s s
a
s

'
' 'S

+ P Vmaxr (s ),
a

s
a

s s
a
s

'
' 'S (27)

Similarly,

= +R P R(s, a) r max (s , a ),s
a

s s
a

as
' '

' 'S (28)

Define a partial order relationship between strategies:
> ifV V(s) (s)' ' , then for all MDP:

• There is an optimal policy ,which satisfies ,
• The value function of all optimal strategies is equal to the optimal
value function =V V(s) (s)
• The return functions of all optimal strategies are equal to the op-
timal return function =R R(s, a) (s, a)

Therefore, if there is a strategy which satisfies V V(s) (s), ,
this strategy is one of the optimal solutions for MDP.

3. DPPO for economic dispatch problem

Purpose of this algorithm is for economic dispatch problem in rich
simulated CHP environments with continuous/sequential state and
action spaces. It is required that the algorithms are robust across a wide
range of state variation and are effective for CHP systems with high
uncertainty. Finally, the strategy learnt by the algorithm should satisfy
all the constraints and ultimately achieve the optimal function. It is
described in this section how to derive a practical algorithm for the CHP
system. A DPPO setup has been considered to learn the parameterized
policies a s( ) with the neural network parameter vector , and a
baseline function V . The architecture consists of a set of agents, the
repeatedly generating trajectories of experience, and one chief learner
that uses the experiences sent from agents to learn off-policy. Fig. 4.
Illustrates how to train the intelligent agent and how to use it in dif-
ferent scenarios. In training process, the generated random variables
were passed into action network, and the action network will generate
actions accordingly. Then the value network will evaluate the action
strategy. Besides, the simulation CHP environment will proceed to the
next state according to the current action and return the reward value.
In order to simulate as many situations as possible, each state will be
executed 500 times. Finally, update the action network and value net-
work parameters with the goal of maximizing the product of the reward
and the evaluation value. In other words, the action network can be
understood as an experience pool and accumulate experience about
CHP economic dispatch during the training process. When the training
is completed, the user can use the trained action network in real-time
scheduling or day-ahead optimization scheduling.

The detailed design of each part will be introduced next.

Fig. 4. DPPO Training flowchart.
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A. Proximal Policy Optimization with Clipped Surrogate Objective

Advantage function A s a( , ) expresses how good the selection ac-
tion ais in state s. If action a is better than average, then the advantage
function is positive; otherwise, it is negative.

=A s a R s a V s( , ) ( , ) ( ), (29)

The following useful identity expresses the expected return of an-
other new policy in terms of the advantage over , accumulated over
time steps:

= +
=+ A s a( ) ( ) ( , ) ,a s t, 0t t, 1 (30)

Eq. (30) implies that any policy update that has a non-
negative expected advantage at every state s ( a s A s a( ) ( , ) 0t is
guaranteed to increase the policy performance , or leave it constant in
the case that the expected advantage is zero everywhere). This implies
the classic result that the update performed by exact policy iteration,
which uses the deterministic policy =s argmaxV s a( ) ( , ), improves
the policy if there is at least one state-action that pairs with a positive
advantage value and nonzero state visitation probability, otherwise the
algorithm has converged to the optimal policy.

The accurate way to update the algorithm is mentioned in the
previous section. Unfortunately, this proposed update is not possible in
continuous dispatch problem since the computation of

=s argmaxV s a( ) ( , ) is excessively time consuming. Hence, the ac-
curate update way is inaccessible in the approximate setting for the
estimation and approximation error. As a result, there will be some
states s for which the expected advantages are negative, i.e.

<a s A s a( ) ( , ) 0a . The complex dependency of s( ) on makes it
difficult to converge to the optimal policy.

Instead, PPO algorithms is introduced to make some changes on
target value function ( ). It is implied by Eq. (6) that our approach is
guaranteed to improve the true objective by performing the following
maximization:

=
=+J A s amax ( , ) .a s t, 0t t, 1 (31)

In practice, Clipped Surrogate Objective function has been chosen to
replace this maximization for the higher robustness than updating po-
licies directly as J . (Clipped Surrogate Objective and Kullback-Leibler
divergence (KL) penalty are two widely accepted methods for policy
update in PPO algorithms. John Schuman found that KL penalty per-
formed worse than clipped surrogate objective in [32]. Besides, several
modifications were added to the core algorithm in both [30] and [32],
which includes the normalization of inputs and the accumulation of
rewards through timestep with a window of length n as well as boot-
strap from the value function after n-steps. Similar augmentations were
adopted in this paper.)

Given a parameterized policy , where a s( )t t is a differentiable
function of network parameter vector , our research supposed that
trajectory =

= +s a r( , , )t t t t k
t k n was generated by the agents with the policy .

