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a b s t r a c t

With the maturity of 5G technology and the popularity of intelligent terminal devices, the traditional
cloud computing service model cannot deal with the explosive growth of business data quickly.
Therefore, the purpose of mobile edge computing (MEC) is to effectively solve problems such as
latency and network load. In this paper, deep reinforcement learning (DRL) is first proposed to solve
the offloading problem of multiple service nodes for the cluster and multiple dependencies for mobile
tasks in large-scale heterogeneous MEC. Then the paper uses the LSTM network layer and the candidate
network set to improve the DQN algorithm in combination with the actual environment of the MEC.
Finally, the task offloading problem is simulated by using iFogSim and Google Cluster Trace. The
simulation results show that the offloading strategy based on the improved IDRQN algorithm has
better performance in energy consumption, load balancing, latency and average execution time than
other algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of mobile communication tech-
nology and the popularization of smart devices, more and more
smartphones, laptops and sensors can access remote services
through the Internet. According to Cisco’s statistical report, per-
sonal mobile Internet traffic will gradually increase at a com-
pound annual growth rate of 47% from 2016 to 2021 [1]. It is
estimated that global mobile data traffic will reach 46.6 Exabyte
per month by the end of 2021, of which smartphones will account
for 86% [2]. Each person will generate 1.7 MB data size per second
in 2020 according to the research of ITU Telecommunication
Standardization Sector [3]. In addition, due to the increasing
popularity of 5G networks, the three major types of services,
including enhanced mobile broadband, massive machine com-
munication, and ultra-reliable low-latency communication, pose
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great challenges to operators’ transmission networks and core
networks. Because these application scenarios can bring users
higher bandwidth rates, more network connections, and lower
latency, which will result in an explosive growth of data size
and business requests that the core network needs to process per
unit time. Therefore, with the increasing network traffic carried
by mobile devices and IoT devices, traditional service mode of
the cloud data center cannot meet the daily needs of users.
On the one hand, users need to interact with the data center
when acquiring services, so the network latency caused by the
relative distance between the user and the data center will have
a great impact on some latency-sensitive applications, such as
network games, virtual reality, and video communications. On
the other hand, since the data interaction generated by all ap-
plications needs to go through the core network, it will put a lot
of pressure on network load during the peak periods of service
access [4]. Compared to the limitations of cloud computing in
terms of network, MEC provides services close to physical en-
tities or data sources by using an open platform that integrates
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network, computing, storage and application core capabilities, so
that its applications can be executed on the edge side, resulting
in faster network service response and satisfying the industry’s
real-time processing, intelligent application, security, and privacy
protection [5]. In other words, the core idea of MEC is to marginal-
ize and localize computing resources and cache resources, so as
to reduce network latency and alleviate bandwidth pressure [6].
This not only satisfies the need for mobile devices to expand
computing capacity but also makes up for the shortcomings of
long transmission latency in cloud computing.

Since different tasks have different calculation amount and
data transmission amount, in order to ensure that mobile devices
can improve performance through task offloading, it is necessary
to use a task offloading strategy to perform the metric measure-
ment, and determine whether the task is executed at the local
mobile or at the remote server [7]. At the same time, because
the computing, storage, bandwidth and other resources of the
MEC server are limited, in order to reduce the latency in the
network and make better use of the limited resources of the
edge server cluster, the task offloading strategy also needs to
determine its target server for offloading [8]. Currently, there are
two main types of task offloading: coarse-grained task offloading
and fine-grained task offloading [9]. Coarse-grained task offload-
ing takes a mobile application as the offloading object and does
not divide it into multiple subtasks according to its functions.
This method often does not fully consider transmission latency
and transmission consumption of the whole application. Fine-
grained task offloading refers to first dividing a mobile application
into multiple subtasks with data dependencies, because divided
subtasks require less computational complexity and the amount
of data transfer, some or all subtasks can be offloaded to multiple
remote servers for processing, which saves computing time and
transmission time, and has a higher resource utilization rate for
the edge server cluster.

Therefore, this paper proposes a Markov Decision Process
(MDP) model based on MEC environment, which uses deep re-
inforcement learning to solve the fine-grained task decision-
making problem of what to offload, how much to offload and
where to offload. Considering the scenarios of multi-service nodes
and mobile subtasks of multiple dependencies in large-scale
heterogeneous MEC, this solution proposes a fine-grained task
offloading scheme based on deep reinforcement learning, which
can reduce latency, cost, energy consumption and network usage
of the MEC platform.

The rest of the paper is organized as follows. In Section 2,
related works are presented. The problem model is described in
Section 3. The proposed task offloading algorithm is presented in
Section 4. In Section 5, the experiment results of the simulation
are provided. Section 6 presents the conclusion of this paper.

2. Related work

In order to save the energy consumption of mobile devices,
expand their computing power, effectively utilize the computing
resources of edge servers and the cloud data center, many ref-
erences have studied the offloading problem of MEC in recent
years. Ref. [10] combines MEC with wireless charging technology,
studies the offloading problem of wireless charging IoT devices,
and proposes an online scheduling strategy based on Lyapunov
optimization. Ref. [11] solves the task offloading problem by
using mixed integer nonlinear programming, which ultimately
reduces the user cost. Ref. [12] combines the medical network
physical system with fog calculation to comprehensively optimize
costs from multiple aspects such as base station association,
task assignment, and virtual machine placement. Ref. [13] first
proposes the concept of fog population based on hierarchical

