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A B S T R A C T

Background: Motivational dysregulation represents a core vulnerability factor for bipolar disorder. Whether this
also comprises aberrant learning of stimulus-reinforcer contingencies is less clear.
Methods: To answer this question, we compared healthy first-degree relatives of individuals with bipolar dis-
order (n = 42) known to convey an increased risk of developing a bipolar spectrum disorder and healthy
individuals (n = 97). Further, we investigated the effects of the behavioral activation system (BAS) on re-
inforcement learning across the entire sample. All participants were assessed with a probabilistic learning task
that distinguishes learning from positive and negative feedback. Main outcome measures included choice fre-
quencies and learning rate parameters generated by computational reinforcement learning algorithms.
Results: First-degree relatives choose more rewarding stimuli more consistently and showed marginally reduced
learning rates from unexpected negative feedback. Further, first-degree relatives had lower BAS scores than
controls, which were negatively associated with learning rates from unexpected negative feedback.
Limitations: However as probands also reported other mental disorders such as Attention-Deficit/Hyperactivity
Disorder and substance abuse among their first-degree relatives, we cannot know, whether these findings are
specific to the risk for bipolar disorder.
Conclusion: The behavior of first-degree relatives of individuals with bipolar disorder, who also display in-
creased BAS sensitivity, is less influenced by unexpected negative feedback. This reduced learning from un-
expected negative feedback biases subsequent choices towards stimuli with higher probabilities for a reward. In
sum, our results confirm the role of aberrant reinforcement learning in the pathophysiology of bipolar disorder.

Bipolar disorder (BD), which is characterized by episodes of aber-
rant affect, motivation, and cognition (American Psychiatric
Association, 2013), has a heritability of 60–80% (McGuffin et al.,
2003). Thus, a family history of BD is the strongest predictor of de-
veloping BD (Paaren et al., 2014). However, to date, we cannot predict
which relatives will manifest the disorder themselves. For early and
precise diagnosis and the development of targeted preventions, it is
crucial to enhance our understanding of how an increased familial risk
is expressed at a mechanistic level.

Motivational aberrancies and more specifically, the aberrant pro-
cessing of action outcomes might be one of the mechanisms through
which familial risk is expressed (Wessa et al., 2013). More specifically,

it has been suggested that lower learning rates for negative than posi-
tive outcomes might lead to overly optimistic expectations. These ex-
cessively optimistic expectations are thought to increase the frequency
and magnitude of unexpected, adverse outcomes, leading to low mood.
When the mood eventually returns to baseline levels, the pessimistic
expectations that developed during depressed mood may now lead to
increased positive surprises and improved mood (Eldar and Niv, 2015).
Indeed, heightened responses to positive feedback (Linke et al., 2012;
Singh et al., 2014), and reduced sensitivity to unexpected negative
feedback (Linke et al., 2012) have been observed in unaffected first-
degree relatives of individuals with BD.

Of note, models of BD also emphasize the role to the behavioral
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activation system (BAS), which presumably mediates individual dif-
ferences in the sensitivity and reactivity to appetitive stimuli
(Gray, 1987). Higher BAS-scores were shown to predict the onset of
mania (Alloy et al., 2012a; Meyer et al., 2001). Further, high levels of
BAS and the behavioral inhibition system (BIS), which is thought to be
sensitive to signals of punishment and non-reward, predict the pro-
gression from bipolar spectrum disorders to BD I disorder (Alloy et al.,
2012b). On a neurobiological level, the BAS has been associated with
the mesolimbic and mesocortical dopamine system (Depue and
Iacono, 1989), which codes prediction errors referring to expectation
violations (e.g., feedback that is better or worse than expected
(Montague et al., 1996)) relevant for reinforcement learning. While
learning from unexpected positive feedback has been linked to striatal
neurons expressing mostly dopamine-D1 receptors, learning from un-
expected negative feedback relies more on dopamine-D2 receptors
(Maia and Frank, 2011). Interestingly, high BAS scores have been as-
sociated with the disequilibrium between dopamine-D2 receptor den-
sity and the availability of the enzyme catechol-O-methyltransferase
(COMT) (Reuter et al., 2006) both relevant for learning from negative
outcomes (Maia and Frank, 2011).