Let z ( )t denote the probability ratio a s
a s

( )
( )
t t

old t t
, so =z ( ) 1t old means

the strategy has not changed. Hence, the n-steps clipped target value
function J could be re-written as:

= +J z A clip z A( ) [min( ( ) , ( ( ), 1 , 1 ) )]t t t t (32)

where is a hyperparameters, the second clip term modifies the sur-
rogate objective function J ( ) by clipping the probability ratio, by
which the range of action changes were clipped in a reasonable scope.
Finally, the minimum objective is taken to ensure the objective function
is a lower bound on the unclipped objective. In that case, the change in
probability ratio was ignored only when it improves the objective,
otherwise it was included when it deteriorates the objective. The key
idea of this target value function is that the probability ratio z( ( )t was
clipped at 1 or +1 depending on whether the advantages is

positive or negative. This assures that the policy change would not be
too intense when the advantage is positive, and the update direction is
correct when the advantage is negative. As aforementioned, given
A s a( , ) was estimated in continuous problems, At represents an ad-
vantage estimating value for n timesteps as:

= +
=

+
+A r V s V s( ( ) ( )),t

t
t t tt k

k n 1 k
1 (33)

B. Distributed settings

To achieve good performance in various randomly generated
scenes, agents must be guaranteed to explore in as many different en-
vironments as possible. Therefore, distributed setup has been in-
troduced to the PPO algorithm. Data was collected in different en-
vironments by multiple threads simultaneously and all parallel threads
share a global learner. The chief learner learns and develops through
the experience collected by different threads. The chief learner setting is
similar to A3C in [31]. The difference exists where in our setting that
each thread does not compute nor push the gradient of its own policy
update to the global PPO net, which promotes the efficiency of the
multi-threaded data collection.

A Distributed Proximal Policy Optimization algorithm that uses
clipped surrogate objective and distributed architecture is shown in
Algorithm I. In each episode, each of the N (parallel) workers (agents)
runs policy for K timesteps, collecting data s a r{ , , }t t t and estimating
the reward function R s a( , )t t , the value function V s( )t and the ad-
vantage function A . Besides, workers are required to push data to the
chief net. Then the surrogate loss is constructed on NK timesteps of
data, and optimized with Adam optimization [38]. Pseudocode are
provided in Algorithm II.U is the number of sub-iterations with policy
update when a batch of data was collected. Detailed hyperparameter in
algorithm was show in Table 6 in Appendix.

Algorithm I.. DPPO-chief

for iteration = 1, 2…M do

for actor = 1, 2… N do
Run policy for K timesteps, collecting s a r{ , , }t t t
Estimate R s a V s( , ), ( )t t t andA

end for
push data to main PPO

old
Optimize surrogate loss and update global action and critic network parameters

end for

Algorithm II.. Agents

for iteration = 1, 2… do

for actor = 1, 2… N do
Run policy for K timesteps, collecting s a r{ , , }t t t
Estimate R s a V s( , ), ( )t t t andA

end for
push data to main PPO

old
for m U{1, 2, } do

= +J z A clip z A( ) ( )[min( ( ) , ( ( ), 1 , 1 ) )]CLIP old t t t t

Send collect data to chief
Wait until all agents end this episode

Chief compute main J
Update chief-policy parameters
end for

end for

C. Observations and random setting

To simulate all possible CHP system operating status, the agent is
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trained on different types of courses. We collected the real CHP op-
erational data of CHP system from [40] and determine the upper and
lower limits of four variables. Fig. 5. Illuminate the process of operating
scenarios generation. In every episode a new course is generated within
the upper and lower limits. Load, time-of-use price, wind turbine output
and initial state of TST are considered as random variables, which could
include all possible operating scenarios, including the following typical
types: a) morning: high heat load with very low electricity load; b)
midday: higher electricity load and lower heat load; c) evening: high
electricity load and high heat load. There are examples in Section 6
which consist of a sequence of random instantiations of the above en-
vironment types within user-specified parameter ranges. Both the time-
of-use price and the wind turbine output are generated randomly within
the pre-defined range, which means that the algorithm can not only
cope with load changes, but also cope with different energy prices and
different renewable energy output.

When applied in economic dispatch in CHP system, the agent re-
ceives two sets of observation: 1) decision variables: A set of states
information, containing the operating states of the heat only units,
power only units, the CHP units, TST, and the Grid. The agents collect
this data set in every timestep and then push it to the main PPO net. 2)
random variables: A set of uncertain information, including the output
of the wind turbine, the energy price and the load, initial state of TST.
Hence, these data sets are generated stochastically in each iteration,
due to the high randomness of the wind power, the energy price and the
load. Then the action network and the value network compute the ac-
tion set and V s( )t , respectively, with the input of observations.

