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A B S T R A C T

Continuous monitoring and diagnosis are important for safe operation of nuclear facilities. In an emergency
shutdown, the diagnostic tasks can be challenging for human operators who may be under intense stress and/or
lack training. In recent years, studies using artificial-intelligence technologies have been actively conducted to
help in diagnostic tasks. The current study proposes a data-driven approach that leverages deep reinforcement-
learning techniques to intelligently learn effective strategies for state diagnosis of safety functions. First, a
learning framework and key elements of reinforcement learning are designed as basic components. Then, a deep
neural-network structure and a deep reinforcement algorithm are presented for diagnosis learning. The ex-
perimental results demonstrate the feasibility of deep reinforcement learning on diagnosing the safety functions
of a nuclear facility.

1. Introduction

Monitoring and diagnosing of problems by human operators are
significantly associated with safe operations of nuclear facilities. State-
diagnosing and decision-making tasks are especially critical for human
operators to correctly perform in case of an emergency shutdown.
When a research reactor is scrammed, the operators sequentially
identify the reactor state and respond to abnormal conditions according
to the emergency operating procedures (EOP). A safety-function status
check (SFSC), defined as a section in EOP, is one of the most important
tasks to perform for reactor safety. This task ensures that the safety
functions of the reactor are maintained within their safety limits.

Although a procedure is provided, event diagnosis after a reactor
scram is a challenging task for operators. In addition, diagnostic ac-
tivities can require a considerable amount of time to accurately identify
the reactor condition because the operators should analyze the trends of
many parameters and alarms. Therefore, quickly recognizing the re-
actor transient is not easy for operators. To reduce this burden on the
operators, many studies have been conducted to help them diagnose or
detect accidents in nuclear plants.

Artificial neural networks (Rumelhart and McClelland, 1986) have
been considered as a particularly suitable approach because a diag-
nostic task is similar to a pattern-recognition problem. Thus, several
studies have applied artificial neural networks to diagnostic tasks
(Fantoni and Mazzola, 1996; Lee and Seong, 2005; Mo et al., 2007;

Santosh et al., 2007). In recent years, as hardware and software have
evolved, machine learning that uses a deep neural network (Bengio,
2009; Hinton and Salakhutdinov, 2006; Krizhevsky et al., 2012) has
been introduced, and related studies based on supervised learning have
been published. A support system for decision-making during a severe-
accident situation has been proposed for nuclear power plants (Yoo
et al., 2018). The system uses a fuzzy neural network (Buckley and
Hayashi, 1994) to diagnose an accident transient, which can contribute
to improving the safety of a nuclear power plant by predicting an ac-
cident scenario. Yang and Kim (2018) proposed an accident-diagnosis
algorithm using long short-term memory (LSTM), which demonstrated
that LSTM, a type of recurrent neural network, performs well in ana-
lyzing time-series data.

Similar to the studies based on supervised learning, reinforcement-
learning studies with significantly improved performance have been
published in the information-technology fields. Mnih et al. (2015) in-
troduced deep reinforcement learning (DRL), including a deep Q-net-
work (DQN), that combined Q-learning with a deep convolutional
neural network specialized for processing spatial data arrays such as
images. DQN demonstrated great performance in playing Atari (Mnih
et al., 2015) and Go games (Silver et al., 2016); thus, it can be con-
sidered as a powerful data-driven method. This technique overcomes
the conventional reinforcement-learning problem, which was not
completely observed because of the very large state space existing in a
real environment, by building a deep neural network to relate the value
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estimates and associated state-action pairs. Wei et al. (2017) proposed a
reinforcement-learning algorithm for building HVAC control based on
the DRL introduced by Mnih et al. (2015). Implementation of the al-
gorithm resulted in energy-cost reduction compared with the existing
method while maintaining the room temperature within a desired
range.

The present study investigates the feasibility of applying the DRL
technique to continuously perform an SFSC task. First, we introduce a
DRL framework and the key elements of reinforcement learning as basic
components. We then develop a DRL algorithm using value approx-
imation based on the deep neural network. The experimental results
demonstrate that the DRL-based diagnosis can identify the status
changes of a reactor. The remainder of this paper is organized as fol-
lows. Section 2 introduces a reinforcement-learning design for the
SFSC. Section 3 presents a deep neural network for value-function ap-
proximation of the reinforcement learning. Section 4 provides the ex-
perimental results, and Section 5 concludes this paper.

