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a b s t r a c t

Cloud radio access networks (C-RANs) have been regarded in recent times as a promising concept in
future 5G technologies where all DSP processors are moved into a central base band unit (BBU) pool
in the cloud, and distributed remote radio heads (RRHs) compress and forward received radio signals
from mobile users to the BBUs through radio links. In such dynamic environment, automatic decision-
making approaches, such as artificial intelligence based deep reinforcement learning (DRL), become
imperative in designing new solutions. In this paper, we propose a generic framework of autonomous
cell activation and customized physical resource allocation schemes to balance energy consumption
and QoS satisfaction in wireless networks. We formulate the cell activation problem as a Markov
decision process and set up a revised reinforcement learning model based on K-means clustering and
anchor-graph hashing to satisfy the QoS requirements of users and to achieve low energy consumption
with the minimum number of active RRHs under varying traffic demand and user mobility. Extensive
simulations are conducted to show the effectiveness of our proposed solution compared with existing
schemes.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Research on the fifth-generation (5G) mobile cellular commu-
nication technology indicates that the traffic density in crowded
cities or hotspot areas will reach 20 ∼ Tbps/km2 in the near
future. It is expected that by 2020, mobile internet will need to
be delivering 1 GB of personalized data per user per day. Further-
more, traffic by 2030 is predicted to be up to 10,000 times greater
than in 2010 and 100 Mbps end-user services will have to be
supported [1]. To be able to support such demand, future mobile
cellular networks are expected to be deployed in a very dense
and multi-layered way. However, this triggers a proportional
consumption on energy. From the perspective of network oper-
ators, the increasing energy costs cannot sustain future network
operations. From the environmental point of view, ‘‘greenness’’
can be more meaningful with a comprehensive evaluation that
includes both energy savings and network performance, which
are the basis for energy efficiency (EE) metrics. Cloud radio access
network (C-RAN) has been proposed and regarded as a promising
concept in the information and communications technology (ICT)
area, where base-band units (BBUs) and radios are separated [2].

∗ Corresponding author.
E-mail address: guolin.sun@uestc.edu.cn (G. Sun).

Heterogeneous cloud radio access networks (H-CRANs) are con-
sidered as one of the most promising architecture to obtain a
better performance in terms of efficiency, expansibility, elasticity,
stability and expenditure to meet the traffic volume requirement
of 5G [3]. All digital signal processing (DSP) processors are moved
into a central BBU pool in the cloud, and the distributed remote
radio heads (RRHs) take the responsibility of compressing and
forwarding the received radio signals from mobile users to BBUs
through radio links. This will reduce the overall capital expenses
and operational expenses of network operators and make large-
scale high-density network deployments possible. Moreover, the
centralized architecture of H-CRAN makes it easy to collect and
analyze statistics data of runtime system, as it motivates us to
seek autonomous schemes for network energy management. H-
CRANs are predicted to solve the EE problems in the future
generation networks by alleviating interference and improving
cooperative processing gains through cloud computing.

Recently, reinforcement learning (RL) has been advocated as a
viable technology to enhance resource utilization [4]. Traditional
solutions to optimize networks such as greedy linear program-
ming and greedy search satisfy instantaneous requirements of the
system whereas RL agents survey the entire network taking into
account every possible state. For dynamic systems such as wire-
less networks where network conditions change periodically, the
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agent selects the most appropriate policy for allocating resource
in real time. In the context of H-CRAN architecture, the agent
can be trained through each learning stage and then update the
trained data to determine the state of each RRH in each decision
epoch to implement continuous control. This paper develops a
framework for EE where RL techniques are used to determine the
power consumption states (sleep and active) for each RRH. The
idea is to develop a revised Q-learning autonomous cell activation
scheme based on anchor graph hashing and a customized physical
resource allocation scheme to achieve optimal radio resource
allocation for quality of service (QoS) optimization. The proposed
framework can be realized in two steps: Firstly, we decide the
states of RRHs as active or inactive using a revised reinforcement
learning algorithm. Secondly, we set up a flexible resource al-
location module based on the active RRH set to maximize the
aggregated QoS satisfaction of all user equipment (UEs).

Unlike most of the previous model-driven works for energy
optimization just presented algorithms optimizing a certain ob-
jective for the current timeslot (or time frame) [2,5], our proposed
revised Q-learning-based framework makes a sequence of cell
activation decisions to minimize total energy consumption while
satisfying QoS demand of UEs for the whole operational period,
which is characterized by model-free or data-driven methods
using hash codes generated from anchor graph hashing as in-
puts. The main difference between the traditional Q-learning,
deep reinforcement learning and our proposed revised Q-learning
technique is that, the traditional Q-learning technique used in [6]
takes vectors as inputs which mostly do not consider user as-
sociation and mobility patterns of users. Deep reinforcement
learning-based scheme in [7,8] deals with online training and
has a slow convergence rate. Our revised Q-learning technique
uses relational matrix from the network as the input, which is
a UE-by-RRH matrix, referred to in Definition 1. Since a matrix
cannot be used as input for the Q-learning agent, we convert
the relational matrix into a hash code. Our aim is to map the
input space to similar codes in the Hamming space. The distance
among the hash codes are also called the hamming distance.
The state space of each RRH comprises the on/off state and the
traffic load on the RRH. This makes the combinatorial state space
continuous and infinite with lack of immediate reward signal.
With this problem, RL technique specifically, Q-learning can be
applied to achieve a solution, but it can only deal with limited
state space. We can decompose or discretize the state space into
simpler state spaces and learn them independently. In this way,
learning is accelerated since every separate task is easier to learn.
If the discretization is too fine, curse of dimensionality occurs
and the state space increases exponentially. To solve the prob-
lem of curse of dimensionality, we introduce k-means clustering
which reduces the state space size by dynamic abstraction where
the learning agent gathers knowledge of the environment and
divides it into sub-tasks of different clusters [9]. However, the
sub-tasks may change throughout the learning process. K-means
clustering is used to form clusters based on a rough estimate
of the environment. Based on the rough estimate, the agent can
explore the environment to improve on its decisions and anchor
graph hashing maps the clusters to hash codes. To efficiently
solve this problem, we first use a revised Q-learning method
to solve the cell activation problem and formulate the resource
allocation problem for users as a convex optimization problem.
Our motivation is to achieve the balance between EE and QoS
to satisfy infrastructure providers (InPs) and mobile users via
resource allocation customized for rate, delay and jitter optimiza-
tion and decoupled from cell activation techniques in an H-CRAN
system. The main contributions of this paper can be summarized
as:

• We propose an autonomous energy management frame-
work using cell activation techniques for a customized net-
work. We design a revised Q-learning model which takes
hash codes as input states with a reduced size of state
space considering varying resource demand, traffic profile
and user mobility.
• In this framework, we formulate the EE-QoS optimization as

two models; resource allocation for rate-constrained users
and resource allocation for delay-constrained users, but uni-
fied with aggregated QoS satisfaction.
• Comprehensive simulations are conducted to verify the sig-

nificance of the proposed work. It is demonstrated that
the QoS satisfaction of users are greatly improved and en-
ergy consumption is minimized with changing user mobility
under the proposed scheme.