4. Case study

Two different test system were adopted in this paper to test the
performance of proposed method. Test system I (Fig. 6) is presented in
this paper for the first time. This system is a grid-connected CHP system
with four decision variables (Gas Turbine(GT), Gas Boiler(GB), Power
Grid and Thermal Storage Tank(TST)) and four random variables (Wind
Turbine, Energy Price, Heat Load and Electricity Load) which was
adopted to test whether our method could cope with variable operating
states without recalculation. To simplify the problem, the units cost in
this case was calculated by equation (12) ~ (14). Test system II [39] is
considered to show the optimization quality and computation time of
proposed method. This experiment aims to prove that the proposed
algorithm is applicable to the optimization problems with stochastic
environments, therefore, we do not use a simplified formula. The per-
formance of the DPPO was compared with other state-of-art optimiza-
tion methods. For the modelling of the MDP and DPPO algorithm, Py-
thon is selected as the programming language and pytorch is used as the
deep-learning framework and all our code are publicly available.1

A. Test Case I

Random variables in test system I are presented in Table 6 in ap-
pendix. This new small test case with the effect of time-of-use price,
random renewable energy and variable load was proposed to evaluate
the performance of DRL algorithm for different operating states.

1. Details in one episode

First, we will show how agent work in one episode. The specific
parameters are set as follows and Fig. 6 demonstrate the detailed ad-
justment process. To meet the device operating constraints, action
range is [ 0.02, 0.02]. By comparing TABLE 1 and TABLE 8 in the ap-
pendix, it can be found that the current situation has a lower electrical

load level and a higher thermal load level, wind power and time-of-use
electricity price are relatively low. As usual, user should increase the
output of GB to meet the heat load without excessive electrical load. At
the same time, due to the lower energy price, the heat storage tank
should reserve some heat.

Fig. 7 shows the actual adjustment process of DRL agent. It increases
the output of GT and GB to meet the user load within the feasible do-
main and sells excess power to the grid to reduce operating costs.
Furthermore, it finds that the energy price is lower currently, which is
suitable for charging TST.

The strategy generated by DRL agent is in line with theoretical
analysis and take the economy into account. In actual operation, the
user only needs to input the detailed information of the current load,
electricity price, etc., to get the control strategy which increases the
flexibility and ease of use.

2. Hour-ahead Economic Dispatch in Different Operating States

It is essential to investigate whether the DPPO could deal with
different emergency. To evaluate the DPPO on different tasks, the
trained network was subjected to an hour-ahead CHP economic dis-
patch problem both in normal and extreme environment, i.e. wind
turbine failure. The comparison of the dispatch strategies in the two
operating status is shown in Fig. 8 (In the heat subplots, If the bottom of
the histogram is less than 0, that part is used to charge the TST. In the
electricity subplots, if the bottom of the histogram is lower than 0, that
part means selling the electricity to the grid.) When there was no wind
turbine output, the DPPO algorithm acquired a robust dispatch strategy
compared with the normal strategy: 1) In the morning setting with the
low electricity load and the high heat load, the DPPO managed to in-
crease the output of the GT appropriately in order to slightly reduce the
heat output of the GB, to use the stored heat in the TST and to sell the
same amount of power to the grid. The strategy can be rationalized by
the fact that the GT has the best economic efficiency in the system. By

Fig. 5. Random scenarios generation process.

Fig. 6. Test CHP system 1.

Table 1
Random variables.

electricity load
(kW)

wind (kW) heat load
(kW)

TOU price
($/kWh)

6000 700 9000 0.0627

1 https://github.com/BeardHealth/Combined-Heat-and-Power-System-
Economic-Dispatch.
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turning up the output of the GT, the gap in the electricity supply caused
by the absence of the fan was accurately met and, simultaneously, ex-
cessive heat was generated to relieve the burden of the GB.

2) In the midday and the evening settings with the high enough
electricity load and the declined heat load, the DPPO decided to reduce
the output of the GT and to increase the power purchase from the grid,
for optimal economic efficiency since it is cheaper to buy electricity
from the grid rather than to generate. Meanwhile, the DPPO adjusted
the output of the GB accordingly to meet the rest of the heat load and
stored the excessive heat in the TST for future use, which further pro-
motes the economic performance. In Table 2, the detailed result
changes are demonstrated.

3. Day-ahead Economic Dispatch Problem

At last, the DPPO was applied to day-ahead generation dispatch
problem, whose result was subsequently compared with that of the
optimization method. Operating parameter settings are provided in
Table 8 in appendix. Fig. 9 (In the heat subplots, the black dashed curve
marked with point means heat load, the black solid curve marked with
caret shows the heat generated by CHP system. In the electricity

Fig. 7. Decision variables in one episode.

Fig. 8. Comparison of results under different operating scenarios.

Table 2
Detailed Results.

Morning Midday Evening

Condition Normal Failure Normal Failure Normal Failure
Cost/($) 594.04 685.02 588.28 691.50 810.9 897.65
Heat error 0.04 0.03 0.0036 0.04 0.007 0.0027
Electric error 0.009 0.03 0.012 0.03 0.064 0.037

Fig. 9. Day-ahead dispatch strategies.