2. Reinforcement-learning design for safety-function monitoring

2.1. Reinforcement-learning framework

This study develops a DRL-based SFSC framework composed of
SFSC-environment and DRL modules. The SFSC-environment module
(i.e., emulator) loads the sensor-signal values associated with the safety
functions from dataset files and displays the safety-function status and
signal values as environment variables. It also performs the action in-
itiated by the DRL module and updates the environment variables. The
DRL module defines the state, action, and reward as key elements of
reinforcement learning for this application. It implements the re-
inforcement-learning algorithm using a deep neural network to learn
the best action for each environment condition. The deep neural net-
work, a multi-layered network structure, is used to approximate the

expected reward for the input state. During training, the parameters of
the nodes inside the deep neural network are gradually optimized.

The overall operation of the SFSC framework is shown in Fig. 1.
First, the current signal values are introduced to the SFSC environment,
and a pair of actions is output by the neural network, which is called
predict Q-network. Once the action is executed in its current state, it is
evaluated to determine the reward for “good” or “bad” result. These
trial-and-error results are stored in the replay buffer, and the predict Q-
network is periodically trained using the experience information.
During the training, it learns an effective condition-diagnosis policy
without using any pre-defined model. It utilizes another network, de-
noted as Q̂-network, which has the same structure as the Q-network, to
realize less fluctuation and more stability in the training process.

2.2. Elements of reinforcement learning

As stated in the recent safety-analysis report (KAERI, 2014), Korean
research reactors (e.g., Kijang Research Reactor) feature the following
safety functions. First, the reactivity-control safety function ensures that
a reactor is shut down, which is of utmost importance because it pro-
vides primary means of controlling the reactivity in the reactor core.
Second, maintenance of the auxiliary safety functions ensures that
electrical power is successfully transferred from off-site to the internal
class 1E power bus. The equipment used for the safety functions is
powered by the maintenance of auxiliary safety functions. Third, the
reactor-pool inventory control safety function ensures that the reactor
core is covered with primary coolant to enable removal of the decay
heat. It includes monitoring whether the coolant in the core is properly
maintained. Next, the core heat-removal safety function ensures that
heat from the reactor core is properly removed by forced convection or
natural circulation. Finally, the confinement-isolation safety function
ensures that confinement atmospheric conditions are maintained within
acceptable limits or actions are initiated to mitigate the effects of events

List of acronyms

HVAC Heating, ventilation, and air conditioning
ANN Artificial neural network
KAERI Korea atomic energy research institute
DRL Deep reinforcement learning

LSTM Long short-term memory
DQN Deep Q-network
ReLU Rectified linear unit
EOP Emergency operating procedures
SFSC Safety-function status check

Fig. 1. SFSC framework based on reinforcement learning.

J. Park, et al. Progress in Nuclear Energy 118 (2020) 103123

2



related to radiation hazards.
This work, which is presented as a feasibility study, simplifies the

target environment to reduce the problem complexity. First, we assume
that only three safety functions are available: reactivity control, re-
actor-pool inventory control, and confinement isolation. We assume
that each safety function is totally affected by a critical signal such as
the neutron log rate for reactivity control, reactor-pool level for reactor-
pool inventory control, or pool-surface radiation for confinement iso-
lation.

To apply the reinforcement-learning technology to this target en-
vironment, key elements for the environment need to be defined.
Reinforcement learning is a learning method that involves mapping
conditions into actions to maximize the numerical reward. The learning
agent is not told what actions to take but instead performs a trial-and-
error search to discover which actions yield the highest reward. The
agent senses its environment state and performs an action that affects
the state. Thus, the agent goal, environment states, possible agent ac-
tions, and rewards resulting from the actions in the target environment
should be clearly defined.

Similar to human operators, the DRL needs to use immediate past
and present signal values and varying patterns to analyze abnormalities
associated with the safety functions. In particular, to cope with a rapid
change in the state, immediately identifying a signal-increase pattern is
important by learning the signals from the previous multi-steps together
(instead of the simple current signal values). In other words, a sequence
of signals is defined as a state in this environment. The signals in the
state are encoded in a two-dimensional array, which is the input form of
the DRL through a pre-processing step.

