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a b s t r a c t

In the service oriented architecture (SOA), software and systems are abstracted as web services to
be invoked by other systems. Service composition is a technology, which builds a complex system
by combining existing simple services. With the development of SOA and web service technology,
massive web services with the same function begin to spring up. These services are maintained by
different organizations and have different QoS (Quality of Service). Thus, how to choose the appropriate
service to make the whole system to deliver the best overall QoS has become a key problem in
service composition research. Furthermore, because of the complexity and dynamics of the network
environment, QoS may change over time. Therefore, how to adjust the composition system dynamically
to adapt to the changing environment and ensure the quality of the composed service also poses
challenges. To address the above challenges, we propose a service composition approach based on
QoS prediction and reinforcement learning. Specifically, we use a recurrent neural network to predict
the QoS, and then make dynamic service selection through reinforcement learning. This approach can
be well adapted to a dynamic network environment. We carry out a series of experiments to verify
the effectiveness of our approach.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Internet has become an important part of people’s daily
life. Network technology has also had a great impact on the soft-
ware development in many application domains. More and more
enterprises and organizations deliver their softwares, systems,
computing resources, storage resources, and so on in the form
of Web services to be used by other users. Therefore, how to
effectively integrate various services has become a fundamental
research problem. Service composition mainly studies how to
produce a system that can meet the complex requirements by
combining existing services. It has significant importance in the
development of modern software systems. In addition, services
that have the same functionalities may be provided by different
service providers with different Quality of Service (QoS). QoS is
mainly used to denote the non-functional attributes of services,
which include price, usability, reliability, response time, reputa-
tion, throughput, and so on. Due to the dynamic change of the
network environment, the performance fluctuation of the service
itself, and the change of users’ access patterns, the QoS may also
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change dynamically over time. Therefore, the service composition
methods need to adapt to the dynamic changing environment [1].

Currently the process of service composition is often repre-
sented as a workflow. A typical workflow is shown in Fig. 1,
where a solid circle represents an abstract service while a hollow
circle represents a state node. The abstract service describes
the required service functionality, and each abstract service has
several specific services that meet the requirements that can be
invoked, known as candidate services. Workflow-based service
composition focuses on QoS attributes. For each abstract service
in the workflow, a proper specific service is determined through
QoS attributes during the execution of service composition, and
finally an optimal service composition result can be obtained,
which can meet user requirements to the greatest extent.

This paper assumes that the workflow which meets the re-
quirement of the user has been built, but each subtask has a
number of candidate services with similar functionalities but
different QoS to be selected. Because of the dynamic change of the
network environment and the change of the service itself, the QoS
of each service will fluctuate. The proposed approach combines
QoS prediction with reinforcement learning, where the former is
used to estimate the QoS and improve the accuracy of service se-
lection under the dynamic environment, while the latter provides
self optimization and adaptive ability for the service composition.
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Fig. 1. Service composition workflow.

Table 1
Notations.
ANN Artificial Neural Network
BPEL Business Process Execution Language
DWSC-MDP Dynamic Web Service Composition Markov Decision Process
LSTM Long Short Term Memory
MDP Markov Decision Process
QoS Quality of Service
QP-RL Q Prediction Reinforcement Learning
RL Reinforcement Learning
RNN Recurrent Neural Network
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
W3C World Wide Web Consortium
WSDL Web Service Description Language
XML eXtensible Markup Language

This leads to a new adaptive service composition method for QoS-
aware service composition that can adapt to the dynamic network
environment. Our contributions are summarized as follows:

(1) We apply the time series prediction method to the field of
service computing. The QoS prediction method based on a
recurrent neural network is developed.

(2) We combine reinforcement learning with QoS prediction
and apply them to service composition.

(3) We conduct a series of experiments to verify the method
proposed in this paper, which prove its effectiveness in the
dynamic environment.

The remainder of this paper is organized as follows. Section 2
describes related works. Section 3 gives a brief description of
the relevant theories, including reinforcement learning and time
series prediction. Section 4 mainly introduces the service com-
position model based on the Markov process and a new service
composition method based on reinforcement learning and QoS
prediction. Section 5 shows the experimental results to verify the
method proposed in this paper. Section 6 presents the concluding
remarks. Table 1 summarizes the notations used in this paper.

2. Related work

In this section, we review some related works about adaptive
service composition, including reinforcement learning, QoS pre-
diction and some other solutions adopted in service composition.