optimization process and then combines it with a genetic algo-
rithm to determine whether the service is placed in the current
population for execution or propagated to the neighboring pop-
ulation for execution. Ref. [14] presents a model for predicting
the number of user requests in edge computing and designs a
task offloading scheme based on this model. The effectiveness
of this scheme is verified by comparing the performance of the
greedy algorithm, linear programming and genetic algorithm in
task offloading. Ref. [15] establishes a mathematical model of
MEC architecture., the MEC offloading strategy is optimized by
measuring the round trip time between user’s device and MEC
server at the edge of the network, which determines when to
offload user’s computational tasks to MEC server for processing
and verifies the effectiveness of the policy through the face recog-
nition application. Compared with the local execution of mobile
devices, the service latency is greatly reduced and the energy
consumption of devices is saved. Ref. [16] studies the multi-user
service latency problem in MEC offloading scenario and proposes
a new partial computing offloading model. The optimal strategy
is used to optimize the allocation of communication and comput-
ing resources. Experiments are carried out in specific scenarios
where communication resources are much larger than comput-
ing resources. Compared with the local execution and the edge
execution of devices, the proposed partial offloading strategy can
minimize the latency of all user devices, thereby improving the
user quality of service. Ref. [17] considers a scenario in which a
single user offloads computational tasks to multiple edge nodes,
and optimizes edge node selection, offloading order, and task
allocation through heuristic algorithms, reconstruction lineariza-
tion techniques, and semi-deterministic relaxation algorithms to
achieve the balance between latency performance and reliability
performance in MEC. In Ref. [18], the multi-user MEC architecture
in high-reliability and low-latency scenarios is studied. The user’s
task queue is analyzed by introducing probability and extreme
value theory, and Lyapunov stochastic optimization is used to the
minimization problem of calculation and transmission energy.

According to the above research, heuristic algorithm and
meta-heuristic algorithm are widely used to solve NP-Hard prob-
lems such as task offloading, but both of them have their own
shortcomings. Among them, the heuristic algorithm is easy to
fall into a local minimum, and it is difficult to get the overall
optimal results; the meta-heuristic algorithm has too many pa-
rameters, the calculation results are difficult to reusable, and the
parameter tuning cannot be performed quickly and effectively. In
contrast, deep reinforcement learning has characteristics of self-
learning and self-adaptation by combining the advantages of deep
learning and reinforcement learning. It needs to provide fewer
parameters and has better global search capabilities, which can
solve more complex, high-dimensional and more realistic task
scenarios. However, the results of deep reinforcement learning
algorithm must depend on the complete state information, and
the overestimation of its value caused by training errors will also
affect the performance of the algorithm. Therefore, this paper
improves the DQN algorithm by using the LSTM network and
the candidate network to solve the defect of deep reinforcement
learning, so as to solve the problem of MEC task offloading with
a large number of mobile devices.

3. Problem model

3.1. Task dependency model

The structure of the MEC usually includes three parts: the
cloud data center layer, the edge server layer, and the mobile
device layer. As shown in Fig. 1, the mobile device layer in-
cludes sensors, laptops, mobile phones and other devices with
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Table 1
Major notations.
Symbol Definition

D Cloud data center

E Edge server set

G Mobile device set

m Number of edge server

n Number of mobile device

C in
i Input data size of the ith subtask

Ndo
i Downlink bandwidth of the ith subtask

Mi CPU resource required for the ith subtask deployment

Cout
i Output data size of the ith subtask

Nup
i Uplink bandwidth of the ith subtask

SLtrani Data transmission latency of the ith subtask

SLcomp
i Calculation latency of the ith subtask

appnum Number of all mobile applications

subnumj Number of subtasks obtained by dividing the jth application

Ui CPU utilization of the ith computing device

St State space at time step t

A Action space

R Reward function

T State transition function

Z Observation set

O Observation function

Q̂ Approximate reward function

n′ Size of candidate network set

m′ Size of Net1
L (θ) Loss function

MainNet Current neural network

TargetNet Target neural network

low processing performance; The edge server layer divides all
edge servers into regions according to their relative distances,
each region contains some heterogeneous edge servers of mod-
erate performance; The cloud data center layer contains a large
number of high-performance physical servers that form a cluster.
When the mobile device needs to improve performance through
task offloading, a whole mobile application will be first divided
into several subtasks by some segmentation algorithm. Some
of these subtasks must be executed locally, such as user in-
teraction tasks, device I/O tasks, and peripheral interface tasks.
There are also some tasks that can be offloaded to servers for
execution, they are usually data-processing tasks with a large
amount of computation. The divided subtasks have data interac-
tion with each other and can be executed independently, which
is a prerequisite for fine-grained offloading decisions.

If there is a dependency between subtasks after the mobile
application is divided, the relationship can be represented by a
directed graph Loop = (S, B). Each node si ∈ S of the graph
represents the divided subtask, and each edge buv ∈ B of the
graph represents the transition data between tasks. For example,
bij indicates that the task sj must receive the processing result
of task si before it can continue to execute. As shown in Fig. 2,
the set of subtasks after dividing a mobile application is S =
{s1, s2, s3, s4, s5}, where s1 and s5 must be executed on the local
device, and remaining subtasks can be offloaded as needed. At the
same time, directed arrows are used to indicate data dependence
among subtasks. For example, the s5 must receive the data of s2
and s4 before it can continue to execute. In addition, the major
notations used in this paper are summarized in Table 1.