To date, little is known how the familial risk for BD and individual
differences in BAS and BIS interact in terms of aberrancies in re-
inforcement learning. Thus, the primary goal of the present study was
to parse common versus specific abnormalities in reinforcement
learning associated with (a) familial risk for BD and (b) individual
differences in the BAS and BIS. We used a probabilistic learning task
(Frank et al., 2004) and applied computational reinforcement learning
algorithms which make use of the individual trial-by-trial choice be-
havior to estimate parameters reflecting learning from unexpected po-
sitive and negative feedback. Based on the literature, we predicted that
both familial risk for BD and high BAS scores would be associated with
impaired learning from negative prediction errors. We further hy-
pothesized that relatives of individuals with bipolar disorder would
show a stronger preference for stimuli with a higher probability to be
followed by positive feedback.

1. Methods

1.1. Participants

The study sample consisted of 42 unaffected first-degree relatives of
individuals with bipolar I disorder (REL, 17 siblings, 25 children) and
97 healthy volunteers (HV) without a family history of mental disorder.
REL were recruited through individuals with bipolar I disorder that
participated in previous and ongoing studies conducted by our group.
Of the 82 REL interested in participating, 40 were excluded during an
initial phone screening due to mental illness (major depressive disorder:
n==18, Attention-deficit/Hyperactivity Disorder (ADHD): n==8,
anxiety disorder: n==10, Substance use disorders: n==3, anorexia
nervosa: n==1). HVs were recruited from an existing subject pool.
REL and HVs were comparable regarding sex, years of education, so-
cioeconomic status, intelligence, working memory capacity and BIS-
score. However, HVs were younger and showed higher BAS-scores than
REL. For details, please see Table 1.

The study was approved by the Ethics Committee of the Medical
Faculty Mannheim of the University of Heidelberg and complied with
the Declaration of Helsinki. Participants gave written informed consent
before study participation.

1.2. Clinical assessment

The absence of affective, psychotic, anxiety, eating, and substance
use and addictive, and Attention-Deficit/Hyperactivity Disorder
(ADHD) was confirmed in all participants using the Structured Clinical
Interview for DSM-IV for Axis I (Wittchen et al., 1997) and ADHD di-
agnostics (Retz-Junginger et al., 2002). All index cases met criteria for

bipolar I disorder. Twelve index cases met criteria for alcohol use and
addictive disorder, and 2 cases fulfilled criteria of panic disorder.
Moreover, REL reported additional cases of major depression
(n==18), ADHD (n==1), anxiety (n==5) and alcohol use and
addictive disorder (n==6) among their first-degree relatives. Seven-
teen REL reported ≥2 cases of BD within their family. HVs did not
endorse any affective, psychotic, substance use and addictive disorder,
or ADHD for their first-degree relatives.

2. Questionnaires

2.1. BAS, BIS

We assessed the German version of the BIS/BAS scales
(Strobel et al., 2001) that measure participant's urge to approach re-
ward-related cues or to pursue goals (BAS) with 13 items and their
sensitivity to signals of punishment or non-reward (BIS) with seven
items. All items are assessed on a four-point Likert scale, ranging from 1
(strongly disagree) to 4 (strongly agree). Both scales have good psy-
chometric properties (BAS: Cronbach's α = 0=.81; BIS: Cronbach's
α = 0.78 (Strobel et al., 2001).