The remainder of this paper is organized as follows. In Section 2,
we present related works. Section 3 presents the system model
in terms of network model, traffic model, energy model and
utility model. Section 4 provides the problem formulation and our
proposed RL-based autonomous energy management framework.
Simulation results and analysis are discussed in Section 5. We
conclude this work in Section 6.

2. Related work

The EE and QoS performance metrics have become design
goals as the discussion on energy consumption continues to grow
across every field. It has become a requirement for network
engineers and scientists to develop systems that manage energy
efficiently. Authors in [10] studied energy efficient wireless com-
munications and identified energy-efficient resource allocation as
one of the key challenges of 5G technology. In C-RAN, baseband
and processing functionality of a network are virtualized and
shared among physical units. This architecture improves EE in the
sense that the RRHs have fewer functions. In [11], the authors
jointly considered RRH selection and power minimization as the
resource allocation problem in group sparse beam forming for
green C-RAN. The authors extended their work to reduce the
computational complexity in selecting RRH using Lagrangian dual
methods in [12]. In [13], the effect of optimizing data-sharing and
the compression on EE were studied in C-RAN. By minimizing
the total power consumption in the network, they proved that
higher EE was dependent on the user target transmission rate.
In [2], Luo et al. proposed a joint downlink and uplink mobile
users access point association and beam-forming design for in-
terference management and energy consumption minimization in
C-RAN. Authors in [14] also proposed an enhanced soft fractional
frequency reuse scheme. In this scheme, they formulated a joint
optimization problem with resource block assignment and power
allocation for interference mitigation in order to maximize EE
performance in H-CRANs.

A convex optimization-based framework was proposed in [5]
for energy-efficient global radio resource management in het-
erogeneous wireless networks. With stochastic arrivals of known
rates intended for users, the smallest set of BSs is activated with
jointly optimized user association and spectrum allocation to
stabilize the network first and then minimize the delay. Joint op-
timization by cell activation or cell coverage adjustment, user as-
sociation, and sub-carrier allocation has been investigated in [15,
16]. This was done under the constraints of maintaining an av-
erage sum rate and rate fairness. The authors argued that energy
consumption is dependent on both the spatial–temporal varia-
tions of traffic demands and the internal hardware components
of sc-BSs. Several studies in recent times also suggested a scheme,
as known as multiple base station scheduling (MBSS) in [17].
Due to the computational complexity of MBSS, authors in [18]
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proposed a low complexity flexible flow scheduling algorithm
to compensate for the energy consumption introduced by the
increasing dimension of ultra-dense nodes. Trade-offs between
QoS and EE for users with different traffics was presented in [19].
In [20], the authors studied the user association problem aim-
ing at maximizing the EE of the network for the downlink of
heterogeneous networks (HetNets). The goal of minimizing the
system energy consumption and also maximizing the ratio of the
peak-signal-to-noise-ratio was considered in [21] but only for
QoE-aware energy efficiency and QoE-aware spectral efficiency.

Reinforcement learning can be widely utilized in many ap-
plications with different optimization objectives. Some authors
investigated the opportunities, challenges and potential appli-
cations of artificial neural networks (ANN) in future wireless
networks in [22]. They presented some key types of neural net-
works and various wireless communication problem that can
be solved using ANNs. A framework for offloading the backhaul
and fronthaul loads in C-RAN was proposed in [23]. The authors
jointly combined machine learning tools of echo state networks
(ESNs) with a sublinear caching approach to develop a novel
algorithm which enables BBUs to predict content request distri-
bution of users with limited information on the network states
and also helps the BBU to compute content request percentage
using a few samples. Authors discussed the problem of resource
management in wireless virtual reality in [24]. They formulated
a non-cooperative game between sc-BSs and a distributed al-
gorithm based on machine learning tools in ESNs to propose
a solution to the game. Xu et al. proposed a framework which
uses reinforcement learning to achieve an optimal solution for
power-efficient resource allocation for beam forming problem
in [8].

To the best of our knowledge, there are lack of solutions
to capture dynamic topology, traffic distribution and mobility
information of users with model-free RL techniques. In this paper,
by the abstraction of UE-RRH association matrix as anchor graph
and by capturing dynamic traffic load, network topology and user
mobility, the power manager adopts a model-free RL technique
to adaptively determine the suitable action for turning on/off of
the RRHs reducing the power consumption, and simultaneously
improving QoS satisfaction.

3. System model

A. System architecture
The system of autonomous cell activation and customized

physical resource allocation for energy consumption and QoS
optimization is made up of a macro base station (MBS), a group
of BBUs, several RRHs and UEs, as shown in Fig. 1. The RRHs
underlay the MBS in a same spectrum resource pool and all digital
signal processing (DSP) processors are moved into a centralized
BBU pool in the cloud. The interference between MBS and RRHs
can be suppressed by advanced multiple-input and multiple-
output (MIMO) and interference mitigation techniques. The MBS
is linked to the BBU pool by the backhaul interface for control
exchange whiles the RRHs are connected by the fronthaul inter-
face for compressing and forwarding the received radio signals
from mobile users to BBUs forming a coordinated multipoint
processing (CoMP). This greatly increases the capacity and time
delay constraints on the fronthaul links of the network efficiently
by having the MBS and RRHs cooperate in their transmissions.
Distributed RL agents are deployed on each BBU pool, which
control the cell activation dynamically and the UEs are connected
to the RRHs. The UEs and RRHs report their state information
(SI) to the RL agent in the BBU pool. The SI includes UE-RRH
association, received signal strength, achieved data rate, delay,
traffic arriving rate of the UEs and traffic load on each RRH. The

traffic arriving rate of each UE, which depends on the type of
application the UE is subscribed to, is available to the BBU cloud.
In a case where this information is not accessible, the service
provider can report such kind of information to the BBU cloud.
The cell activation process is performed by the RL agent by way of
sending an on or off switching decision to the RRHs. The RL agent
monitors the mobility of the UEs and how they affect its decisions.
The reward that is calculated by the RL agent combining user
satisfaction and power consumption of all RRHs in a centralized
manner, is stored in each BBU cloud and made available to every
RRH in the cloud.