The DRL goal is to recommend an appropriate response action be-
fore the safety functions are compromised. To learn this goal, we need
to define the reward that will actually be given after the action and to
predict the future reward in a given state. If the DRL performs action at
in state st, the state will change to new state +st 1, and the DRL will
receive immediate reward rt . The immediate reward is explained as
follows. First, if the DRL does nothing in a normal situation, it is re-
warded with zero (0). If it makes an appropriate decision, it receives a
positive reward (1). Otherwise, if it makes a wrong decision, it receives
a negative reward (−1). The DRL uses s aQ( , )t t (Mitchell, 1997) to
represent the maximum reward that can be obtained by performing
action at in state st. The total expected reward in state st is calculated as
the sum of the reward received when the state changes to next state +st 1

and the expected reward to be obtained by performing action +at 1 in
state +st 1. Therefore, s aQ( , )t t can be expressed in a recursive fashion as
Equation (1). In Equation (1), factor ∈γ [0,1] is a discount-rate para-
meter for the future reward (Mitchell, 1997) and is set as 0.99 in this

study. Function Qmax estimates the future reward using Q-network.

= + + +s a r γ Q s aQ( , ) max ( , )t t t t t1 1 (1)

Fig. 1 shows that the DRL output is an action that maximizes the
expected reward in a given state. A recommendation to implement the
methods to maintain each safety function is defined as actions, which
are described as follows: rod insertion for reactivity control as the
neutron log rate increases, pool-water storage injection for reactor-pool
inventory control as the reactor-pool level decreases, confinement iso-
lation damper close for confinement isolation as the pool-surface radia-
tion increases, and NONE for normal state of all safety functions.

Fig. 2 shows the learning process of the DRL. As introduced by Mnih
et al. (2015), two Q-networks related to action and reward are used in
the DRL. The predict Q-network is used to select the best action that can
obtain the maximum reward. The target Q̂-network is used to provide a
labeled reward from previously learned experience. As a first step of the
learning process, the DRL observes current state st and outputs action at
that yields maximum reward s aQ( , )t t using the predict Q-network.
After performing the action in state st, it receives immediate reward rt
and observes new state +st 1. Then, the DRL calculates the expected re-
ward during the transition from state +st 1 to the last state using the
target Q̂-network. Thus, the target value for the predict Q-network to
learn is expressed as + + +r Q s aγmax ˆ ( , )t t t1 1 . Finally, the parameters
within the predict Q-network are updated by a loss function that cal-
culates the difference between the predicted and target values. In other
words, the predict Q-network learns by comparing the predicted reward
with the actual reward that was previously obtained and tried. Re-
inforcement learning is known to suffer from exploitation and ex-
ploration issues in that only selected actions are attempted in the
training process. The present study uses the decaying ε-greedy policy
(Mnih et al., 2015), which selects actions for exploration with high
probability at the beginning of the training and selects actions output
by the Q-network with high probability at the end of the training. The
structure of the Q-networks and the reinforcement-learning algorithm
are described in detail in Sections 3.1 and 3.2, respectively.

3. DRL mechanism for safety-function monitoring

3.1. Value-function approximation

Value function represents the prediction of a future reward in a
state. By considering scalability, the use of the approximation method is
efficient because it requires a very large state space for all state in-
formation. The present work adopts a neural-network structure called
Q-network (Mnih et al., 2015) to approximate the value function. As an

Fig. 2. Reinforcement-learning sequence.
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output of the Q-network, Q-value, which is used for action selection in a
certain state, can be calculated by performing a forward pass in the
neural network. Fig. 3 shows the structure of the value-function ap-
proximation structure designed in this study.

The value-function approximation consists of an input processing
step, deep neural-network steps (i.e., Q-network), and an output pro-
cessing step. In the input processing step, the current signal values are
transformed into a two-dimensional array, and this array is piled up on
three arrays created in the previous execution. The prepared input is
introduced to the input layer of the neural network. The layers in the
neural network have 4, 32, 64, and 512 filters, and the rectified linear
unit (ReLU) is used as an activation function. The last layer in the
network output, namely, s aQ( , )t t

n , is an approximate value of the ex-
pected future reward by choosing action at

n (n is the number of action
types) in state st. Finally, the action to obtain the maximum s aQ( , )t t

n

value is chosen as the recommended action in state st . During the
training, the neural-network weight parameters are incrementally up-
dated using the gradient descent algorithm with a loss function. The
loss function is expressed as a squared-error function between the
predicted value of the network and the labeled value. The loss function
is expressed as = + −+ +L r γ Q s a Q s a[( max ( , )) ( , )]t t t t t1 1

2, where rt is
the actual current reward and γ is the discount-rate parameter, which is
equal to 0.99.