2.2. Neuropsychological assessment

We used the German version of the Multiple Choice Word
Vocabulary Test (Lehrl, 2005) that has a 6-month retest-reliability of
r = 0.95 and a criterion validity of r = 0.81 (Lehrl, 2002) to measure
intelligence. Working memory performance was assessed with the digit
span subtest from the Wechsler Adult Intelligence Scale
(Wechsler, 1997).

2.3. Probabilistic Selection Task

The probabilistic selection task consists of an acquisition phase and
a test phase that implicitly measures how well the reinforcement con-
tingencies have been learned (Frank et al., 2004). During every trial of
the acquisition phase, participants see one of three different stimulus
pairs characterized by different feedback probabilities in random order
(pair “AB” – positive feedback ratio: 80/20; pair “CD” – positive feed-
back ratio: 70/30, pair “EF” – positive feedback ratio: 60/40). Partici-
pants must choose one stimulus from the presented pair, which is fol-
lowed by positive (smiling cartoon face) or negative feedback (frowning
cartoon face). During 300 trials, participants learn to choose stimuli

Table 1
Demographic characteristics, cognitive abilities and questionnaire data

Relatives HV Statistics p-value
(n==42) (n==97)

Demographics
Sex, female/ male 24/18 57/40 χ2

(1) = 0.03 .86
Age, y, mean (SD) 33.6 (14.2) 27.5 (9.3) t(137) =−2.52 .02
Years of Education, mean

(SD)
15.5 (2.7) 16.1 (1.7) t(137) = 1.23 .23

ISEI score, mean (SD) 56.5 (16.3) 58.4 (14.3) t(137) = 0.69 .50
Cognitive abilities
Intelligence score, mean

(SD)b
104 (11) 101 (10) t(137) =−1.07 .29

Working memory, mean
(SD) c

58 (30) 57 (28) t(137) =−0.29 .77

Questionnaires
BAS score, mean (SD) 2.9 (0.4) 3.1 (0.3) t(137) = 3.41 .001
BIS score, mean (SD) 2.6 (0.3) 2.6 (0.4) t(137) = 0.59 .55

Abbreviations: ISEI, international socio-economic index of occupational status
ranging from 16 (low) to 90 (high) according to Ganzeboom et al., (1992); n,
sample size; SD, Standard deviation; y, years.

b
Raw scores were standardized by IQ-transformation.

c
Raw scores were standardized by percentile rank transformation.
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that are probabilistically associated with positive feedback over the
stimuli associated with negative feedback.

In the test phase, novel stimulus combinations are additionally
presented to test the generalization of the previously learned stimulus-
specific reinforcement contingencies (Fig. 1). Each pair is shown 12
times in random order without feedback. The frequency of A-choices in
all 48 trials of the test phase containing “A” serves as a measure for the
sensitivity to positive feedback/ reward since “A” had previously been
followed by positive feedback with a probability of 80%. The frequency
of B-avoidance in all 48 trials of the test phase containing “B” measures
sensitivity to negative feedback since “B” had been previously followed
by negative feedback with a probability of 80% (Fig. 1).

2.4. Computational modeling

Learning of reward contingencies was assessed through a re-
inforcement learning model (Chase et al., 2010; Frank et al., 2007;
Solomon et al., 2011). The model uses reward prediction errors defined
as the difference between the actual feedback and the expected feed-
back, to update reward expectations about a stimulus, also referred to
as values. The magnitude of each value update depends on the model's
learning rate parameters. Importantly, the present model distinguishes
between learning from positive prediction errors meaning that the ac-
tual feedback is better than expected, and negative reward prediction
errors meaning that the actual feedback is worse than expected, by
introducing separate learning rates for each error type. Specifically,
values are updated according to:

+ = + − + −+ + − −Q t Q t α r t Q t α r t Q t( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i i i

where Qi(t) represents the value of stimulus i on trial t, r(t) denotes the
reward feedback (with r = =1 for positive, and r = =0 for negative
feedback), and α+, and α- are the learning rates for outcomes that are
better or worse than expected. Note that a strong focus on immediate
rewards, indicated by high trial-by-trial fluctuations of expectancies
and behavioral choices, would result in the estimation of a high
learning rate. In contrast, low learning rates reflect more gradual but
stable changes in values and have been related to higher performance
during the test phase of this task (Frank et al., 2007).