The proposed framework of energy optimization scheme has
three hierarchies. Firstly, user association between UEs and RRHs
is established via user admission control. Then, the RL agent
executes cell activation using the revised Q-learning technique
to select the active RRH set. The RL agent dynamically monitors
changes in user population, user association, traffic load distri-
bution, QoS demand and energy cost caused by the dynamics of
the mobile environment. Lastly, the physical resource allocation
module tries to satisfy the QoS requirement of UEs with the
specific action from the RL agent, which results in the active RRH
set. The result of resource allocation serves as the reward which
is fed back into the revised Q-learning-based cell activation mod-
ule. Once convergence is achieved, the RL agent autonomously
outputs the best decision on actions to the environment. For
simplicity, we summarize all the notations used in this paper as
listed in Table 1.
B. Network model

Let j ∈ J = {1, 2, . . . , |J|} be a set of RRHs. For each RRH
j ∈ J , a set of UEs i ∈ T = {1, 2 . . . , |I|} are connected to it. Each
UE is subscribed to a specific application k ∈ K = {1, 2 . . . , |K |}
which has a unique traffic arriving rate λk

ij. The system bandwidth
for RRH j is denoted by B Hz and its total transmission power
consumption is P t

j watts. In the system model, the path-loss is
calculated as follows:

PL(dij) = 20 ∗ log (F)+ 20 ∗ log
(
dij

)
+ 32.4, (1)

where F is the frequency band and dij is the distance between UE
i and RRH j. We consider the channel model [11] as;

gij = 10−PL(dij)/20
√
bijζ , (2)

where PL(dij) is the path loss, bij is the antenna gain and ζ is the
shadowing small-scale fading.

The shadowing small-scale fading ζ is assumed as a Gaussian
random variable with zero mean and standard deviation δ equal
to 8 dB [25]. One major use case of H-CRAN is the ability to
coordinate transmission among RRHs forming a CoMP. Therefore,
we classify the UEs into two groups, normal users and edge users.
The edge users are defined as the 10% of all UEs, who have the
lowest signal-to-interference-plus-noise-ratio (sinr) and will be
served in CoMP transmission mode. We assume that, a normal
user is associated with only one RRH for transmission whiles an
edge user is associated with more than one RRH for transmission
via beamforming. The sinr experienced by normal UE i associated
with RRH j is given by [13],

sinrij =
|gH

ij wij|
2∑

u̸=i |g
H
ij wuj|

2
+ σ 2

, i ∈ I, (3)

where gij is the channel gain from RRH j to UE i, wij is the
beamforming weight from RRH j to UE i and σ 2 is the power
spectral density of additive white Gaussian noise. With (3), the
achieved data rate rij of UE i connected to RRH j is given as,

rij = B log2(1+ sinrij), (4)
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Fig. 1. Scenario and system architecture.

Table 1
Table of notations.
System parameters Algorithm parameters
Symbol Meaning Symbol Meaning

J A set of RRHs M MDP Tuple: State Space S, Action Space A and Reward R(s, a)
T A set of mobile UEs t Stage number
K Set of application subscribed to by UE Uπ (s) State-value function for a policy π

B System bandwidth γ Discount factor
F Frequency band θ Positive parameter: temperature
dij Distance between UE i and RRH j Y Relational matrix
ζ Shadowing small scale fading S̃ Clustered state space
δ Standard deviation S Continuous state space
SINR SINR between UE and RRH m Number of cluster centroid
gij Channel gain of UE i and RRH j C True adjacency matrix
σ Power spectral density of additive white Gaussian noise Z Truncated adjacency matrix
xij Binary indicator for UE-RRH association Ĉ Approximated true adjacency matrix
rij Achieved data rate of UE i on RRH j V Spectral embedding matrix

λk
ij Traffic arriving rate of UE i on RRH j based on application k Φ Column-orthonormal matrix

τij Average delay of UE i associated with RRH j H (·) Hash function

T 24-h scan period P t
j Total Power consumption of RRH j

ρj Traffic load on RRH j ξ Satisfaction variable

Pc
j Constant power of RRH j Ł Mean packet size (in bits)

P l
j Load-aware transmit power of RRH j E Number of Active RRH

where B is the channel bandwidth. The traffic arriving rate of
UE i subscribed to application k on RRH j is denoted by λk

ij,
which is dependent on the application type. The traffic load ρj
on RRH j is defined as the sum of the achieved data rates of
the UEs connected to the RRH, which can be expressed as ρj =∑

i
∑

k xijr
k
ij , where xij denotes an association indicator between

UE i and RRH j. If xij = 0, there is no association between the
UE and RRH; otherwise, xij = 1. The service time of QoS traffic
for UE i associated with RRH j is tij =

Łi
rij
=

1
r∗ij
, where r∗ij denotes

the normalized achievable rate with respect to the average packet
length. Note that the packet length for UE i is independent and
exponentially distributed with the mean packet size (Ł)) in bits.
Based on M/M/1 queuing theory, the average delay experienced
by UE i on RRH j is

τij =
1

1
tij
− xijλk

ij

=
1

r∗ij − xijλk
ij
. (5)

C. Traffic model
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The system load is dependent on the user traffic arriving
rate and the on-off mode of RRHs. Due to the dynamics in user
behavior on traffic demand, analytical model is intractable. We
therefore adopt a data-driven model from the EU FP EARTH
project [26]. In our scenario, we monitor the spatial–temporal
traffic distribution in the network over a 24-h period. We assume
that the period is long enough so that the traffic load profile in
one period repeats in the next period. In mobile environment, the
type of active UEs, their mobility pattern, user population, distri-
bution and environment noise vary over this period. Without loss
of generality, an ideal traffic profile is adopted based on the daily
trapezoidal traffic pattern [18]. Given a time t = 1, 2, 3, . . . , T ,
the traffic model is defined with the angular coefficient v as

f (t) =

⎧⎨⎩
1− vt; 0 ≤ t ≤ 1

v

0; 1
v
≤ t ≤ T − 1

v

1+ v (t − T ) ; T − 1
v
≤ t ≤ T ,

(6)

where T represents a 24-h scan period, v represents the slope and
f (t) is a normalized value between 0 and 1. If v is equal to 1/10,
then we move the f (t) to f (t) + 4, which is close to the on-site
measurements in [26].
D. Energy model

To make a correct estimation of the RRH energy consumption,
we need to consider two types of power consumption, i.e. con-
stant power, which is generated by the always-on components of
the RRHs, e.g. transceivers and power supply, and power due to
the traffic load which comes from the power amplifier [27]. We
define the total energy consumption for each RRH at time t as
follows:

P t
j = Pc

j + ρ∗j .P
l
j , (7)

where Pc
j denotes the constant power consumption for active

RRHs, P l
j denotes the load-aware transmit power of RRH j for

transmission which depends on the load and ρ∗j is the normal-
ized traffic load on RRH j at time t . P s

j is the constant power
consumption for sleeping RRHs.

In the H-CRAN architecture, inactive RRHs are put to sleep in
order to conserve energy. Our proposed revised Q-learning based
cell activation scheme provides flexibility for managing energy
consumption. The H-CRAN control unit dynamically optimizes the
total expected and cumulative energy during the entire opera-
tional period instead of the instantaneous energy consumption
in a decision period.
E. Utility model

Based on the objective of the proposed scheme, we can know
the precondition of minimizing energy consumption of the C-
RAN is to ensure that we satisfy the QoS requirement of UEs.
To ensure UE satisfaction, the required transmission rate and
delay should be guaranteed. Due to the dynamics in UE behavior,
traffic demand per connection and service elasticity, we model
the utility with a sigmoid function. The utility function maps the
perceived achievable rate with the level of UE satisfaction [6]. The
satisfaction of UE i on rate is,

ξ (ri) =
1

1+ e−η(ri−rmin
i )

, (8)

where rmin
i is the minimum rate requirements of UE i and η is a

constant which determines the shape of the satisfactory curve. In
addition, ri is the transmission rate for UE i. It is easy to verify
that: (1) ξ (ri) is a monotonic increasing function with respect to
ri, because individual users will feel more satisfied if they receive
higher throughput above their minimum demand and vice versa;
(2) ξ (ri) of each UE i is scaled between 0 and 1, i.e. ξ (ri) ∈ [0, 1].
The satisfaction on delay is given mathematically as;

ξ (τi) =
1

1+ e−η(τmax
i −τi)

, (9)

where τmax
i is the maximum tolerant delay, which is required to

satisfy the upper bound delay for UE i.