Table 3
Heat Load Mismatch and Cost.

heat load error Cost/$

DPPO optimization methods DPPO
0:00 0.0049 674.77 580.74
1:00 0.00035 592.65 564.15
2:00 0.002 595.18 557.27
3:00 0.025 528.56 554.05
4:00 0.008 529.33 544.08
5:00 0.009 567.91 546.31
6:00 0.009 650.84 526.36
7:00 0.033 702.68 616.83
8:00 0.03 800.41 737.72
9:00 0.03 747.36 694.55
10:00 0.025 709.5 708.3
11:00 0.026 706.25 651.15
12:00 0.032 690.84 646.26
13:00 0.034 762.13 657.53
14:00 0.02 868.03 726
15:00 0.02 691.24 657.45
16:00 0.03 753.85 731.47
17:00 0.02 770.38 807.27
18:00 0.03 799.15 847.59
19:00 0.0292 794.57 840.43
20:00 0.032 921.02 810.2
21:00 0.031 712.18 718.76
22:00 0.031 815.96 728.76
23:00 0.031 538.56 613.26
total 0.007 16924.029 16874.28

Fig. 10. Output under different wind power.
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subplots, the black dashed curve marked with point means ideal elec-
tricity load, the black solid curve marked with caret shows the elec-
tricity generated by CHP. Beside the illustration, if the bottom of the
histogram is less than 0, that part is used to charge the TST. In the
electricity subplots, if the bottom of the histogram is lower than 0, that
part means selling the electricity to the grid.) shows the day-ahead
economic dispatch strategies generated by the DPPO algorithm. The
result demonstrates the following characteristics: 1) The GB output was
time period dependent. For example, the output of GB was relatively
higher when the heat load is higher from 0 am to 5 am and from 19 pm
to 24 pm. 2) The GT undertook most of the electricity and heat loads. 3)
The TST was used less frequently, for only 7 time periods, than other
devices in the system. load demand reliably, with only acceptable
variations in heat load across the time. The strategy learnt through DRL
are like that through the optimization method, despite a slight nu-
merical gap at every time step.

Besides, results imply that the DPPO succeeded in discovering the
economical approaches on handling the load changes by choosing the
GT as the main load bearer for its more economical performance and
adjusting other decision variables based on the environment.

In addition to the qualitative analysis, the heat load error and the
cost are listed in Table 3. The heat load error in DPPO, as shown in the
second column in Table 3, was successfully kept at a very low level,
indicating the user’s comfort zone was well preserved, which approves
the accuracy of the DPPO algorithm. The economic performance, i.e.
the cost, of the two methods was also compared. The DPPO operated at

lower costs for the majority time periods as the lower costs are high-
lighted in green in Table 3. Judging from the total cost of the day, the
DPPO has the tiny advantage by making a 0.03% saving as costing of
the optimization method.

4. Variability and uncertainty of renewables

This subsection was designed to verify whether the proposed
method can deal with renewable uncertainty. In order to eliminate the
impact of the remaining variables, we assume that the electrical load
and thermal load are constant (3000kWh and 9000kWth respectively),
change the ratio of wind power to the electrical demand and observe
the output of each device. All the results are shown in Fig. 10.

It can be found that with the increase of the proportion of wind
power, the gas turbine continues to reduce its electricity power output,
and at the same time, which will lead to insufficient heat supply and the
gas boiler will increase its own heat output to make up for this shortfall.
The results prove that the DRL method could cope with the instability of
renewable energy.

Unlike model predictive control, DRL method is trained on a large
amount of data to cover multiple operating scenarios. In the case of
data prediction errors, users need to input real-time data into the
trained model to get new results.

B. Test Case II

Test system II was a large test case widely used. This test system
consists of 24 units where units 1–13 are power only units, units 14–19
are CHP units and 20–24 are heat only units. The total power demand
of this case is 2350 MW and thermal demand is 1250 MWth. The total
number of decision variables is 60. Test system data are presented in
Tables 4 and 5 presents the optimal power and heat dispatches using
the proposed method and other state-of the-art methods.

Table 4
Cost function parameters of large test system IV.

Unit Pmin Pmax

Power only units
1 0.00028 8.1 550 300 0.035 0 680
2 0.00056 8.1 309 200 0.042 0 360
3 0.00056 8.1 309 200 0.042 0 360
4 0.00324 7.74 240 150 0.063 60 180
5 0.00324 7.74 240 150 0.063 60 180
6 0.00324 7.74 240 150 0.063 60 180
7 0.00324 7.74 240 150 0.063 60 180
8 0.00324 7.74 240 150 0.063 60 180
9 0.00324 7.74 240 150 0.063 60 180
10 0.00284 8.6 126 100 0.084 40 120
11 0.00284 8.6 126 100 0.084 40 120
12 0.00284 8.6 126 100 0.084 55 120
13 0.00284 8.6 126 100 0.084 55 120

a b c d e f Feasible region
coordinates P H[ , ]c c

CHP units
14 0.0345 14.5 2650 0.03 4.2 0.031 [98.8, 0], [81, 104.8], [215,

180], [247, 0]
15 0.0435 36 1250 0.027 0.6 0.011 [44, 0], [44, 15.9], [40, 75],

[110.2, 135.5], [125.8, 32.4],
[125.8, 0]