Within the computational model, values (i.e., reward expectations)
are translated into choices via a softmax function, which determines the
probability for choosing stimulus i compared to the simultaneously

presented stimulus j during any given trial as:

=

+

p a t Q t e

e e
( ( )| ( ))i

Qi t
βk

Qi t
βk

Qj t
βk

( )

( ) ( )

The parameter βk governs the exploitation/exploration trade-off,
where k indexes the acquisition or test phase respectively
(Khamassi et al., 2015). Low βk-values imply a strong tendency toward
exploiting the current strategy (e.g. continue to choose stimulus “A”),
while high β-values indicate exploration of both actions (e.g. choosing
“A” and “B”).

The reinforcement learning model applied in this study thus consists
of four parameters. α+ and α- capture the immediate impact of positive
and negative reward prediction errors on expectancies modeled by the
algorithm. βacq and βtest formalize the trade-off between exploiting a
choice policy and exploring new strategies during either the acquisition
or the test phase. These parameters are estimated for each subject se-
parately based on its individual history of choices and feedbacks during
acquisition and decisions during testing. To examine whether differ-
ences in learning were already present during the acquisition phase, we
additionally estimated the model on the acquisition phase alone
(Khamassi et al., 2015).

Estimation was performed by maximizing the log-likelihood
= ∑L θ logp a t Q t( ) ( ( )| ( ))t i , where index t runs across all trials of either

the entire data set or the acquisition phase only. Parameters were
constrained with the range [0.01 1] and estimation was repeated for
parameter initializations within this range using a step size of 0.05, to
rule out local minima in the log-likelihood solution. The supplement
provides information on additional performance measures previously
reported for this task (S1).

2.5. Statistical analysis

All statistical analyses were performed using the Statistical Packages
for Social Sciences version 23.0. Demographic data conforming to the
assumptions of parametric analysis were analysed using Students t-test.
For nominal demographic data Chi-square tests were computed.

We first conducted a multivariate analysis of variance (MANOVA)
that included the learning parameters from the learning and test phase
as well as the frequency of A-choices and B-avoidance as dependent
variables and group as the independent variable for an overall

Fig. 1. Illustration of the task and stimuli.
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assessment of effects. This was followed by a multivariate analysis of
covariance (MANCOVA) with age and task version as between-subjects
covariates of no interest (Schutte et al., 2017).

To determine the magnitude of the effect in the different dependent
variables, learning parameters from the computational approach were
first contrasted between groups via Mann-Whitney U tests. Data from
the test phase were initially analysed using Students t-test, followed by
univariate analyses of covariance (ANCOVA) including age and task
version as nuisance variables. For within-group differences concerning
the choice of “A” or the avoidance of “B” repeated measures ANCOVAs
with task version as a between-subjects covariate of no interest were
computed. Across all ANOVAs, the Greenhouse-Geisser correction was
used when applicable. Finally, correlations between learning para-
meters, and choice behavior during the task were analyzed with
Spearman rank correlations within groups and compared using Fisher's
z transformation. We report 95% confidence intervals and results were
considered significant with p < .05.

3. Results

3.1. Validation of the computational model in the complete sample

In the whole sample, we observed that learning rates for unexpected
positive (α+) and negative (α-) feedback were uncorrelated
(rS = − .040, p = .637). Further, learning rates for positive feedback
were negatively correlated with “A” choices (rS=−.325, p < .001)
and learning rates for negative feedback were negatively correlated
with avoidance of “B” (rS=−.23, p= .007). This finding is consistent
with previous reports that low learning rates, which indicate that be-
havior is only to a minor extent driven by immediate reward and
punishment, facilitate the generalization of the learned stimulus-spe-
cific reinforcement contingencies probed during the test phase
(Frank et al., 2007).