4. Problem formulation

In this section, we formulate the energy optimization problem
in H-CRAN with a revised Q-learning agent for autonomous cell
activation, illustrated in Fig. 2. Most of the existing works take
one-dimensional vectors as states for the Q-learning agent, which
include very little information about network dynamics. In order
to capture spatial–temporal dynamics in a mobile environment,
we use a graph, defined as a relational matrix, which has more
information such as the association between UEs and RRHs, the
arriving rates of traffic, the transmission rates of UEs and UE
satisfaction. However, the state space size is very large, which
makes it difficult for the Q-table to converge. Anchor graph clus-
tering is used to reduce the state space size and anchor graph
hashing is employed to map the graphs to hash codes. The dis-
crete characteristics of hash code match the RL agent very well.
With the output action of RL agents, customized physical resource
allocation is done to generate the report of UE satisfaction and
energy calculation, which are the rewards that are fed back to
the RL agents.
A. Offline anchor graph clustering

In our scenario, we define the network image by a relational
matrix Y between UEs and RRHs, which can include the asso-
ciation relationship between the UEs and RRHs in the network
as well as the subscription relationship, UE traffic arriving rate,
UE transmission rate and even delay, which reflect the dynamics
caused by UE mobility and noise in the radio environment.

Definition 1 (Relational Matrix). Mathematically, we define rela-
tionships between all |I| UEs and |J| RRHs as a matrix Y ∈ R|I|×|J|
as;

Y =

⎡⎢⎣ y11 · · · y1j
...

. . .
...

yi1 · · · y|I∥J|

⎤⎥⎦
The entries yij could be the arriving rate of traffic λk

ij, UE trans-
mission rate rij, satisfaction ξ (·) or the transmission rate to traffic
arriving rate ratio rij/λk

ij. Let an entry be represented as

yij =
{
λk
ij, if xij = 1

0, otherwise,
(10)

where xij is a binary association indicator between a RRH and a
UE, in that, xij = 1 means there is a connection between UE i and
RRH j and xij = 0 means otherwise. The λk

ij is the traffic arriving
rate between UE i, who is assumed to subscribe to the application
k and RRH j. Therefore, the sum of all the traffic load of UEs on
RRH j can be denoted by ρj.

The relational matrix is a sparse matrix of which each column
contains only one nonzero entry, except for at most 10% of UEs
working in multipoint joint transmission mode. Then, we flatten
the relational matrix Y to a one-row vector s as a single sample.
We then stack all of the individual one-row vectors together to
obtain a training set matrix S ∈ R|U |×|I|×|J|, where |U | is the
number of training set samples and |I| × |J| is the number of
elements in one-row vector s. Since the original volume of raw
topology samples is very large, we introduce an offline anchor
graph clustering method to compress the sample size before
hash mapping. Anchor graph is a kind of graph that basically
defines the similarities between two vertices: data points and
anchors [28]. An anchor graph uses a small set of m points called
anchors to approximate the data structure of neighboring nodes
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Fig. 2. The revised reinforcement-learning framework.

or sample points u. An anchor graph is normally undirected, that
is, there is no distinction between the two vertices associated
with each edge.
(i) State space discretization: We discretize the state space based
on the centroids and then partition the centroids based on K-
means algorithm. With clustered centroids as anchor nodes, we
partition |U | sample points into |M| clusters.

Definition 2. Given |M| centroids in a continuous state space
as S̃ =

{
s̃m|m = 1, 2, . . . ., |M|

}
, the state space can be parti-

tioned into |M| clusters. The partitions of state space is S ={
su|su ∈ Rd, u = 1, 2, . . . ., |U |

}
, where the continuous state

space region for a cluster centroid s̃m is expressed as

S =
{
su ∈ Rd

|m = min
{
arg min

m
∥su − s̃m∥,

}
m = 1, 2, . . . ., |M|

}
. (11)

S denotes the original continuous state space, S̃ is the discrete
state space, su is a specific state of all training samples in S and
s̃m represents is a specific state of anchor nodes in S̃. Each anchor
node has a length of |I| × |J|.

(ii) K-means based centroid partitioning: Given a set of cluster
centroids, we can partition the continuous state space by trans-
forming it to obtain a suitable distribution of cluster centroids.
We predefine the number of maximal cluster centroids |M|, the
distance threshold qd, the number of training set samples u and
obtain the continuous state su. Then, we compute the distances
between the continuous state su and each cluster centroid. If the
distance between the continuous state su and a cluster centroid
s̃m exceeds the distance threshold qd, and the number of current
cluster centroids is less than the maximal cluster centroid |M|, we
add a new cluster centroid s̃m+1 to the location of the continuous
state. Otherwise, we adjust the location of the cluster centroids
using K-means clustering algorithm and update the process until
u = |U |. Lastly, we approximate the adjacency matrix C us-
ing Eq. (15) and perform offline hash mapping on each centroid
using Eq. (16). This offline K-means clustering is performed on the
|U | training samples to obtain |M|(|M| ≪ |U |) cluster centroids
with m as anchors as;

S̃ =
{
s̃m ∈ R(|I|×|J|)}|M|

m=1 . (12)

This makes clustering very fast, thus speeding up training signif-
icantly.
B. Anchor graph hashing

After creating clusters with identified anchor graphs, we map
the clusters to hash codes by anchor graph hashing.

Definition 3 (True Adjacency Matrix). Let the true adjacency ma-
trix be represented by the matrix C as

C =
{
cij

}
∈ [0, 1]|U |×|U | , (13)

where cij is the similarity between ui and uj, i, j ∈ [1, |U |]. An
adjacency matrix is a matrix such that its elements are values
other than zero when there is an edge between two vertices,
and zero when there is no edge. The true adjacency matrix C
is approximated to Ĉ to reduce the computational complexity
using Eq. (15) by applying K-means clustering on the training
samples |U |. The truncated adjacency matrix Z results in a graph
Laplacian L. The eigenvectors of Ĉ is easily solved by utilizing its
low-rank property resulting in eigenvectors–eigenvalues pairs.

Definition 4 (Truncated Adjacency Matrix). Anchor Graph defines
the truncated adjacency matrix Z with similarities of all the |U |
training sample points measured with respect to the m anchors
as,

Zum =

⎧⎨⎩
exp(− D2(su,s̃m)

w )∑
m′∈<u> exp(−

D2(su,s̃m′ )
w )

, ∀m ∈< u >

0, otherwise,
(14)

where ⟨u⟩ ⊂ [1: |M|] denotes the indices of m′ nearest anchors
of sample su in S̃ according to a distance function D(·), w is the
bandwidth parameter and zum = exp(−D2(su,s̃m)

w
).