3.2. Resource consumption model

In this paper, all computing devices in the MEC are repre-
sented by (D, E, G), where D represents a cloud data center with
massive computing resources, which is mainly composed of a
physical machine cluster; E = {e1, e2, . . . , em} represents a set of
edge servers whose number is m; G= {g1, g2, . . . , gn} represents
a set of mobile devices whose number is n, and it is set that
only one application request can be sent by each device in a
certain period of time. The divided ith subtask is represented by
a five-tuple Subi = {C in

i ,Ndo
i ,Mi, Cout

i ,Nup
i }, where C in

i represents
the amount of input data transferred from the previous subtask
to the current subtask; Ndo

i represents the downlink bandwidth
that the current subtask can use to receive data; Mi represents
the computing resources required for this subtask deployment,
because one of the optimization objectives of this paper is the
total energy consumption generated by the task processing, and
some studies show that the correlation coefficient between the
power consumption of the host and its CPU utilization is as
high as 0.990667, so this value is defined as the CPU processing
performance required for task deployment [19]. Cout

i represents
the amount of result data transferred from the current subtask to
the next subtask; Nup

i represents the uplink bandwidth used by
the current subtask for uploading processing results. In view of
the offloading decision generated by the above task model, this
paper designs the following model to evaluate its effectiveness in
many aspects:

3.2.1. Energy consumption model
For the total energy consumption of all computing devices

including smartphones, sensors and remote servers in a certain
execution time, it mainly consists of two parts: computing en-
ergy consumption Energycomp of all devices and offloading energy
consumption Energyoff of mobile devices. This paper first defines
the computing energy consumption model of the ith computing
device as follows [19]:

Pi (u) =
{
K∗Pmax

i + (1− K ) ∗Pmax
i ∗u if u > 0

0 otherwise
(1)

where K represents the percentage of the idle state of the com-
puting device to the full load state, Pmax

i represents the energy
consumed by the ith computing device at full load, and u is the
CPU utilization. In addition, the load of the computing device
is constantly changing with time. Now suppose that u(t) is a
function for calculating the CPU utilization of the device per
unit time. From time t0, the computing energy consumption of
a computing device in unit time t is:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Energycomp

i (t0) =
∫ t0+t

t0

Pi(u(t))dt

u (t) = min{1,

∑alltaski
j=1 Mj

DRi
}

(2)

where alltaski represents the number of all tasks in the ith com-
puting device; Mj represents the CPU resource required for jth
subtask deployment; DRi represents the total CPU resource of the
ith device. At the same time, the data transmission rate rj of the
jth mobile device in a certain channel is defined as [20]:

rj = W log2(1+
pjh2

j

N0
) (3)

where W represents the fixed transmission bandwidth of the
channel; N0 represents the received average power of interfer-
ence plus additive background Gaussian noise; pj represents the
energy consumption of the jth mobile device for transmitting
data; hj represents the channel gain of the jth mobile device,
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Fig. 1. Structural diagram of MEC.

Fig. 2. Data dependency of subtasks.

which is a fixed value during the offloading process. Since setting
the data transmission rate of mobile devices as a constant is the
most energy-saving transmission strategy under time constraints,
the data transmission rate rj of the jth mobile device in unit time
t is:

rj(t0) =

∫ t0+t
t0

∑offnumj
k=1 Cout

k (t)dt

t
(4)

where offnumj represents the number of subtasks that the jth mo-
bile device needs to be offloaded; Cout

k (t) represents the amount
of data that the kth subtask needs to upload. At the same time,
according to formula (3), f (x) is defined as the energy consump-
tion pj of data transmission in the jth mobile device, and x is the
data transmission rate rj(t0) in the unit time, then the offloading
energy consumption of the jth mobile device in unit time t is as

follows [20]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x) =

N0(2
x
W − 1)
h2
j

Energyoffj (t0) = pjt = f
(
rj(t0)

)
t =

N0t(2
rj(t0)
W − 1)
h2
j

(5)

All computing devices with a total number of (1+m+n) and
mobile devices with a total number of n generate computing
energy consumption and offloading energy consumption in unit
time t as follows:

Energysum (t0) =
1+m+n∑

i=1

Energycomp
i (t0)+

n∑
j=1

Energyoffj (t0) (6)
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3.2.2. Cost model
The user needs to pay the corresponding fee for the computing

resources provided by the remote server. This paper uses the dy-
namic price model based on the remaining amount of resources.
The lower the remaining amount of resources, the higher the
resource price. At this time, the user prefers to select the service
node with the lower unit price as the offloading target, so as
to reduce user costs and improve resource utilization. Formula
(7) is a dynamic price model based on the remaining amount of
resources in unit time t [21]:

Costi (t0) = CC+ UT*RPM*TM*
∫ t0+t

t0

LU(t)dt (7)

CC represents the cost that the current device has generated;
UT represents the interval time for the fee calculation, here is
the unit time t; RPM represents the unit price of computing
resources; TM represents the total computing resource of the
current device; LU(t) represents the computing resource ratio that
the current device has used per unit time. At the same time,
since computing resources of the local device belong to users
themselves and do not need to calculate the cost, so the total cost
of all remote devices (the quantity is 1+m) is as follows:

Costsum(t0) =
1+m∑
i=1

Costi(t0) (8)

3.2.3. Load balancing
Load balancing is an important method to realize the effec-

tive use of various resources in a cluster. It is mainly for the
purpose of optimizing resource usage, maximizing throughput,
minimizing response time, avoiding overload, enhancing network
data processing capability, and improving network flexibility and
availability. Formula (9) is used to calculate the load balancing of
all devices in the cluster [22]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Loadi(t0) =
∫ t0+t

t0

(
lb∑

k=1

Uk ∗ Lk(t))dt

avg(t0) =
∑1+m+n

i=1 Loadi(t0)
1+m+ n

LB(t0) =

√∑1+m+n
i=1 (Loadi(t0)− avg(t0))2

1+m+ n

(9)

Loadi(t0) represents the synthetical load of all resources in the
ith computing device during t0; lb represents the number of indi-
cators used to calculate the load balancing, such as CPU, memory,
and hard disk, and this paper mainly considers the CPU utilization
of computing devices; Uk is the weight of each resource, which
satisfies the condition

∑lb
k=1 Uk = 1; Lk(t) represents the usage

rate of each resource per unit time; avg(t0) is the average load
of all computing devices; LB(t0) represents the load value of all
computing devices, the smaller the value, the better the load
balancing result.