16 0.0345 14.5 2650 0.03 4.2 0.031 [98.8, 0], [81, 104.8], [215,
180], [247, 0]

17 0.0435 36 1250 0.027 0.6 0.011 [44, 0], [44, 15.9], [40, 75],
[110.2, 135.5], [125.8, 32.4],
[125.8, 0]

18 0.1035 34.5 2650 0.025 2.203 0.051 [20, 0], [10,40], [45, 55], [60, 0]
19 0.072 20 1565 0.02 2.34 0.04 [35, 0], [35,20], [90, 45], [90,

25], [105, 0]

a b c Hmin Hmax

Heat only units
20 0.038 2.0109 950 0 2695.2
21 0.038 2.0109 950 0 60
22 0.038 2.0109 950 0 60
23 0.052 3.0651 480 0 120
24 0.052 3.0651 480 0 120

Table 5
Optimal dispatch results for test system II using proposed method and other
methods.

Output CPSO [39] TVAC-PSO [39] EMA [21] Ours

P1 680 538.5587 628.3171 630
P2 0 224.4608 299.1859 283.50
P3 0 224.4608 299.1859 283.50
P4 180 109.8666 109.8605 94.10
P5 180 109.8666 109.8605 94.10
P6 180 109.8666 109.8605 94.10
P7 180 109.8666 60 94.10
P8 180 109.8666 109.8605 94.10
P9 180 109.8666 109.8605 94.10
P10 50.4304 77.5210 40 72.56
P11 50.4304 77.5210 77.0195 72.56
P12 55 120 55 72.56
P13 55 120 55 72.56
P14 117.4854 88.3514 81 81
P15 45.9281 40.5611 40 44.09
P16 117.4854 88.3514 81 81
P17 45.9281 40.5611 40 44.09
P18 10.0013 10.0245 10 14.53
P19 42.1109 40.4288 35 35
H14 125.2754 108.9256 104.8002 104.8
H15 80.1174 75.4844 75 78.03
H16 125.2754 108.9256 104.8002 104.8
H17 80.1174 75.484 75 78.03
H18 40.0005 40.0104 40 41.94
H19 23.2322 22.4676 20 20
H20 415.9515 458.702 470.3996 453.50
H21 60 60 60 60
H22 60 60 60 60
H23 120 120 120 120
H24 120 120 120 120
Min cost ($) 59736.2635 58122.746 57829.4792 57990.15
Time(s) 13.34 7.84 – 0(after trained)
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As it can be observed from Table 5, the proposed DRL method
reaches a better solution comparing to CPSO and TVAC-PSO, while the
result is not as good as EMA algorithm. In addition to the optimality of
the solution, the proposed algorithm emphasizes adaptability, and the
trained agent can handle multiple CHP operating states without re-
calculation.

Using the trained neural network weights to calculate the dispatch
strategy takes almost no time, which can help the CHP system generate
control instructions under constant power and handle emergence fail-
ures.

5. Conclusion

We proposed and analyzed the DPPO algorithms for optimizing the
stochastic CHP economic dispatch problem. We modeled the CHP
economic dispatch problem as infinite-horizon discounted Markov de-
cision process and set constrains to simulate the real environment. A
form of reward signal was designed to lead the algorithm to the goal.
We introduced proximal policy optimization methods that use multiple
epochs of stochastic gradient ascent to perform each policy update and
proved the convergence of the algorithm. Besides, we also used asyn-
chronous advantage actor-critic to improve the convergence rate of the
distributed framework, which subsequently improved the data collec-
tion speed, making it applicable to CHP settings where samples are
expensive.

In the domain of the CHP economic dispatch, we successfully taught
the agents to schedule the devices in the CHP system when chasing the

economic optimum while satisfying load demand. Our analysis shows
the DPPO algorithm could optimize the certain objective to a con-
straint.

In case study, the proposed algorithm was tested on two different
cases with different characteristics. The obtained result demonstrates
that the proposed algorithm can cope with more situations, have better
time scale flexibility, and is easier to use on the basis of the same
economic performance as the optimization method.

However, there are still shortcomings in solving economic dispatch
problems with DRL methods. For examples, all optimization goals are
reflected in the reward formula, which is not conducive to achieving
multi-objective optimization, and optimization goals closer to the user's
needs.