With Definitions 3 and 4, anchor graph provides a powerful
approximation of the true adjacency matrix C to [28];

Ĉ = ZΛ−1ZT , (15)

where Λ = diag(ZT1 ∈ Rm×m) with 1 = [1, 1, . . . , 1]⊤ ∈ Rm

Theorem 1 (Offline Hash Mapping). Given u training samples and
truncated adjacency matrix Z, binary hash codes are mapped from
the spectral embedding matrix V , which is calculated as follows;

V = ZN. (16)

Proof. The resulting graph Laplacian of the anchor graph is given
by; L = I − Ĉ , where I is an identity matrix. We solve the eigen-
vectors of Ĉ by utilizing its low-rank property as Ĉ = ZΛ−1ZT

=

(ZΛ−1/2)(ZΛ−1/2)T . We solve the eigenvalue system of a small
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m × m matrix Ĉm = (ZΛ−1/2)T (ZΛ−1/2) = Λ−1/2ZTZΛ−1/2, re-
sulting in r(< m) (r largest eigenvalues) eigenvector–eigenvalue
pairs {(αk, βk)}

r
k=1 where 1 > β1 > · · · > βr > 0. Obviously,

rank
(
Ĉm

)
= rank

(
Ĉ
)
= r . Lastly, we obtain the desired spectral

embedding matrix V as;

V =
√
uZΛ−1/2ϕΣ−1/2 = ZN,

where N =
√
uΛ−1/2ϕΣ−1/2 = [n1, . . . , nr ]m×r , ϕ = [ϕ1, ϕ2, . . . .,

ϕr ] ∈ Rm×r is column-orthonormal, Σ = diag (β1, . . . , βr) ∈

Rm×r and nm =
√
u/βmΛ−1/2ϕm. Therefore, we propose an offline

training algorithm for anchor graph clustering and hashing based
on the above, and make a summary in Algorithm 1.

On-line hash function mapping
Eq. (16) generates hash codes only for the available points

during training. Therefore, a general hash function is needed in
order to predict the hash code of any incoming sample point s. We
generalize the eigenvectors of the anchor graph Laplacian to the
eigenfunctions

{
∅k:Rd

→ R
}r
k=1 such that the hash functions can

be defined as Hk (s) = sgn (∅k (s)) (k = 1, . . . , r), where ∅k (s) =
nT
k z(s) and z (s) = µ1zum ,....µmzum∑|M|

m=1 µmzum
. We then create the ‘‘out-of-

sample’’ extension V to their corresponding eigen-functions using
the Nyström method in [29]. The online hashing will be included
in the revised Q-learning.
C. Revised Q-learning

Reinforcement learning is a form of machine learning tech-
nique whereby an agent interacts solely with an environment,
without requiring additional information about the environment
except for awareness of the environment states, possible (en-
abled) actions from its current state, and the obtained rewards
after performing a specific action [30]. There are a number of
reinforcement learning technique variations such as Q-learning,
deep Q-learning and double Q-learning. Q-learning is a model-
free reinforcement learning algorithm for discrete state spaces.
Because of the discrete characteristics of state feature extraction
with hash codes in our scenario, Q-learning is adopted. Firstly,
we begin to model the cell activation problem in H-CRAN as a
Markov decision process (MDP).
(i) Markov decision process: The interaction between the Q-
learning agent and the radio access network environment can be
represented as a tuple,M =

[
S, A, R (s, a) , S ′

]
, where S represents

the set of possible states, A is the set of actions, R(s, a) represents
the reward achieved when an action a, in state s, is selected and
s′ is the next state. At any stage t with a traffic load state s(t), the
RL agent chooses an action a(t) to either turn on or off an RRH.
Let U

([
s(0), s(1), . . . .., s(t)

]
, a(t)

)
represent a Markov chain utility.

Since future rewards are unpredictable, the long-term reward of
state s(t) at stage t is the sum of discounted rewards which is
given by,

R(s(t))+
∑

γ tR
(
s(t)

)
+

∑
γ t+1R

(
s(t)

)
+ · · · , (17)

where γ is the discount factor ranging from 0 to 1. If γ = 0,
it means we only care about the current reward. 0 < γ ≤

1 indicates that we care about future rewards. We denote the
state-value function of an arbitrary policy at the stage t as;

Uπ (s) = E

{
∞∑
t=0

γ tR(s(t))

}
. (18)

The resource image state s(t) transforms into s(t+1) at stage (t+1)
with a transition probability as;

P
(
s′|s(t), a(t))

=

{
1, s′ = s(t+1)

0, otherwise.
(19)

The goal of MDP is to find an optimal policy π∗ to maximize
future reward of the decision agent. A policy is a mapping from
states to actions. From Markov property, the policy π can be
further expressed as;

Uπ (s) = E

{
R(s(t), a(t))+

∑
s′

P(s′|s(t), a(t))Uπ (s′)

}
, (20)

where Uπ (s′) is the expected utility given the optimal policy. The
state-value function for optimal policy based on the Bellman’s
equation [30] is given as;

Uπ∗ (s) = arg max
a(t)∈A

{
R(s(t), a(t))+ γ

∑
s′

P(s′|s(t), a(t))Uπ (s′)

}
,

(21)

where R(s(t), a(t)) is the present reward, γ is the discount factor,
Uπ (s) is the present utility and Uπ (s′) is the future utility.
(ii) Revised Q-learning framework: The offline anchor graph clus-
tering generates cluster centroids i.e. anchor graphs with each
centroid having a unique hash code. When a new sample state
arrives, it is compared with a general hash function Hk (s) and
the closest hash code is selected for the new state in an on-
line manner. We formulate the interface between RL agents and
environment by defining states, actions, rewards and next state.
State(s): As mentioned above, the purpose of Q-learning is to
minimize the number of active RRHs while satisfying the QoS
requirements of UEs. The components of the state space are
obtained from the anchor graph hashing discussed in Theorem 1.
The resource images generated from anchor graph hashing are
converted into hash codes which are fed into the RL agent in
the BBU cloud as input states. The state space for offline train-
ing is obtained from the desired spectral embedding matrix V
in Eq. (16) which has m states and r bits for each hash code.
The size of the Q-table is dependent on m i.e. an increase in m
increases the state space size. For online Q-learning, we resort to
a general hash function Hk(s) to cluster a new state sample s to
the closest anchor graph hash code Hk(s̃∗).
Action(a): The action to be performed is the switching decision
that is made by the agent on the RRHs. Each RRH corresponds
to two actions, switching on or off. For any RRH j, the actions
can be represented as aj ∈ 0, 1, aj = 0 indicates switching off
RRH j to turn it to sleep, and aj = 1 indicates switching on
RRH j to turn it on. We assume that the system begins at stage
t with a resource image state of s(t). The agent can select an
action based on two objectives: exploration and exploitation. The
learning agent chooses an action a(t) in the state s(t) of the stage
t with a Boltzmann distribution probability [31]