3.2.4. Average service latency
According to the dependency between subtasks, the average

service latency SLavg of all mobile application consists of two
parts: (1) the data transmission latency SLtran between subtasks;
(2) the data computation latency SLcomp generated by processing
business data of subtasks. Since the amount of data transmission
and available bandwidth of the subtask change dynamically with
time. Therefore, starting from the time t0, the transmission la-
tency of the ith subtask for downloading dependent data in unit
time t is:

SLdoi (t0) =
∫ t0+t

t0

C in
i (t)

Ndo
i (t)

dt (10)

The transmission latency of the ith subtask for uploading
results in unit time t is:

SLupi (t0) =
∫ t0+t

t0

Cout
i (t)
Nup

i (t)
dt (11)

Then the data transmission latency of the ith subtask in unit
time t is [23]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
SLtrani (t0) = xdotran

∫ t0+t

t0

C in
i (t)

Ndo
i (t)

dt + xuptran

∫ t0+t

t0

Cout
i (t)
Nup

i (t)
dt

xdotran = 1{li ̸= li−1}

xuptran = 1{li ̸= li+1}

(12)

where li−1, li, and li+1 represent the devices for deploying the
previous subtask, the current subtask, and the next subtask, re-
spectively. xdotran represents whether the current subtask needs to
download dependent data through the network, and xuptran repre-
sents whether the current subtask needs to upload the processing
result to the network. 1{·} is Iverson bracket, which is equivalent
to 1 when the condition is satisfied. Otherwise, it is equivalent to
0. In addition, the calculation latency of the ith subtask generated
by processing data in unit time t is:⎧⎨⎩SLcomp

i (t0) = xoff

∫ t0+t

t0

C in
i (t)

f server (t)
dt + (1− xoff )

∫ t0+t

t0

C in
i (t)

f local(t)
dt

xoff = 1{li ̸= llocal}

(13)

where f server (t) represents the processing rate of the remote
server for deploying the ith subtask; f local(t) represents the pro-
cessing rate of the local device for deploying the ith subtask; xoff
represents whether the current subtask is offloaded to the remote
server for execution. Based on the above analysis, the average
latency of all mobile applications in unit time t is:

SLavg (t0) =
SLtotal (t0)
appnum

=

∑appnum
j=1

∑subnumj
i=1

(
SLtrani (t0)+ SLcomp

i (t0)
)

appnum
(14)

where SLtotal (t0) represents the total latency of all mobile appli-
cations; appnum represents the number of mobile applications;
subnumj represents the number of subtasks after the jth mobile
application is divided.

3.2.5. Average execution time
Execution time refers to the time it takes for a subtask to pro-

cess data. The more resources subtasks can use, the shorter the
processing time, the more requests can be processed in unit time.
Therefore, the offloading decision needs to reduce the average
execution time of all mobile application as much as possible. The
formula for the average execution time is:

ET (t0) =

∑appnum
j=1

∑subnumj
i=1 SLcomp

i (t0)

appnum
(15)

where ET (t0) represents the average execution time of all mobile
applications per unit time.

3.2.6. Network usage
The network usage refers to the amount of data transmission

generated by all mobile applications in unit time t . If the network
usage is too high, the entire network may be congested, further
reducing the processing performance of the computing device.
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The calculation formula for network usage per unit time is as
follows [23]:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
TA (t0) =

appnum∑
j=1

subnumj∑
i=1

∫ t0+t

t0

(
xdotranC

in
i (t)+ xuptranC

out
i (t)

)
dt

xdotran = 1{li ̸= li−1} And xuptran = 1{li ̸= li+1}

NU(t0) =
SLtotal (t0) ∗ TA (t0)

t
(16)

where TA (t0) represents the total amount of data transmission
generated by all mobile application per unit time; NU(t0) repre-
sents the network usage per unit time.

4. Algorithmic design

Reinforcement learning is an algorithmic model that can make
optimal decisions through self-learning in a specific scenario,
it models by abstracting all real-world problems into an in-
teractive process between the agent and the environment. At
each time step in the interaction process, the agent receives
the state of the environment and selects the corresponding re-
sponse action. Then in the next time step, the agent obtains
a reward value and a new state according to the feedback of
the environment. Reinforcement learning is more adaptable to
the environment based on the rewards of continuous learning.
The goal of all agents is to maximize the sum of the expected
rewards obtained at all time steps [24]. While reinforcement
learning has many advantages, it is also lacking in scalability and
is inherently limited to fairly low-dimensional problems. These
limitations exist because the reinforcement learning algorithm
has the same memory complexity, computational complexity,
and sample complexity as other algorithms. In order to solve
the difficult decision-making problem in reinforcement learning,
deep reinforcement learning combines the perception ability of
deep learning with the decision-making ability of reinforcement
learning. It relies on powerful function approximation and the
expressive learning property of deep neural network to solve the
environmental problems with high-dimensional state space and
action space [25]. In the following, the MDP model is constructed
by combining the actual MEC environment, and the DQN algo-
rithm is improved to solve the task offloading problem in the
MEC.

4.1. MDP model

4.1.1. State space
In order to comprehensively consider the characteristics be-

tween subtasks and server resources in MEC, this paper defines
the state space at time step t as St = (C in,Ndo,M, Cout ,Nup,U1,

U2, . . . ,Ui, . . . ,U2+m), Where C in represents the amount of input
data required for the current subtask; Ndo represents the down-
link bandwidth that the subtask can use to download the result;
M represents the CPU resources required for the deployment of
the subtask, Cout represents the amount of result data generated
by the current subtask, and Nup represents the uplink bandwidth
that the subtask can use to upload the data; Ui represents the CPU
utilization of the ith computing device at time step t. In order to
ensure that the subtask can only be selected to be executed on the
local mobile device or the remote server, the offloading decision
of the subtask only needs to consider computing devices with the
number of (2+m), which includes one cloud data center, one local
mobile device, and m edge servers.