3.2. Group differences

The initial multivariate tests indicated a significant group effect in
the data (MANOVA: F(6,132) = 2.47; p= .027; η2= 0.101; MANCOVA:
F(6,132) = 2.28; p= .040; η2= 0=.095). The initial set of post-hoc tests
showed that REL and HV did not differ in any of the learning para-
meters α+, α-, βacq and βtest estimated on both acquisition and test
phase. A second model estimated on the acquisition data alone con-
firmed the absence of group differences (Table 2). However, when we
added age and task version as nuisance variables, we observed mar-
ginally lower learning rates from unexpected negative feedback in REL
(F(1,135) = 3.35; p= .069; η2= 0.024).

During the test-phase, REL chose the most richly rewarded symbol
“A” more consistently than HV. This result remained significant, when
age and task version were added as covariates (F(1,135) = 6.71;
p= .011; η2= 0.047). There was no age effect, but task version ap-
peared to have influenced the choice of ‘A’ (F(1,135) = 4.48; p= .036;
η2= 0.032; for details, see Supplement S2). There were no group dif-
ferences in the avoidance of symbol “B”, which was probabilistically
associated with negative feedback, or the reaction times during the
choice of “A” and the avoidance of “B” (Table 2).

Intra-group comparisons showed that HV (t(96)= 5.29, p < .001),
but not REL (t(41)=−0.25, p= .80) avoided stimulus “B” significantly
more often than they chose stimulus “A” (Fig. 2c). This effect remained
when task version and age were added as nuisance variables (REL: F(1,
39) = 0.03, p= .861; HV: F(1,94) = 4.14, p= .045).

In the whole sample, we also observed larger learning rates for
unexpected positive feedback (α+) than negative feedback (α-)
(Z=2.08, p= .038; Table 3). This effect was observable in HV
(Z=2.20, p= .028), but absent in REL (Z=0.31, p= .76). Given that
small learning rates should yield greater transfer of learned reward-
contingencies observable as higher accuracies in the test phase, HV

should be more accurate in avoiding “B” than choosing “A”. To test this,
the difference of both learning parameters (α+ - α-) was correlated with
the difference between “A”-choices and ‘B’-avoidance, revealing a sig-
nificant association (r=−0.45, p < .001, Fig. 2B).

We also explored differences between individuals, who had more
than one first-degree relative with BD, and those, who had only one
case in their family, as the first might have a higher vulnerability for
BD. However, there were no significant differences between these
subgroups in the learning parameters (all p-values > .14) and the
choice behavior during the test-phase (all p-values > .52).

3.3. BAS/ BIS scales

REL showed lower BAS-scores than HV (see Table 1). Across the
entire sample, there was a significant negative association between BAS
scores and learning rates from unexpected negative feedback (α-)
(rS=−0.21, p= .011). This effect was driven by REL (REL:
rS=−0.34, p= .029; HV: rS=−0.07, p= .481; Z=−1.49, p= .14;
see Fig. 2). There were no additional significant associations between
BAS or BIS scores and other parameters of the learning or test phase
across the entire sample (all rS < 0.12, p > .14).

3.4. Exploration of differential associations between learning parameters
and performance during the test phase

While learning rates of positive feedback (α+) were negatively re-
lated to the choice of “A” in both groups, learning rates of negative
feedback (α-) were positively associated with the choice of “A” in HV
only (Table 3). This indicates that REL might rely more on positive
feedback, which is consistent with the observation that REL rated the
positive feedback as more positive than HV (t(137)= 2.22, p= .028; for
details, see Supplement S3).