P (t) (s(t), a(t))
=

exp
{
p(s(t), a(t))/θ

}∑
a′∈A exp

{
p(s(t), a′)/θ

} , (22)

where θ represents a positive parameter called temperature and
p(s(t), a(t)) denotes the possibility that the agent selects action a(t)

at state s(t). The action chosen is updated after every stage.
Reward(R): Reward is the feedback received from the environ-
ment after performing an action in a specific state. Therefore, the
reward needs to reflect the purpose of the Q-learning algorithm.
In our case, the reward is a function of average QoS satisfaction of
the UEs and energy consumption of the system. Since the optimal
strategy of Q-learning is to find the action with the maximum
Q-value in the Q-table for each state, we define the reward as
follows:

R
(
s(t), a(t))

=
1
E
+ ω ∗ ξ (·) , (23)

where E is the number of active RRHs, ξ (·) ϵ[0, 1] is an indicator
for the QoS satisfaction of UEs, with utility function defined in
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(8) or (9) and ω > 0. The optimal strategy, denoted by π∗

is used to maximize the action-value function of each state, s.
The optimality equation in terms of Q only can be expressed
with Eq. (21) as;

Q
(
s(t), a(t))

= R(s(t), a(t))+ γ
∑
s′

P(s′|s(t), a(t)) max
a(t)∈A

Q (s(t+1),

a(t+1))∀s, π. (24)

The Q-learning agent learns the optimal Q-values in an iterative
manner based on information available in the BBU cloud. The
value iteration Q-learning process can be expressed with Eq. (21)
as;

Q (t+1) (s(t), a(t))
← R(s(t), a(t))+ γ

∑
s′

P(s′|s(t), a(t))

× max
a(t)∈A

Q (t)(s(t+1), a(t+1)). (25)

By iterating and updating the Q (s(t), a(t)) over a sufficient period,
while adjusting the learning rate γ , Q (s(t), a(t)) is guaranteed to
converge at Qπ∗ (s(t), a(t)).

The proposed algorithm framework is summarized in detail in
Algorithm 2 as follows: In step 1, from line 1–2, UEs request for
admission and initial association via the RRHs from the BBU pool.
In step 2, from line 3–10, the Q-table is initialized and updated
for each decision epoch as the environment changes in an online
learning process. An incoming state space is compared with a
general hash function (Hk(s)) and the closest is selected as the
hash code for the incoming state. For any stage t , the selected
hash code is fed into the Q-learning agent as input states. As
learning is in process, the agent explores the environment by
selecting random actions. The agent chooses an action a(t) at stage
t with a probability as shown in Eq. (22). After some time, the
agent selects actions based on its past experience by selecting an
action with the maximum Q-value. In step 3, in line 12–15, UEs
will be re-associated and allocated with resources based on the
set of active RRHs for rate in (8) or delay in (9). Lastly, we observe
the reward r (t) and the next state s(t+1) of stage t and update the
Q-table using Eq. (25). The process is iterated until the Q-table
converges.
D. Customized physical resource allocation

The physical resource allocation could be formulated as an
optimization problem and an optimal beamforming solution can
be derived by maximizing the aggregate QoS satisfaction of UEs.

A unified design of physical resource allocation models is given
in (26), which could be customized for different operators. The
objective function is expressed as;

max
w

∑
i∈I

ηiξi(·), (26)

such that;∑
i∈I

∥wij∥
2
≤ P t

max∀j ∈ J (26a)

∑
u̸=i

|

∑
j∈J

gijwuj|
2
≤ Γth∀i ∈ I (26b)

where ηi > 0 is the weighting factor for UE i ∈ I , ξ (·) denotes
the satisfaction of UE i, which is customized for rate as ξ (ri)
or delay as ξ (τi), w is the beam forming vector/optimization
variable, P t

max represents the maximum transmission power and
Γth is the interference threshold. Constraint (26a) ensures that,
the sum of transmit power of UEs does not exceed the maximum
transmission power. Constraint (26b) ensures that the sum of the
received interference power of UEs does not exceed the inter-
ference threshold. For the rate constraint users, the satisfaction
on rate follows the form of (8) as ξ (ri). For the delay constraint
users, the satisfaction on delay is in the form of (9) as ξ (τi). The
objective of our function is to maximize user satisfaction, which
can be transformed into a convex optimization problem known as
second order cone optimization problem. The second order cone
optimization problem can be solved efficiently using an existing
method in [32].
E. Convergence analysis and optimality

In this paper, the Markovian property of the process is in-
vestigated in terms of the history of aggregated states, while in
practice the Markovian property of interest is in terms of the
history of raw observations. Thus, perhaps the more relevant
measure for the aggregated Markovian processes investigated
here is how much better an outcome (rewards and observa-
tions) can be predicted if the agent is given access to the raw
state instead of the aggregated state. Q-learning was known to
converge to the optimal policy [33]. In this paper, the MDP
M =

[
S, A, R (s, a) , S ′

]
is formulated with aggregated features

via clustering, which is compressed as a set of anchors. Let us
denote optimal Q-functions for continuous states and discrete
states as Q∗ (s, a) and Q∗

(
s̃, a

)
respectively. In this section, we

theoretically prove that the proposed clustering-based Q-learning
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algorithm will converge to the optimal solution of Q-learning for
the continuous raw observations.

Based on the conclusion in reference [34], assuming the com-
pactness and Lipschitz continuity holds, the Q-value function of
the continuous dynamic programming and the discrete dynamic
programming satisfying⏐⏐Q (t) (s, a)− Q (t) (s̃, a)⏐⏐ < α(∥s− s̃∥),∀s, s̃ ∈ S, (27)

where α is a positive constant. In this way, Eq. (27) can be
rewritten as⏐⏐Q (t) (s, a)− Q (t) (s̃, a)⏐⏐ < βds,∀s, s̃ ∈ S, (28)

where ds = min ∥s − s̃∥ is referred to as the hamming distance
between raw observations and clustering centroids. Then we con-
sider the scenario in long-term stochastic control problem when
t approaches infinity.

Theorem 2. If continuous stochastic optimal problem satisfies the
compactness and Lipschitz continuity, for each s ∈ S, Q (t)(s, a)
converges to the optimal solution Q∗ (s, a) as the radius of each
cluster small enough and t approaches infinity (t →∞) i.e.

lim
ds→0

P
{
|Q (t)(s, a)− Q∗ (s, a) | = 0

}
= 1. (29)

where s is raw observation waiting for clustering. If the original Q-
learning converges and t →∞, Q (t)(s, a) in Eq. (25) also converges
to the optimal Q-function Q∗ (s, a) w.p.1 for any s ∈ S.