4.1.2. Action space
In order to offload the subtask to the appropriate computing

device, the action space is specified in a one-to-one correspon-
dence with the set of computing devices in the deep reinforce-
ment learning, and (0/1)ji is used to indicate whether the ith
subtask is offloaded to the jth computing device. For example,
the action space Ai = (0, 0, 1, . . . , 0) indicates that the ith
subtask is offloaded on the third computing device according to
the policy. Therefore, the action space is A = (a1, a2, . . . , a2+m)
for a cluster containing (2+m) computing devices. In addition,
the preprocessing of the action space ensures that the deep
reinforcement learning algorithm can learn valid actions in the
iterative process, so as to avoid the reward function need to
set penalty values for invalid actions, reduce the complexity and
calculation of the reward function, and accelerate the learning
rate of the optimal strategy. Comparing the resources required
for the subtask to be offloaded with the available resources of
the target computing device. If the computing device can satisfy
the offloading requirements, set its corresponding action space
to True, otherwise set to False. Algorithm 1 is pseudo code for an
action space that can perform valid offloading operations.

4.1.3. Reward function
This paper will consider the three aspects of energy consump-

tion, cost and load balancing of all devices in MEC to evaluate the
advantages and disadvantages of the offloading decision. At the
same time, in order to solve the deviation of reward value caused
by the performance difference of heterogeneous computing de-
vices in each time step, this paper uses z-score standardization
method to normalize energy consumption, cost, and load bal-
ancing respectively. When the sequence is x1, x2, . . . , xnum, the
formula is as follows [26]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x =
1

num

num∑
i=1

xi

s =

√ 1
num− 1

num∑
i=1

(xi − x)2

Zi =
xi − x

s

(17)

By combining Formulas (6), (8), and (9) with Formula (14), re-
spectively, the normalization value of energy consumption, cost,
and load balancing of all computing device can be obtained by
comparing with their respective historical data sets. In addition,
this paper focus on minimizing the total resource consumption
over time, so the reward function during t0 is defined as:{
R = −(αZeg (t0)+ βZcs(t0)+ γ Zlb(t0))

α + β + γ = 1
(18)

where Zeg (t0), Zcs(t0), and Zlb(t0) represent the normalization val-
ues of energy consumption, cost, and load balancing of all devices
during the time t0, respectively; α, β , and γ represent the weights
of the three factors, and their sum is 1. In addition, according
to the MDP model constructed above, the pseudo code of the
MEC task offloading strategy combined with deep reinforcement
learning is as follows:

4.2. Algorithm optimization

4.2.1. Optimization based on LSTM network
DQN is a deep reinforcement learning algorithm based on

value iteration whose goal is to estimate the Q value of the opti-
mal strategy. The algorithm calculates approximation function by
using the deep neural network, and transforms Q-Table updating
problem into a function fitting problem, so that it can get similar
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output actions according to the current state, so as to solve
the shortcomings of traditional Q-Learning algorithm in high-
dimensional and continuous problems. As shown in the following
formula, the calculation result of the Q̂ function is approximated
to the Q value by updating the parameter θ [24]:

{
Q̂ (st , at , θ) ≈ Q (st , at)

Q (st , at)← Q (st , at)+ α(rt+1 + γmaxa′Q
(
st+1, a′

)
− Q (st , at))

(19)

where st+1 represents the next state after the action at is taken
at time step t, rt+1 is the immediate reward after taking action
at , and a′ is all actions that can be taken for state st+1; γ is the
discount coefficient in the process of value accumulation; α is the
learning rate, and the larger the value, the smaller the impact of
historical training results.

DQN not only improves the search speed of Q-Learning al-
gorithm by function fitting, but also improves its diversity and
stability by adding experience pool and the target network. The
experience pool stores the transfer samples (st , at , rt , st+1) ob-
tained by the interaction between the agent and the environment
at each time step into the memory space. When training, a certain
number of samples are randomly selected to solve the problem of
data correlation and non-static distribution; The target network
value TargetQ refers to the target Q value of the training process
generated by using another network TargetNet. The structure of
the TargetNet is consistent with the neural network MainNet
of the DQN, and the parameters of MainNet are copied to Tar-
getNet after C round iteration. Therefore, the current Q value
and the target Q value are used to calculate the loss function
by maintaining the difference of the two network parameters
for a period of time, and then the parameters of the network

MainNet are inversely updated using a method such as stochastic
gradient descent (SGD). The loss function of the DQN algorithm
is calculated as:{

L (θ) = E[(TargetQ− Q̂ (st , at , θ))2]
TargetQ = rt+1 + γmaxa′ Q̂

(
st+1, a′, θ−

) (20)

where Q̂ (st , at , θ) is the output of the current network MainNet,
which is used to calculate the Q value of the current state–action
pair. Q̂

(
st+1, a′, θ−

)
represents the output of the target network

TargetNet, which is used to calculate target Q values after taking
all optional actions.

In the real environment of MEC, it is difficult for the system
to directly obtain the accurate state in the current time step
due to the complexity of the problem and the limitations of
perception. Assuming that the state information of the system
cannot be directly observed, it is partially known. Therefore, it is
usually necessary to use a POMDP (Partial Observation Markov
Decision Process) to model a system and make decisions with
only incomplete state information. POMDP can be described by a
six-tuple (S, A, T, R, Z, O), where S represents the state set of the
system’s environment and is partially observable; A represents
a finite set of actions; Z represents a finite set of observations;
T: S× A→ Π (S) is the state transition function; R: S× A→ R is
a reward function; O: S × A → Π (Z) is the observation function
given by state and action. Under normal circumstances, DQN can
only achieve good results when the observation z ∈ Z can reflect
the real environment state s ∈ S well, so it is difficult to directly
solve the actual MEC problem.