This study adopts two advanced techniques (Mnih et al., 2015) for
the value-function approximation: an experienced replay for a corre-
lation problem and a network separation for a non-stationary target
problem. The experienced-replay buffer shown in Fig. 1 stores records
consisting of the current state, action, reward, and next state, which are
the information identified from the execution of the actual action. The
neural network is trained using 32 records randomly fetched from the
buffer. This random sampling of the training data prevents the data-
correlation problem. The network becomes non-stationary when only
one neural network is used for both the predicted and target values.
Then, the learning performance is known to deteriorate. As presented
by Mnih et al. (2015), the current work deploys two neural networks
with the same structure: one network (i.e., Q-network) is the currently
trained neural network. The other one (i.e., Q̂-network) is the network
that provides a target value. Although the networks have different
parameters during training, they are synchronized at every 1,000th
scenario execution, as shown in Fig. 2.

3.2. DRL algorithm

The DRL learning algorithm is described in Algorithm 1. The algo-
rithm is implemented in the SFSC emulator using datasets generated by

the tool used for safety analysis of Korean research reactors. The epi-
sodes loaded in the algorithm are scenario cases extracted from the
datasets, and each episode is composed of many emulation steps.

Algorithm 1
DRL algorithm for the SFSC.

1: =BInitialize replay buffer [empty]
2: ωInitialize predict neuralnetwork Q with weights

3: =ω ωInitialize target neural network Q̂ with weights ˆ
4: =e NFor doepisode 1 to
5: Reset the SFSC environment to the initial state
6: =t TFor do1 to
7: ←s recent signal observationt

8: = ⎧
⎨⎩

⎫
⎬⎭

a
random a a with probability ε
argmax Q s ω otherwise

( ~ )
( | )t

n

t

1

9: aExecute action in the SFSC emulator environmentt
10: +r sObserve reward and next statet t 1
11: ← +B s a r s( , , , )t t t t 1

12: ′ ←s a r s BGet minibatch( , , , )

13: = ⎧
⎨⎩

′

+ ′ ′
⎫
⎬⎭

y
r if s is a terminal state

r γmaxQ s a ω otherwiseˆ ( , | ˆ )

14: Q ω s a yTrain ( )using , , and by performing the gradient descent method
15: End For
16: ←C Q ω Q ωEvery episode, ˆ ( ˆ ) ( )
17: End For

First, the replay buffer and two neural networks are initialized. The
main loop (lines 5–15) for training neural network Q is sequentially
executed for each episode. The algorithm starts by observing the recent
signal values and selecting an exploration action based on the ε-greedy
policy or an action with a maximum value output by network Q. An
information record, namely, +s a r s( , , , )t t t t 1 , that observes the environ-
ment altered by the action is stored in buffer B. A batch set, which
samples the records in the buffer, is prepared as input data for training
network Q. In addition, the target value calculated by target network Q̂
is prepared as the labeled data of the training. Then, the parameters
inside network Q are updated as the training proceeds by performing
gradient descent using the input and labeled data. After the main loop,
network Q̂ is periodically updated by copying parameters ω of network
Q.

Fig. 3. Structure of the value-function approximation.
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Fig. 4. Performance of the DRL algorithm during the training process.
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4. Experimental results

4.1. Experimental setup

The proposed DRL-based algorithm is implemented on an emulator
for reinforcement learning, which operates using the scenario data
produced from RELAP/MOD3.3 (NRC, 2001), a realistic nuclear-system
transient-analysis code used for safety analysis of Korean research re-
actors. It is trained on the profiles of the sensor signals under excessive
reactivity-insertion accidents due to the withdrawal of a control rod and
loss of coolant accidents due to flow-pipe rupture. In addition, signal
patterns that converge to a specific value after being increased are
generated to simulate the radiation released on the reactor-pool sur-
face. A training dataset of 10,000 episodes is set by adding ± 30%
random noise to the prepared data, and a test dataset of 5,000 episodes
is set by adding ± 10% random noise. The training and testing datasets
are split. The free parameters of the neural networks used in the Q-
network are as follows: the learning rate is 10−6, discount rate is 0.99,
number of mini-batches is 32, and number of hidden layers is two.