Proof. Under the assumption of compactness and Lipschitz conti-
nuity holds, limds→0 |Q ∗ (s, a)− Q ∗

(
s̃, a

)
| = 0→ holds. This has

been proved in case of uniform state clustering [34] and in case
of variable resolution discretization [34]. Therefore, there exists a
δ > 0 such that if ds < δ,

|Q ∗ (s, a)− Q ∗(s̃, a)| < ε1,∀s, s̃ ∈ S, a ∈ A
(
s̃
)
,∀ ε1(0 < ε1 < ε),

(30)

where Q ∗ (s, a) and Q ∗
(
s̃, a

)
are the optimal Q-values for contin-

uous states and the discrete states.
With the definition of clustering-based Q-learning solution for

discrete dynamic programming in the partitioned state spaces,
for any s ∈ Si, where i = 1, 2 . . . ·, k, Q (t)(s, a) also converges
to Q ∗(s̃, a) w.p.1 with assumptions and conditions, which has
been provided in [34] and [35]. Furthermore, it has been shown
that convergence is guaranteed no matter how states are sam-
pled [36]. However, it is not guaranteed to converge with the
same optimal solution. The latest discussion on this topic can be
found in [37] and [38]. If compactness and Lipschitz continuity
hold, ∀ε2(0 < ε2 < ε− ε1), there exists an M such that if k > M ,
it holds that

P{|Q (t)(s, a)− Q ∗
(
s̃, a

)
| < ε2} = 1,∀s, s̃ ∈ S and a ∈ A(s̃). (31)

Therefore, from (30), (31), for an arbitrary ε > 0, there exist an
M and δ = δ1 > 0 such that ifds< δ and k > M , then

P{|Q (t)(s, a)− Q∗(s, a)| < ε}

≥ P{|Q (t)(s, a)− Q∗(s, a)| + |Q∗(s, a)− Q∗(s̃, a)| < ε}

≥ P{|Q (t)(s, a)− Q∗(s̃, a)| < ε − ε1}

≥ P
{
| Q (t)(s, a)− Q∗(s̃, a) | < ε2

}
= 1

Therefore, P|Q (t)(s, a)− Q∗(s, a)| < ε = 1, this implies that
Eq. (29) holds.

5. Performance evaluation

5.1. Scenario configuration

In this section, the proposed revised Q-learning scheme is
compared with the classical pure Q-learning [6], and deep re-
inforcement learning [8]. We conducted our simulation using
Pytorch for DQN and MATLAB for Q-Learning. We focus on three
essential performance criteria for evaluation: convergence rate,
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Table 2
Simulation Parameters.
Parameter units Value

Number of RRH, J 3
RRH coverage 200 m
System Bandwidth, B 20 MHz
Maximum transmit power per RRH, P l

max 1W
Noise power spectrum density, σ −174 dBm/Hz
Carrier Frequency band, F 2.4 GHz
Path loss model 32.4 + 20log(F) + 20log(D)
Shadowing effects, δ 0-8 dB, random
Packet arriving rates, λ 160 packets per second
Angular coefficient in traffic model, v 0.1
Number of UEs in traffic model, I 0-32
UE demand, rmin/ rmax 0.5 Mbps/50 ms
Steepness coefficient in satisfaction model, η 1e−5

Power consumption(active state), P t
j Eq. (7)

Power consumption(sleep state), P s
j 4.3 W

Mean packet size (in bit), L 4000
Weighted factor in reward function, ω 8
Discount factor, γ 0.5
The number of nearest anchors for matrix Z 2
Number of cluster, |M| 300
Number of bits (Hash code length), r 15
Decision epoch, t 60 min
Number of training samples, |U | 3e4

total energy consumption and satisfaction of UEs. We evaluate the
performance considering the effect of dynamics in user mobility
and changes in traffic load. It is assumed that the BBU initially
manages a maximum of 3 RRHs. The system bandwidth of RRHs
is set at 20 MHz. The threshold of UE sensitivity is set at −120
dBm for edge UEs. In the network model, the RRH coverage in
the network is 200 m. The number of UEs ranges from 0 to 32 in
each C-RAN according to the traffic model profile [18]. The rate
or delay demand is equal for each of the UEs. The 10% of UEs with
the lowest signal strength are considered as edge UEs to work in
CoMP mode. The energy consumption largely depends on traffic
load and the active duration of RRH, based on the energy model
for the active and idle states respectively [8]. The value of ∈ is
0.01 in the ∈-greedy policy, which is defined as the probability
by which an agent takes a random action promoting exploration
instead of an action determined by the maximum of the Q-value
of the next state. We clarify the typical simulation parameters for
system and algorithms as summarized in Table 2.

5.2. Convergence analysis

This subsection compares the convergence rates of the deep
Q-network (DQN), pure Q-learning (QL), and the proposed re-
vised Q-learning (AGH+QL) method in this paper. The analysis is
performed under static scenario without mobility, traffic changes
per hour based on traffic profile model. The reward R(s, a) is
deterministic and chosen as the average satisfaction of all users.
The values of the input parameters used for numerical tests with
the algorithm are lambda (λ), rate r , and rate over lambda (r/λ).
From Fig. 3, it can be observed that all algorithms could not
well learn the behavior of the system at the very onset and
experienced fluctuations in energy consumption and satisfaction.
Fig. 3 shows that AGH+Q-Learning consistently performs best, and
in most cases significantly outperforms Deep Q-network in all
state definitions. It can be observed that DQN converges much
slower due the fact that is has to explore a larger environment.
AGH+QL converges faster, around day 200, because the state
space has been reduced by means of the anchor graph hashing.
For energy consumption, it can be noted that AGH+QL converges
to near optimal values compared to the DQN. This is due to the
fact that our proposed algorithm is able to map the environment

to the Q-table refined via anchor graph hashing leading to its
higher accuracy. For QL, there exist fluctuations in the curves
due to its inability to learn from large states space, with states
defined as a load vector and resorts to random policy selection.
In general, the plots of Fig. 3(1(a)–1(c)) show improvements in
convergence rate when states are defined as rate over lambda
(r/λ). When using rate only as compared to lambda only, there
is practically no difference in the convergence rate for pure QL
and AGH+QL. However, for Deep Q-network when the input is
changed from rate to lambda, we see a noticeable difference be-
tween the convergence rate, especially in the plots for satisfaction
and energy. A visible improvement in AGH+Q-Learning is also
evident in satisfaction over the Deep Q- network. Here, there is
an obvious benefit in defining rate over lambda (r/λ) as states, as
many states in domain will be explored.

5.3. Effect of anchor graph hashing

Fig. 4 shows the energy consumption and satisfaction curves
using hash lookup within a hamming radius of 2. When longer
codes are used, the radius of clusters will be larger due to in-
creased sparsity of the relational matrix. The increase in bits
reduces the accuracy of Q-learning significantly. It can be ob-
served that, energy consumption increases as the length of the
hash code increases. We can conclude that inaccurate prediction
can lead to poor energy consumption. However, the effect of the
number of clusters cannot be ignored. The graphs reveal that the
number of clusters has an impact on energy consumption and
user satisfaction.