In view of the gradual change of resources over time in MEC
and the memory ability of LSTM network for long-term state,
this paper proposes to combine LSTM and DQN to deal with the
time-dependent task offloading problem. The recurrent structure
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is used to integrate any long-term historical data to estimate
the current state more accurately by replacing the last fully
connected layer of the DQN network with the LSTM layer. As
shown in Fig. 3, the improved DRQN algorithm composes a state–
action pair by the observation state zt in the current time step
and the action at−1 in the previous time step, and integrates it
with the output value in the LSTM to derive the real environment
state st , then it is imported into the deep neural network for
training. Therefore, compared to the Q̂ (st , at , θ) used by the DQN
algorithm, DRQN prefers to use Q̂(zt , ht , θ ) for function fitting,
where ht represents the output value of the LSTM layer at the
current time step. Its iteration formula is:

ht+1 = LSTM (ht , zt , at−1) (21)

4.2.2. Optimization based on candidate network
The DQN algorithm guarantees the parameter difference be-

tween the current network and the target network by delayed
updating, so as to increase the stability in the training process.
However, formula (20) shows that DQN algorithm uses the same
network in action evaluation and action selection. Therefore,
when the value of an action in training process is overestimated
because of noise or error, the value of the corresponding action
will inevitably be overestimated when it is used for parameter
updating in subsequent estimation. This overestimation of the

value function will affect the stability of the algorithm, resulting
in the generated strategy is not optimal. In order to overcome the
problem of overestimation, this paper comprehensively considers
results of multiple candidate networks to decouple the action se-
lection and action value evaluation to ensure the optimal learning
strategy [27].

As shown in Fig. 4, it is assumed that the candidate network
set Net = (net1, net2, . . . , neti, . . . , netn′ ) can store networks with
a total number of n′, which consists of network sets Net1 and
Net2. There are m′ networks in the network set Net1 and they
are updated after satisfying the fixed iteration number C; The
network set Net2 has (n′ − m′) networks that are selected for
updating by comparing reward values. When the number of the
network set Net2 is less than (n′ −m′), the current network gen-
erated by each iteration will be added to the Net2 as a candidate
network; When the number of the network set Net2 is equal to
(n′ − m′), the current network and all networks in the network
set Net2 will train the currently selected state–action pair. If the
reward value of the current network is greater than the minimum
value of training results in the network set Net2, the candidate
network with the smallest reward value is replaced with the
current network, otherwise the training is continued.

Because the training process of the DQN algorithm uses ran-
dom sampling to train the neural network, different samples will
form different target networks, and each target network has its
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Fig. 3. DRQN algorithm training flowchart.

Fig. 4. Candidate network update flowchart.

Table 2
Computing device detailed configuration table.
Model Type CPU frequency (MHZ) Core Memory (GB) Performance-to-power ratio (ssj_ops/watt) Unit price

RX4770 M4 Cloud server 2100 112 192 12 828 0.05
RX350 S7 Edge server 2200 16 24 5 035 0.01
DL325 Gen10 Edge server 2000 32 128 8 083 0.01
DL360 Gen10 Edge server 2500 28 48 11 550 0.01
TX120 Mobile device 2666 2 4 454 0
TX150 S5 Mobile device 2666 2 4 356 0
TX150 S6 Mobile device 2400 4 8 667 0

advantage. In order to make full use of the state advantages of
each target network based on different samples and iterations,
this paper divides the candidate network set into a network set
Net1 which is updated according to the number of iterations and a
network set Net2 which is updated according to the reward value.
The update frequency of the network in the set Net1 is consistent

with the update frequency of the target network, which helps to
comprehensively consider the historical parameters of the target
network; The network set Net2 updates network parameters in
real time with continuous iteration, replaces the network with
the minimum reward value so as to keep the result optimal all
the time. Finally, the reward values of all networks in the network
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Fig. 5. VR game subtask dependency.

set Net are calculated separately, and network parameters with
the maximum reward value of the current state–action pair are
selected as parameters of the target network. Compared with
formula (20), the calculation formula of the loss function is [28]:{

L (θ) = E[(TargetQ− Q̂ (st , at , θ))2]
TargetQ = rt+1 + γmaxa′{max Q̂neti (st+1, a

′, θi)}
(22)

The pseudo-code of the improved IDQN algorithm combined
with candidate networks in each sampling process is as follows:

5. Simulation experiment

5.1. Simulation environment

In this paper, iFogSim is used to simulate the task offload-
ing problem based on MEC, the advantages and disadvantages
of the offloading decision are reflected by comparing the en-
ergy consumption, cost, load balancing, service latency, average
execution time and network usage of each algorithm in a large-
scale heterogeneous cluster. Implemented algorithms include the
offloading strategy Mobile based on local device priority, the
offloading strategy Edge based on edge server priority, the strat-
egy DQN based on deep reinforcement learning, the improved
deep reinforcement learning strategy HERDQN based on hind-
sight experience replay [28], the improved deep reinforcement
learning strategy DRQN based on LSTM, the improved deep re-
inforcement learning strategy IDQN based on candidate network,
the improved deep reinforcement learning strategy IDRQN based
on candidate network and LSTM. The cluster of devices in the
simulation experiment mainly consists of a cloud data center, 60
edge servers, and many mobile devices, in which all edge servers
are divided into 10 different regions on average, and each mobile
device can only send one offloading request in unit time. In this
paper, the configuration and PPR(performance-to-power ratio)
of all devices are set according to SPEC (Standard Performance
Evaluation Corporation). In addition, the larger the PPR is, the
less energy the device consumes at the same performance. The
detailed information is shown in Table 2.