As future work, CHPED problem can be extended by considering
more practical constraints and the DRL method could be enhanced for
more complex optimization problems.
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Appendix A. Integration and ensemble models for k-alternative lineups

(See. Tables 6–8)

Table 6
DPPO Hyperparameters.

Hyperparameter Value

Discount 0.9
Adam update rate for actor 0.0001
Adam update rate for critic 0.0005
Update step 10
Minibatch size 24
Clipping parameters 0.2

Table 7
Device Operating Parameters.

name parameters value

Gas Gas price 0.052$/kWh
GT Upper limit 5000 kWh

Lower limit 1000 kWh
Effectiveness 0.3
Thermoelectric ratio 2.3

GB Upper limit 5000 kWh
Lower limit 1000 kWh
Effectiveness 0.8

TST Capacity 5000 kWh
Maximum charging power 1000 kWh
Maximum discharging power 500 kWh

HE Upper limit 12,000 kWh
Lower limit 0 kWh
Effectiveness 0.75

Grid Capacity 5000 kWh
Maximum purchase power 2000 kWh
Maximum sell power 2000 kWh

S. Zhou, et al. Electrical Power and Energy Systems 120 (2020) 106016

10



References

[1] Nazari-Heris M, Mohammadi-Ivatloo B, Gharehpetian GB. A comprehensive review
of heuristic optimization algorithms for optimal combined heat and power dispatch
from economic and environmental perspectives. Renew Sustain Energy Rev
2018;81:2128–43. https://doi.org/10.1016/j.rser.2017.06.024.

[2] Gu W, Wang Z, Wu Z, Luo Z, Tang Y, Wang J. An online optimal dispatch schedule
for CCHP microgrids based on model predictive control. IEEE Trans Smart Grid
2017;8(5):2332–42. https://doi.org/10.1109/TSG.2016.2523504.

[3] Tao Guo, M. I. Henwood, and M. van Ooijen, “An algorithm for combined heat and
power economic dispatch,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 1778–1784,
Nov. 1996, 10.1109/59.544642.

[4] Dai Y, et al. A general model for thermal energy storage in combined heat and
power dispatch considering heat transfer constraints. IEEE Trans. Sustain. Energy
2018;9(4):1518–28. https://doi.org/10.1109/TSTE.2018.2793360.

[5] Dai Y, et al. Dispatch model of combined heat and power plant considering heat
transfer process. IEEE Trans. Sustain. Energy 2017;8(3):1225–36. https://doi.org/
10.1109/TSTE.2017.2671744.

[6] Lu S, Gu W, Zhou J, Zhang X, Wu C. Coordinated dispatch of multi-energy system
with district heating network: modeling and solution strategy. Energy
2018;152:358–70. https://doi.org/10.1016/j.energy.2018.03.088.

[7] Bahrami S, Sheikhi A. From demand response in smart grid toward integrated de-
mand response in smart energy hub. IEEE Trans Smart Grid 2015:1. https://doi.org/
10.1109/TSG.2015.2464374.

[8] M. Geidl and G. Andersson, “A modeling and optimization approach for multiple
energy carrier power flow,” in 2005 IEEE Russia Power Tech, St. Petersburg, Russia,
2005, pp. 1–7, 10.1109/PTC.2005.4524640.

[9] Chicco G, Mancarella P. Matrix modelling of small-scale trigeneration systems and
application to operational optimization. Energy 2009;34(3):261–73. https://doi.
org/10.1016/j.energy.2008.09.011.

[10] Mancarella P. MES (multi-energy systems): an overview of concepts and evaluation
models. Energy 2014;65:1–17. https://doi.org/10.1016/j.energy.2013.10.041.

[11] Sondergren C, Ravn HF. A method to perform probabilistic production simulation
involving combined heat and power units. IEEE Trans Power Syst
1996;11(2):1031–6. https://doi.org/10.1109/59.496191.

[12] Lahdelma R, Hakonen H. An efficient linear programming algorithm for combined
heat and power production. Eur J Oper Res 2003;148(1):141–51. https://doi.org/
10.1016/S0377-2217(02)00460-5.

[13] Makkonen S, Lahdelma R. Non-convex power plant modelling in energy optimisa-
tion. Eur J Oper Res 2006;171(3):1113–26. https://doi.org/10.1016/j.ejor.2005.
01.020.

[14] Qiu H, Zhao B, Gu W, Bo R. Bi-Level two-stage robust optimal scheduling for AC/DC
hybrid multi-microgrids. IEEE Trans Smart Grid 2018;9(5):5455–66. https://doi.
org/10.1109/TSG.2018.2806973.

[15] Rong A, Lahdelma R. An efficient envelope-based branch and bound algorithm for
non-convex combined heat and power production planning. Eur J Oper Res
2007;183(1):412–31. https://doi.org/10.1016/j.ejor.2006.09.072.

[16] Rooijers FJ, van Amerongen RAM. Static economic dispatch for co-generation
systems. IEEE Trans Power Syst 1994;9(3):1392–8. https://doi.org/10.1109/59.