From Fig. 4, it can be observed that, smaller number of clus-
ters consumes a substantially higher amount of energy as the
length of the hash code increases. Using the preference of the
users, the clustering module was trained to obtain the required
centroids. With respect to the length of hash codes, the number of
clusters was observed to determine the ideal number of clusters
which can achieve minimum energy consumption and highest
satisfaction ratios. 300 clustered network tends to have relatively
lower energy consumption even for longer codes. However, the
performance of 30 and 150 clusters improves rapidly as the hash
code length reaches 23 and 26 respectively. We argue that the im-
proved performance is due to the learning algorithm reaching its
optimal solution. Therefore, to ensure long term efficient energy
consumption, the hash codes should be long enough such that
the Q-learning agent can learn to gain better knowledge over the
state to find proper resource allocation strategy.

We compare the convergence of AGH+QL on average energy
consumption of all anchors with different values of r . Fig. 5 shows
all values, r , converge in terms of energy consumption which
confirms that the algorithm converges. Also it shows the AGH+QL
converges faster. When r = 5 and 10, it converges before the
100th simulation time, while values 15 and 20 converges after
the 200th simulation time, with values 25 and 30 converging
close to the 300th simulation time. This implies that a smaller
value of r in AGH+QL reduces the sparsity in the adjacent matrix
which preserves the similarity relationship in Hamming space.
Furthermore, smaller values of r e.g. 5, 10 and 15 have less
fluctuation when they converge. This shows that setting the value
of r to as small as possible improves the accuracy of the learning
process. The impact on satisfaction as shown in Fig. 5(b) shows a
similar pattern in terms of rate of convergence and fluctuations
in the curve but all values of r are able to achieve a desirable
satisfaction level (above 0.5). The proposed AGH+QL can learn the
exact behavior of the network. Therefore, choosing the appropri-
ate length of hash codes can minimize the energy cost and ensure
user satisfaction.
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Fig. 3. Energy consumption and satisfaction convergence rate with Lambda (a), Rate (b) and Rate over Lambda (c) as inputs.

Fig. 4. Performance evaluation using hash lookup with the varying number of hash bits r .

5.4. Effect of the decision epochs

Figs. 6 and 7 show analysis of energy consumption and sat-
isfaction generated by dynamic state given decision epochs 10,
30 and 60 under mobility epoch of 10 min. The users in the
system may vary in accordance with traffic model. It should
be noted that, the traffic changes every hour based on daily
traffic model. Fig. 6 shows the learning performance for the first
2000 days when using a fixed learning step i.e. decision epoch
to update the states over a period of time (days). Firstly, we
compared with DQN and pure Q-learning(QL). We observed that

both algorithms are not able to converge as a result of the varying
user mobility. These algorithms represent the traffic load on each
RRH as a vector and cannot capture the user mobility informa-
tion. Furthermore, Figs. 6 and 7 show how energy consumption
and satisfaction change with time among decision epoch 10, 30
and 60 under AGH+QL and QL algorithms respectively. During
this time, the learning agent makes different decisions as to the
number of active RRHs based on the traffic model. We notice
that the decision epoch chosen does not have a strong impact
on satisfaction. From Fig. 6, the proposed AGH+QL algorithm is
able to achieve convergence at all the decision epochs close to
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Fig. 5. Energy consumption and satisfaction with varying number of hash bits (r).

Fig. 6. Impact of decision epoch on convergence of AGH+QL.

Fig. 7. Impact of decision epoch on convergence of QL.

day 1500 with a minimum satisfaction level of 0.5. This shows
that, regardless of the decision epoch, the agent is able to capture
the user mobility effectively in order to ensure all users are sat-
isfied at any point in time. Given an appropriate decision epoch,
AGH+QL can ensure all users are satisfied at acceptable energy
consumption. From Fig. 7, it is observed that QL spends more time
to converge than our proposed algorithm with a minimum satis-
faction level in the last 500 days as 0.4285. QL has a higher energy
consumption level than the AGH+QL algorithm under the same
conditions. Since QL has more states, it has less training chances
for each state and this results in the fluctuations and spikes in the
convergence results. It can be concluded that AGH+QL achieves a
faster and better convergence than QL under the same conditions.

To demonstrate the robustness of the AGH+QL algorithm, we
show the average energy consumption and satisfaction in differ-
ent mobility epochs for a highly dynamic scenario and a moderate
dynamic scenario for both algorithms in the last 500 days. In
Fig. 8, we extend the analysis in Figs. 6 and 7 to determine the
characteristics of user mobility and analyze the effect it has on
decision epoch. Here, we define the decision epoch to be in a
range of 10 min to 60 min. We define mobility epoch of 5 min for
a highly dynamic scenario and 10 min for a moderate dynamic
scenario. It is evident from Fig. 8 that, as the decision epoch
increases, the performance of AGH+QL with respect to energy
consumption improves whiles the energy consumption levels
achieved by QL is very high. At decision epoch of 60 min, the
energy consumption level of 10 min mobility epoch for AGH+QL
algorithm is approximately 1.25 × 10 4 and the satisfaction is
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Fig. 8. Energy consumption and satisfaction vs mobility epoch.

about 0.54. Under the same conditions, the energy consump-
tion and satisfaction levels for QL algorithm are approximately
1.60 × 104 and 0.62 respectively. When the mobility epoch
is 5 min, the energy consumption and satisfaction levels for
AGH+QL algorithm at the same decision epoch are approximately
1.13× 10 4 and 0.37 respectively. For QL, the energy consumption
is 1.60 × 104 and its corresponding satisfaction is approximately
0.43. The satisfaction level of mobility epoch 5 falls below 0.5
at about decision epoch 40 and falls further with increasing
decision epoch. This means that both AGH+QL and QL maintain
the satisfaction of users under moderate dynamic scenarios but
fail under highly dynamic scenarios. Under moderate dynamic
scenario, AGH+QL achieves a better performance than QL because
QL has more states and need more time to update the values
in the Q-table. AGH+QL has fewer state space due to clustering
and AGH used. Although QL achieves a better satisfaction under
moderate dynamic scenario, it consumes more energy compared
to AGH+QL. We can conclude that energy saving comes with a
cost of some users not being satisfied. The proposed algorithm
(AGH+QL) tries to find a better balance between energy con-
sumption and user satisfaction for moderate mobility scenarios.
However, both algorithms fail in highly dynamic mobility scenar-
ios because they cannot capture the highly dynamic states of the
users.

6. Conclusion

In this paper, we proposed a novel revised Q-learning based
framework of autonomous cell activation and customized physi-
cal resource allocation schemes for energy consumption and QoS
optimization in C-RANs. In the cell activation scheme, we set up a
novel anchor graph hashing based Q-learning model to satisfy the
QoS requirements of users and to achieve low energy consump-
tion with the minimum number of active RRHs under varying
traffic demand and user mobility. The proposed scheme, AGH
based Q-learning, was compared with the pure Q-learning, and
the recent DQN based schemes. Simulation results showed that,
the proposed AGH based Q-learning schemes can converge at a
moderate rate, also can capture dynamics for realistic scenarios
and achieve a better balance between energy consumption and
user satisfaction.
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