In order to simulate the offloading process after the mobile ap-
plication is divided into different subtasks, this paper constructs
subtask dependencies of a virtual reality game according to the
Ref. [29]. As shown in Fig. 5, the application is mainly composed
of five subtasks such as EEG, Client, Concentration Calculator,
Coordinator and Display. The EEG and Display must be executed
on the local device, and remaining subtasks can be offloaded ac-
cording to the strategy. Latency-sensitive applications have very

Table 3
Subtask parameter table.
Tuple type CPU length N/W length

EEG 2000 500
SENSOR 3500 500
PLAYER_GAME_STATE 1000 1000
CONCENTRATION 14 500
GLOBAL_GAME_STATE 1000 1000
GLOBAL_STATE_UPDATE 1000 500
SELF_STATE_UPDATE 1000 500

high requirements for offloading decisions. On the one hand, it is
necessary to offload high-calculation modules to remote servers
for execution to minimize the energy consumption of mobile
devices; On the other hand, the computing modules need to be
as close as possible to the data sources, so as to reduce the
latency caused by data transmission between modules. As shown
in Table 3, this paper uses the CPU Length and N/W Length to in-
dicate the requirements of the task dependency on computational
complexity and data throughput. When the CPU Length is larger
and the N/W Length is smaller, it indicates that the task is more
inclined to high computational demand. Otherwise, the task is
more inclined to data transmission demand. At the same time, the
parameters of all deep reinforcement learning algorithm are set
uniformly to ensure the fairness of training results. Among them,
the memory space of deep reinforcement learning is defined
as M = 100 000, the learning rate of optimization algorithm
SGD(Stochastic gradient descent) is α = 0.005, the batch learning
size K = 32, the updating period C = 50, and the discount
coefficient γ = 0.9; For the improved HERDQN algorithm, the
target utilization ratio of edge servers with DL360 Gen10 is set to
100%, because the PPR of the device is the largest among all edge
servers, while the target utilization ratio of other devices is set to
0%, and the array composed of the target utilization ratio of all
devices is taken as the initial state; For the improved DRQN al-
gorithm based on LSTM, the time window of LSTM network layer
is set to 10; For improved IDQN algorithm based on candidate
network, the total size of candidate network set is 20, and Net1
and Net2 account for half size of the network set Net, respectively.

5.2. Analysis of experimental results

In order to reflect the resource utilization of mobile applica-
tions in different time periods, this paper uses the Google Cluster
Trace dataset to simulate changes in the utilization of each mod-
ule over time [30]. In addition, in order to verify the availability of
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strategies based on deep reinforcement learning algorithms, this
paper first selects 1000 applications from the Google dataset to
train neural networks, and then selects part of the remaining data

to test the trained network model, so as to compare the gener-
ality and efficiency of the strategy. Figs. 6 and 7 show the loss
function scores of each deep reinforcement learning algorithm
in the training process of small batch samples. The smaller the
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Fig. 6. Iterative figure of loss functions for DQN and IDQN.

Fig. 7. Iterative figure of loss functions for DRQN and IDRQN.

value of loss function, the better the result of network model.
It can be seen from figures that the loss function scores of the
IDQN algorithm is lower than the DQN algorithm and HERDQN
algorithm in the early iteration period when parameters are the
same, which has great advantages for solving the problem of the
short training period; The loss function scores of IDRQN algorithm
and DRQN algorithm are similar in the early iteration period.
However, loss function scores of IDRQN algorithm decrease more
than DRQN algorithm as the number of iterations increases, so
IDRQN algorithm is easier to approach the optimal solution of the
problem when the number of iterations is the same. In addition,
the deep reinforcement learning algorithm based on the LSTM
network is maintained at a relatively low score during the whole
iterative process by comparing the DQN algorithm with the DRQN
algorithm and comparing the IDQN algorithm with the IDRQN
algorithm. The main reason is that the DRQN algorithm and the
IDRQN algorithm can obtain a more comprehensive state by using
the LSTM network layer, and the estimated value obtained is
closer to the real value.

Fig. 8 is a figure of resource consumption generated by each
algorithm in task offloading. It can be seen from the figure that
as the number of applications increases, the offloading strategy
generated by each algorithm is basically incremental in terms of
energy consumption, cost, load balancing, latency, network usage,
and execution time. The offloading strategy based on Mobile
algorithm can achieve good results in latency and network usage,

but the performance of cost and load balancing is in general, and
it is the worst of all algorithms in terms of energy consumption
and execution time. This is mainly because the Mobile algorithm
prefers to offloads subtasks to the local device for execution.
When resources of the local device are insufficient, subtasks are
gradually offloaded to upper devices. Since some subtasks can
be executed locally without network transmission, so the Mobile
algorithm has lower network latency and network usage. At the
same time, it can be seen that the processing capacity and PPR
of mobile devices are much less than remote servers according
to Table 2, so processing subtasks on local devices will result
in longer execution time and higher energy consumption. In
addition, the offloading strategy based on Edge algorithm per-
forms well in load balancing and network usage, but it performs
generally in other aspects. The main reason is that the Edge
algorithm prefers to offloads subtasks to the edge server cluster,
which makes the resource utilization of all edge servers maintain
at an average level and minimizes the value of load balancing.
At the same time, the performance of edge servers can satisfy
the processing requirement of more subtasks, so the network
transmission between subtasks is reduced, and the network usage
of the whole cluster is further reduced.