As discussed in Section 2, the state consists of three critical signals:
neutron log rate, reactor-pool level, and pool-surface radiation. Further, the
DRL algorithm selects one of the following four actions: Insertion of rods,
pool-water supply tank value open, confinement-isolation damper close, and
NONE. A positive reward is awarded if the appropriate action is re-
commended within the range of 70%–100% of the set point for the
alarm to issue a warning that a safety function encounters a problem.
Otherwise, a negative reward is awarded, and the episode is termi-
nated. We assume that the action is performed without delay and im-
mediately affects the state change. The maximum reward per episode is
set for a rapid training process. If the total reward is greater than the
maximum reward, the reward is reported, and a new episode is started.

Fig. 4 shows that the performance of the DRL gradually improves as
the training progresses. This experiment selects a random signal among
the target signals, proceeds through the episode, and repeats the pro-
cess of experience learning. Fig. 4(a) and (b) show that the reward and
accuracy are very low at the start of the training because of the penalty
that results from misjudgment and wide exploration. However, they
increase as the DRL algorithm learns an effective strategy for re-
commending an appropriate action in each signal state. Eventually, the
reward stabilizes to the maximum reward, and the accuracy converges
to approximately 95% after the DRL algorithm learns the strategy.
Fig. 4(c) shows the learning process to offer an appropriate action in the
range of 70%–100% of the set point for the neutron log-rate signal
whose signal value increases to the log scale. Fig. 4(d) shows the

experimental results of the reactor-pool level signal that exhibits the
characteristic in which the signal value falls when a problem occurs.
Fig. 4(e) shows the experimental results of the pool-surface radiation
signal when the signal value linearly increases. The pattern shown in
Fig. 4(c)–(e) is similar to that shown in Fig. 4(a) and (b). Misjudgment
and exploration occur at the beginning of the training. However, after
the strategy is learned, the trend of correct judgment is maintained. The
training curves shown in Fig. 4(c)–(e) indicate that the DRL can provide
actions required to respond to deterioration in the neutron rate, pool
level, and radiation. The training curves that converge with high re-
ward and accuracy show the applicability of the reinforcement learning
designed for safety-function monitoring task.

Fig. 5 shows the results of the DRL test when the training is com-
pleted. The DRL selects the best choice based on the Q-network from
the start to the end of the test. Fig. 5(a) shows that the average reward
from each test run converges to the maximum reward score. The DRL
also makes correct judgment at an appropriate time, as indicated by the
results of the 5,000 test episodes for the neutron log-rate signal shown
in Fig. 5(b).

A design factor that affects the performance of DRL is found in this
experiment, that is, the DRL exhibits different results depending on the
manner of scoring the reward. In the training case with only a single
reward [Fig. 6(a)], the experience of earning a good reward at the
beginning exerts a great influence, and the subsequent search is less
reflected in the training. On the other hand, in the training case with a
variable reward [Fig. 6(b)], which adds the reward for action appro-
priateness and that for the response time, the DRL examines a better
recommendation position that can achieve a gradual higher reward.
Therefore, establishing a specific reward policy is important to achieve
the desired objective when reinforcement-learning techniques are used.

5. Conclusion

This paper has introduced a support function based on the DRL
technology to assist human operators in monitoring the safety functions
of nuclear facilities. First, a learning framework and key elements of
reinforcement learning for a target environment are established.
Neural-network architecture for DRL is then presented, and a DRL al-
gorithm is described. The experiments performed using the scenario
data obtained from a safety-analysis tool demonstrate that the proposed
DRL-based algorithm has the potential to help in diagnostic tasks. This
work is a feasibility study for utilizing reinforcement-learning tech-
nology in nuclear systems. We expect that reinforcement learning will
be better applied to operation supports such as emergency response and

Fig. 5. Test results of the DRL algorithm.
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sequence control.
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