336125.
[17] Wong KP, Algie C. Evolutionary programming approach for combined heat and

power dispatch. Electr Power Syst Res 2002;61(3):227–32. https://doi.org/10.
1016/S0378-7796(02)00028-7.

[18] Nazari-Heris M, Mohammadi-Ivatloo B, Asadi S, Geem ZW. Large-scale combined
heat and power economic dispatch using a novel multi-player harmony search
method. Appl Therm Eng 2019;154:493–504. https://doi.org/10.1016/j.
applthermaleng.2019.03.095.

[19] Mellal MA, Williams EJ. Cuckoo optimization algorithm with penalty function for
combined heat and power economic dispatch problem. Energy 2015;93:1711–8.
https://doi.org/10.1016/j.energy.2015.10.006.

[20] Zou D, Li S, Kong X, Ouyang H, Li Z. Solving the combined heat and power eco-
nomic dispatch problems by an improved genetic algorithm and a new constraint
handling strategy. Appl Energy 2019;237:646–70. https://doi.org/10.1016/j.
apenergy.2019.01.056.

[21] Ghorbani N. Combined heat and power economic dispatch using exchange
market algorithm. Int J Electr Power Energy Syst 2016;82:58–66. https://doi.org/
10.1016/j.ijepes.2016.03.004.

[22] M. Rahmani-andebili and G. K. Venayagamoorthy, “Combined emission and eco-
nomic dispatch incorporating demand side resources,” in 2015 Clemson University
Power Systems Conference (PSC), Clemson, SC, USA, 2015, pp. 1–6, 10.1109/PSC.
2015.7101676.

[23] Zhou S, Zou F, Wu Z, Gu W, Hong Q, Booth C. A smart community energy man-
agement scheme considering user dominated demand side response and P2P
trading. Int J Electr Power Energy Syst 2020;114:105378https://doi.org/10.1016/j.
ijepes.2019.105378.

[24] M. Rahmani-Andebili and G. K. Venayagamoorthy, “Stochastic Optimization for
Combined Economic and Emission Dispatch with Renewables,” in 2015 IEEE
Symposium Series on Computational Intelligence, Cape Town, South Africa, 2015,
pp. 1252–1258, 10.1109/SSCI.2015.179.

[25] Rahmani-Andebili M. Dynamic and adaptive reconfiguration of electrical distribu-
tion system including renewables applying stochastic model predictive control. IET
Gener Transm Distrib 2017;11(16):3912–21. https://doi.org/10.1049/iet-gtd.
2016.1549.

[26] D. P. Bertsekas, “Dynamic Programming and Optimal Control 3rd Edition, Volume
II,” p. 233.

[27] Rocchetta R, Bellani L, Compare M, Zio E, Patelli E. A reinforcement learning fra-
mework for optimal operation and maintenance of power grids. Appl Energy
2019;241:291–301. https://doi.org/10.1016/j.apenergy.2019.03.027.

[28] S. Zhou, Z. Hu, and W. Gu, “Artificial intelligence based smart energy community
management: A reinforcement learning approach,” CSEE J. Power Energy Syst.,
2019, 10.17775/CSEEJPES.2018.00840.

[29] Jasmin EA, Imthias Ahamed TP, Jagathy Raj VP. Reinforcement learning ap-
proaches to economic dispatch problem. Int J Electr Power Energy Syst
2011;33(4):836–45. https://doi.org/10.1016/j.ijepes.2010.12.008.

[30] N. Heess et al., “Emergence of Locomotion Behaviours in Rich Environments,”
ArXiv170702286 Cs, Jul. 2017.

[31] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,”
ArXiv160201783 Cs, Feb. 2016.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy

Table 8
Day-ahead Environment Variables.

time interval electricity load
(kW)

wind (kW) heat load
(kW)

TOU price
($/kWh)

00:00–01:00 2178 875 9600 0.065
01:00–02:00 2009 1234.00 9792 0.065
02:00–03:00 1873 1390.00 9907.2 0.065
03:00–04:00 1755 1392.00 9984 0.065
04:00–05:00 1704 1336.00 9792 0.065
05:00–06:00 1839 1223.00 9600 0.065
06:00–07:00 2517 1173.00 9120 0.08
07:00–08:00 4211 1136.00 8640 0.08
08:00–09:00 5397 1158.00 8256 0.095
09:00–10:00 5735 1312.00 7968 0.095
10:00–11:00 5651 1369.00 7776 0.095
11:00–12:00 5481 1376.00 7603.2 0.08
12:00–13:00 5227 1315.00 7516.8 0.08
13:00–14:00 5176 1301.00 7488 0.08
14:00–15:00 5143 1343.00 7497.6 0.08
15:00–16:00 5227 1310.00 7545.6 0.08
16:00–17:00 5909 1208.00 7641.6 0.08
17:00–18:00 6417 1055.00 7776 0.095
18:00–19:00 6545 896 8064 0.095
19:00–20:00 6206 773 8448 0.095
20:00–21:00 5698 672 8832 0.095
21:00–22:00 4510 626 9216 0.095
22:00–23:00 3025 624 9504 0.065
23:00–24:00 2093 703 9600 0.065