Further, in HV only, avoidance of “B” was negatively associated
with learning rates of negative feedback and positively related to
learning rates of positive feedback (Table 3). This suggests a complex
interaction of learning rate effects on avoidance of “B” in HV. However,
in REL, avoidance of “B” was associated with the exploitation of the
choice strategy (e.g., choosing “A”) as opposed to exploring different
options. Thus, REL might learn through positive prediction errors to

Table 2
Parameters of the computational modeling approach and behavioral data from
test phase for relatives, individuals with hypomanic temperament and healthy
volunteers.

Relatives Controls Statistic p-value
(n==42) (n==97)

α+, median (SD) 0.10 (0.34) 0.08 (0.28) U=2033 .99
α-, median (SD) 0.07 (0.34) 0.03 (0.22) U=1739 .16
βacqu, median (SD) 0.26 (0.33) 0.32 (0.30) U=1943 .67
βtest, median (SD) 0.19 (0.37) 0.26 (0.29) U=1792 .26
Learning parameters estimated for the acquisition phase
α+, median (SD) 0.06 (0.28) 0.09 (0.27) U=2003 .87
α-, median (SD) 0.12 (0.32) 0.05 (0.25) U=1831 .34
β, median (SD) 0.32 (0.30) 0.29 (0.29) U=1991 .84
Test phase
Choice of “A”, mean percent

(SD)
71 (21) 58 (26) t(137)= 2.90 .004

Avoidance of “B”, mean
percent (SD)

71 (18) 77 (19) t(137)= -1.56 .12

“A”chosen in msec, mean
(SD)

933 (375) 876 (288) t(137)= 0.87 .39

“B”avoided in msec, mean
(SD)

944 (353) 834 (232) t(137)= 1.84 .07

Abbreviations: α+, learning rate from unexpected positive feedback; α-,
learning rate from unexpected negative feedback; βacqu exploitation/ explora-
tion trade-off during the acquisition phase; βtest exploitation/ exploration trade-
off during the test phase; msec, milliseconds, SD, standard deviation.
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choose “A” and exploit this strategy thereby also avoiding “B” as both
stimuli are paired during acquisition.

4. Discussion

The present study presents several new insights regarding the use of
negative and positive feedback during reinforcement learning and
subsequent approach and avoidance behavior associated with (a) the
familial risk for BD and (b) elevated levels of BAS. Individuals with a
familial risk for BD showed an increased approach of highly rewarding
stimuli compared to HV and marginally reduced learning rates from
unexpected negative feedback when controlling for age and task ver-
sion. Higher BAS scores were also associated with reduced learning
rates from unexpected negative feedback, and this association was more
pronounced in REL. Exploratory analyses additionally showed differ-
ential associations between learning rate parameters and choice beha-
vior during the test phase. While in HV the choice of “A” and the
avoidance of “B” were related to both learning rates from positive and
negative feedback, in REL, the choice of “A” was only related to
learning from unexpected positive feedback in REL, and avoidance of
“B” was unrelated to the learning rates.

4.1. Differences between first-degree relatives and healthy volunteers

Consistent with previous reports of increased reward sensitivity
(Linke et al., 2012; Singh et al., 2014) in REL, we observed a more
consistent choice of the most highly rewarding stimulus “A”. Learning
rates from unexpected positive feedback were comparable between
groups and negatively associated with the choice of “A” in both groups.
However, we observed marginally lower learning rates from un-
expected negative feedback in REL. Moreover, while HV showed a
positive association between learning rates from unexpected negative
feedback and the choice of “A”, no such relationship could be observed
in REL. Of note, low learning rates from unexpected positive feedback

Fig. 2. Main results of computational re-
inforcement learning models and test phase. A
Shows comparable learning of Q-values for
each stimulus at the end of acquisition across
groups. B Correlation between the difference
scores of the learning parameters (α+, α-) and
test parameters (“A” choices, “B” avoidance). C
Mean percentage of accurately choosing the
most often rewarded stimulus “A” and cor-
rectly avoiding the least often rewarded sti-
mulus “B” separately for the two groups. Error
bars represent standard errors. D Association
between BAS scores and learning rate from
unexpected negative feedback

Table 3
Correlations between parameters of the acquisition phase (learning from un-
expected positive feedback [α+], learning from unexpected negative feedback
[α-], exploitation/ exploration trade-off during acquisition phase [βacqu], ex-
ploitation/ exploration trade-off during testing phase [βtest]) and test phase
(choice of “A”, avoidance of ‘B’) separately for both groups and comparison of
correlations coefficients between groups.