The DQN algorithm, HERDQN algorithm, DRQN algorithm,
IDQN algorithm, and IDRQN algorithm all use the deep rein-
forcement learning to automatically generate the corresponding
offloading strategy from the value iteration. From results in Fig. 8,
it can be seen that as the number of applications increases, the
offloading strategy generated by the DQN algorithm performs
badly in terms of load balancing, and in other respects it performs
generally; The HERDQN performs a little better than the DQN
algorithm in all aspects except cost and latency; The DRQN
algorithm has good effect on energy consumption and execution
time, and the performance is general in terms of cost, latency,
and network usage. When the number of applications is large,
the strategy generated by IDQN algorithm has good results in
terms of cost and latency, but its result is the worst in terms of
network usage. The strategies generated by the above three deep
reinforcement learning algorithms have their own advantages
and disadvantages, and the improved IDRQN algorithm based on
LSTM network and candidate network comprehensively considers
the advantages of DRQN algorithm and IDQN algorithm in many
aspects. The performance of IDRQN algorithm in terms of energy
consumption, load balancing and execution time is consistent
with DRQN algorithm. When the number of applications is large,
the latency of IDRQN algorithm and IDQN algorithm show a
downward trend, and its performance is better than the other
two deep reinforcement learning algorithms. In addition, IDRQN
algorithm and IDQN algorithm have similar performance in terms
of network usage, and the result is next only to the heuristic
algorithm.

In order to verify the relationship between CPU utilization and
resource consumption in heterogeneous devices, this paper uses
offloading strategies generated by each algorithm to offload 100
applications, then the impact of types and quantities of hetero-
geneous devices on resource consumption are analyzed. Table 4
is the number distribution of heterogeneous devices based on
CPU utilization, it shows that the strategy generated by IDRQN
algorithm and DRQN algorithm tends to offload subtasks to edge
servers of model DL360 Gen10, and IDRQN algorithm is the least
used in all algorithms for edge servers of model RX350 S7. It
can be seen from Table 2 that when the power consumption
is the same, the DL360 Gen10 and RX350 S7 are the best and
the worst edge server models in terms of energy consumption,
respectively. In addition, IDRQN algorithm, DRQN algorithm, and
Edge algorithm rarely offload subtasks to local devices with low
PPR but zero cost. Therefore, the offloading decisions of these
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Fig. 8. Resource consumption generated by each algorithm in task offloading.

algorithms generate lower energy and execution time, but they
perform generally in terms of cost and network usage. Beyond
that, because these decisions generated by the IDQN algorithm
and the Mobile algorithm prefer to offload subtasks to local
devices, and the IDQN algorithm is more efficient than Mobile
algorithm in using edge servers with higher PPR. On the one hand,
the performance of the IDQN algorithm in energy consumption
is better than that of the Mobile algorithm, but is worse than
other algorithms; On the other hand, the IDQN algorithm and
the Mobile algorithm perform well in terms of cost, latency, and
network usage, while being relatively bad in average execution
time. It can be seen from Table 4 that HERDQN algorithm is more
effective than DQN algorithm in the use of high PPR edge servers.
However, HERDQN algorithm makes poor use of local devices, so
it is weaker than DQN algorithm in terms of cost and latency, but
slightly better than DQN algorithm in other aspects.

6. Conclusion

In this paper, deep reinforcement learning is proposed to solve
the problem of multi-service nodes in large-scale heterogeneous

MEC and multi-dependence in mobile tasks. Then the offloading
strategy generated by each algorithm is simulated on the edge
computing simulation platform iFogSim. Finally, the advantages
and disadvantages of each algorithm are verified by comparing
various factors such as energy consumption, cost, load balancing,
latency, network usage and average execution time. According
to the multi-faceted results of each algorithm, the improved
IDRQN algorithm based on LSTM network and candidate network
can satisfy the latency sensitivity application constructed in this
paper to a large extent. In addition, this paper uses various algo-
rithms to offload a certain number of applications and compare
the relationship between the number distribution of heteroge-
neous devices and each resource consumption, so as to prove that
the strategy generated by IDRQN algorithm is scientific and effec-
tive in solving the task offloading problem of MEC. In the future,
we may apply transfer learning to large-scale heterogeneous MEC
problems involving various types of mobile applications, so as to
improve the training speed and performance between different
applications [31,32].
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Table 4
Number distribution table of heterogeneous devices with different CPU
utilization.

Mobile Edge DQN HERDQN DRQN IDQN IDRQN

RX4770 M4 [80%,100%] 0 0 0 0 0 0 0

RX350 S7 [80%,100%] 7 8 11 12 1 9 0

DL325 Gen10 [80%,100%] 0 4 8 10 6 10 6

DL360 Gen10 [80%,100%] 1 3 8 9 18 5 18

TX120 [80%,100%] 16 0 6 0 0 16 0

TX150 S5 [80%,100%] 7 0 5 0 0 11 0

TX150 S6 [80%,100%] 7 0 0 0 0 6 0

RX4770 M4 (20%,80%) 0 0 0 0 0 0 0

RX350 S7 (20%,80%) 11 10 1 0 0 1 0

DL325 Gen10 (20%,80%) 15 12 1 0 0 0 1

DL360 Gen10 (20%,80%) 11 14 0 0 0 0 0

TX120 (20%,80%) 2 0 0 0 0 6 0

TX150 S5 (20%,80%) 5 0 0 0 0 4 0

TX150 S6 (20%,80%) 15 0 21 0 0 24 0

RX4770 M4 [0%,20%] 1 1 1 1 1 1 1

RX350 S7 [0%,20%] 2 2 8 8 19 10 20

DL325 Gen10 [0%,20%] 5 4 11 10 14 10 13

DL360 Gen10 [0%,20%] 8 3 12 11 2 15 2

TX120 [0%,20%] 22 40 34 40 40 18 40

TX150 S5 [0%,20%] 18 30 25 30 30 15 30

TX150 S6 [0%,20%] 8 30 9 30 30 0 30

Quantity of [80%,100%] 38 15 38 31 25 57 24

Quantity of (20%,80%) 59 36 23 0 0 35 1

Quantity of [0%,20%] 64 110 100 130 136 69 136

Quantity of devices 161 161 161 161 161 161 161
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