S. Zhou, et al. Electrical Power and Energy Systems 120 (2020) 106016

11

https://doi.org/10.1016/j.rser.2017.06.024
https://doi.org/10.1109/TSG.2016.2523504
https://doi.org/10.1109/TSTE.2018.2793360
https://doi.org/10.1109/TSTE.2017.2671744
https://doi.org/10.1109/TSTE.2017.2671744
https://doi.org/10.1016/j.energy.2018.03.088
https://doi.org/10.1109/TSG.2015.2464374
https://doi.org/10.1109/TSG.2015.2464374
https://doi.org/10.1016/j.energy.2008.09.011
https://doi.org/10.1016/j.energy.2008.09.011
https://doi.org/10.1016/j.energy.2013.10.041
https://doi.org/10.1109/59.496191
https://doi.org/10.1016/S0377-2217(02)00460-5
https://doi.org/10.1016/S0377-2217(02)00460-5
https://doi.org/10.1016/j.ejor.2005.01.020
https://doi.org/10.1016/j.ejor.2005.01.020
https://doi.org/10.1109/TSG.2018.2806973
https://doi.org/10.1109/TSG.2018.2806973
https://doi.org/10.1016/j.ejor.2006.09.072
https://doi.org/10.1109/59.336125
https://doi.org/10.1109/59.336125
https://doi.org/10.1016/S0378-7796(02)00028-7
https://doi.org/10.1016/S0378-7796(02)00028-7
https://doi.org/10.1016/j.applthermaleng.2019.03.095
https://doi.org/10.1016/j.applthermaleng.2019.03.095
https://doi.org/10.1016/j.energy.2015.10.006
https://doi.org/10.1016/j.apenergy.2019.01.056
https://doi.org/10.1016/j.apenergy.2019.01.056
https://doi.org/10.1016/j.ijepes.2016.03.004
https://doi.org/10.1016/j.ijepes.2016.03.004
https://doi.org/10.1016/j.ijepes.2019.105378
https://doi.org/10.1016/j.ijepes.2019.105378
https://doi.org/10.1049/iet-gtd.2016.1549
https://doi.org/10.1049/iet-gtd.2016.1549
https://doi.org/10.1016/j.apenergy.2019.03.027
https://doi.org/10.1016/j.ijepes.2010.12.008


Optimization Algorithms,” ArXiv170706347 Cs, Jul. 2017.
[33] Liu X, Wu J, Jenkins N, Bagdanavicius A. Combined analysis of electricity and heat

networks. Appl Energy 2016;162:1238–50. https://doi.org/10.1016/j.apenergy.
2015.01.102.

[34] Gu W, et al. Residential CCHP microgrid with load aggregator: Operation mode,
pricing strategy, and optimal dispatch. Appl Energy 2017;205:173–86. https://doi.
org/10.1016/j.apenergy.2017.07.045.

[35] Silver D, et al. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 2018;362(6419):1140–4. https://doi.org/10.
1126/science.aar6404.

[36] Basu M. Combined heat and power economic dispatch by using differential

evolution. Electr Power Compon Syst 2010;38(8):996–1004. https://doi.org/10.
1080/15325000903571574.

[38] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
ArXiv14126980 Cs, Dec. 2014.

[39] Mohammadi-Ivatloo B, Moradi-Dalvand M, Rabiee A. Combined heat and power
economic dispatch problem solution using particle swarm optimization with time
varying acceleration coefficients. Electr Power Syst Res 2013;95:9–18. https://doi.
org/10.1016/j.epsr.2012.08.005.

[40] Open Power System data. 2019. Data Package Time Series. Version 2018-03-13.
URL https://data.open-power-system-data.org.

S. Zhou, et al. Electrical Power and Energy Systems 120 (2020) 106016

12

https://doi.org/10.1016/j.apenergy.2015.01.102
https://doi.org/10.1016/j.apenergy.2015.01.102
https://doi.org/10.1016/j.apenergy.2017.07.045
https://doi.org/10.1016/j.apenergy.2017.07.045
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1080/15325000903571574
https://doi.org/10.1080/15325000903571574
https://doi.org/10.1016/j.epsr.2012.08.005
https://doi.org/10.1016/j.epsr.2012.08.005
https://data.open-power-system-data.org

	Combined heat and power system intelligent economic dispatch: A deep reinforcement learning approach
	Introduction
	Problem statements
	DPPO for economic dispatch problem
	Case study
	Conclusion
	mk:H1_6
	Integration and ensemble models for k-alternative lineups
	References