(rS) Relatives vs. Controls
Relatives Controls z p

“A” chosen
Learning parameters estimated for learning and test phase
α+ −0.39⁎⁎ −0.30⁎⁎⁎ −0.54 .59
α- −0.07 0.30⁎⁎⁎ −1.99 .047
βacqu −0.54⁎⁎⁎ −0.40⁎⁎⁎ −0.95 .34
βtest −0.43⁎⁎⁎ −0.29⁎⁎⁎ −0.85 .40
Learning parameters estimated for learning phase
α+ −0.16 −0.09 −00.37 .71
α- −0.17 0.15 −1.69 .09
β −0.47⁎⁎⁎ −0.27⁎⁎⁎ −1.22 .22
“B” avoided
Learning parameters estimated for learning and test phase
α+ −0.15 0.28⁎⁎⁎ −2.30 .02
α- −0.09 −0.23⁎⁎ 0.76 .45
βacqu −0.44⁎⁎⁎ 0.06 −2.79 .005
βtest −0.20 −0.20* 0 1
Learning parameters estimated for learning phase
α+ 0.01 −0.00 0.05 .96
α- −0.12 0.09 −1.11 .27
β −0.30† −0.14 −0.89 .37

⁎
p < .10.

⁎⁎
p < .05.

⁎⁎⁎
p < .01.
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have been previously associated with a more consistent choice of “A”
during the test phase (Frank et al., 2007). The striatum, which is
thought to integrate the long-term probabilities of positive and negative
outcomes continuously (Jog et al., 1999), is thought to be the neuro-
biological correlate of this slow habitual learning. In contrast, pre-
frontal cortical regions might allow learning on a shorter timescale by
actively maintaining recent reinforcement experiences in a working
memory-like state (Frank and Claus, 2006). These representations in
the prefrontal cortex are thought to modify ongoing behavior by top-
down influences on subcortical structures (Miller and Cohen, 2001), a
process that would be reflected in high learning rates. So, in HV, be-
havior appears to be modified by immediate negative consequences,
whereas REL consider unexpected negative feedback less for their
choices.

Further, it is of interest that, in REL, the avoidance of the least re-
warding stimulus “B” was not associated with learning rates but with
the exploitation of the current strategy (i.e., continue to choose sti-
mulus “A”). So, it is possible that REL only indirectly learn to avoid “B”
as “A” and “B” are always presented together during the acquisition
phase, which is consistent with the observation of comparable ac-
curacies in choosing “A” and avoiding “B” during the test phase. Future
studies are needed to replicate this finding.

4.2. BAS sensitivity and reinforcement learning

As a group, REL showed lower BAS scores than HV. However, in
REL, we observed a significant negative association between BAS scores
and the learning rate from negative feedback (α-). In other words, REL
with high BAS scores showed particularly low learning rates from ne-
gative feedback. Lower learning rates for negative than positive feed-
back are thought to promote overly positive expectations, which will
result in more frequent negative surprises leading to a more depressed
mood state (Eldar and Niv, 2015). It has been further hypothesized that
during this depressed mood state, more pessimistic expectations might
develop that once the mood returns to baseline increase the likelihood
for positive surprises leading to an elevated mood state (Eldar and
Niv, 2015). Thus, REL with a hypersensitive BAS might be at an in-
creased risk to develop an affective disorder themselves, whereas low
BAS scores might indicate resilience. Future studies should test this
hypothesis with a longitudinal design.

Of note, previous reports showed that high BAS scores are asso-
ciated with a disequilibrium between the availability of the enzyme
COMT and dopamine-D2 receptor density (Reuter et al., 2006) both
relevant for learning from negative feedback (Maia and Frank, 2011).
Notably, the enzyme COMT, which catalyzes the degradation of dopa-
mine (Mannisto and Kaakkola, 1999) has been associated with bipolar
disorder. Previous research focused on rs4680, a single nucleotide
polymorphism of the COMT gene characterized by a substitution of
guanine by adenine resulting in a valine (Val)-to-methionine (Met)
transition, which leads to a significant reduction of catalytic activity in
vitro (Moskovitz et al., 2015). Of note, the Met allele appears to confer
elevated risk for mania (Goghari and Sponheim, 2008; Zhang et al.,
2009) and higher severity of manic symptoms in BD (Benedetti et al.,
2010, 2011; Lelli-Chiesa et al., 2011; Soeiro-de-Souza et al., 2012), but
also independent of this genotype, COMT activity in the striatum might
be related to the severity of manic symptoms (Bortolato et al., 2017).
Thus, future studies might want to test, whether the negative associa-
tion between BAS and learning from unexpected negative feedback is
mediated by the COMT polymorphism.

4.3. Intragroup differences

Although learning rates for unexpected positive and negative feed-
back are uncorrelated, our findings implicate that avoidance and ap-
proach behavior (differentially) depend on both learning rates for un-
expected positive and negative feedback, such that it may be necessary

to consider their relation to one another. Indeed, we observed that HV
exhibited larger learning rates from positive than from negative feed-
back, while REL did not. This difference predicted higher relative per-
formance in the avoidance of “B” compared to the choice of “A”. This
imbalance between learning rates may account for the fact that HV
show better avoidance as compared to approach performance while
REL show similar performance in these measures.

Besides, we like to point out that the bias to avoid “B” more reliably
than to choose “A”, which we observed in HV is unusual as HV are often
reported to develop no bias (Frank et al., 2004). However, HV might
show biased choices in the test phase depending on their genotype
(Frank et al., 2007) and the properties of the stimulus material
(Schutte et al., 2017). While we do not have information regarding the
genotype, we provide additional analyses regarding the stimulus ma-
terial in Supplement S2 (available online) to guide future studies, which
might investigate whether individual differences in the preference for
certain stimuli differentially interact with reinforcement learning in
individuals at risk for BD.

4.4. Limitations

Some aspects of this study limit the scope of conclusions. First, we
did not include a group of patients with BD, which would have been
essential to parse risk versus resilience markers. Further, we did not
correct for multiple testing; and therefore, especially the results re-
garding the differential associations between parameters from the ac-
quisition and test phase as well as between parameters of the compu-
tational modeling approach and the test phase must be cautiously
interpreted, as strong a-priori hypotheses did not guide them. We
decided to report these results because we believe that they aid in the
interpretation of our main findings. Moreover, we are unable to de-
termine whether the increased approach of highly rewarded stimuli is
specific for BD or might also increase the risk for ADHD or substance
use disorders. To ultimately judge the significance of our findings, ad-
ditional studies of motivational processes and reward learning are
warranted that compare BD patients and individuals with an increased
risk for BD as well as other diagnostic groups with partially overlapping
neurobiology such as ADHD.

5. Conclusion

Individuals with a family history of BD chose positive stimuli more
reliably than HV and showed marginally lower learning rates from
unexpected negative feedback and lower BAS scores. Notably, BAS
scores and learning rates from unexpected negative feedback were ne-
gatively associated; and this effect was particularly strong among REL.
Exploratory analyses on associations between learning rate parameters,
subsequent choice behaviour and BAS scores indicate that future stu-
dies should focus on moderators of individual differences in reinforce-
ment learning in individuals at risk for BD.
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