Considering the dynamics and complexity of the network
environment, QoS may be constantly changing, so the method of
service composition is required to perceive the changes of the
environment and adjust the system automatically. This challenge
has attracted widespread attention and many solutions have
been developed. In [2], the authors use the artificial intelligence
method to plan the service composition. When the quality of a
service decreases, this method will replace it with a better one.
But because only a single service replacement is considered, this
method lacks overall control over the entire composite system. It
may appear that the overall QoS decreases. In [3,4], the authors
consider the problem of service composition optimization as an

integer programming problem, and then obtain the optimal solu-
tion by using related technology. In [5,6], the authors describe the
relationships among various services through a plan map, model
the service composition using a plan diagram model, and then
search for poor quality services and replace them with a greedy
algorithm. In [7], the authors also use integer programming to
make global optimization of the service composition. At the
beginning, by using skyline technology, the number of candidate
services is greatly reduced and thus the difficulty of integer pro-
gramming is greatly reduced. Similarly, in [8], the authors also use
skyline technology to filter services. The basic idea of the above
methods is to solve the problem of service composition by integer
programming or mixed integer programming. But this kind of
methods are only applicable to small-scale problems, and lack
self-adaptive ability. So they cannot solve the problem of service
composition in a large-scale and dynamic environment. Besides,
the evolution algorithms were also used for service selection and
composition. In [9], an ant colony optimization was proposed to
supported global QoS optimization of service composition. But it
is difficult for this method to get rid of the local optimal problem.
In [10], the balance between exploration and exploitation was
considered, and eagle strategy was used with the whale optimiza-
tion algorithm for the cloud service composition. this method can
avoid the local optimum, but not consider the change of the QoS
with time, which affects the adaptability.

In addition, in recent years, machine learning has gradually
become a research hotspot in the field of information technology.
Some scholars have tried to apply reinforcement learning to
service composition. In [11], the authors use the Markov decision
process model and reinforcement learning to perform adaptive
service composition. In [12], for the efficiency problem of rein-
forcement learning, the authors use a hierarchical reinforcement
learning algorithm to improve the efficiency of service compo-
sition. In [13–15], the authors apply the multi-agent technology
to service composition. These methods improve the efficiency of
service composition and the quality of the service composition
result. In [16], a three-layer trust-enabled service composition
model was proposed. Taking advantage of fuzzy comprehensive
evaluation method, the authors introduced an integrated trust
management model. This model could analyze the preferences
of users well to obtain better service composition. However, the
above algorithms based on reinforcement learning have some
adaptability, but they ignore some special problems in service
composition. More specifically, services are often deployed in
the network environment. The QoS often changes over time due
to the dynamic network environment and the possible perfor-
mance fluctuations of the service itself. Therefore, to obtain the
better results of the service composition, the changed quality
of the service needs to be predicted effectively. Although the
traditional reinforcement learning method has a certain degree
of self-adaptive ability, it still cannot accurately estimate the
quality of service, which results in the unsatisfactory results of
the service composition in a highly dynamic environment.

In the service composition, the environment is dynamic, and
the QoS varies with time. Therefore, it is necessary to predict
the change of QoS in some way, which can be achieved through
QoS prediction. In recent years, a large number of scholars have
studied the prediction of QoS. The most common study is collab-
orative filtering based approaches [17–22]. This kind of methods
assume that similar users can get similar QoS from a service.
They classify users through some features and provide quality
prediction for other similar users by using the historical data
produced by a user who has used the service. QoS prediction
based on collaborative filtering is more concerned with the QoS
differences between different users. But in service composition,
the workflow of the whole service composition is designed to
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Fig. 2. The basic framework of reinforcement learning.

meet the requirements of a certain user. Each service is called
by this user. The quality of service changes is not caused by the
change in the location or state of the service caller, but because
the network environment at that time has changed. The QoS
varies over time, and can be described as a time series data,
which is similar to the value of stocks. In this background, some
scholars try to apply the time series forecasting technology to the
prediction of QoS.

In [23], Rodrigo et al. predict time series of QoS based on
the autoregressive integrated moving average (ARIMA). However,
the ARIMA model requires time series data to be stable, hence
it cannot be applied to scenarios with highly dynamic changes.
Recently, with the development of deep learning technology,
some researchers have studied the sequence prediction methods
based on recurrent neural networks, which have made some
certain progress in other fields [24–26]. For example, in [27],
RNN has been used for multi-step ahead prediction, which can
fit a wider range of data patterns. Overall, deep learning based
methods are better at fitting the complex functions compared
with the traditional statistical models. Therefore, they can provide
better prediction performance when dealing with complicated
time series.

3. Preliminaries

In this section, we will introduce some preliminaries about
our approach, including reinforcement learning and time series
prediction.

3.1. Reinforcement learning

Reinforcement learning is one of the most important machine
learning methods. It is good at achieving some purposes in an
unknown environment by constantly adjusting the behavior of
the agent, for example, to control the robot to find the exit in the
maze. Reinforcement learning simulates the exploration behavior
of human or other organisms in an unknown environment. In the
unknown environment, the agent constantly interacts with the
environment, gets feedback, and then adjusts its own behavior.
The ultimate goal is to maximize the reward obtained from the
environment [28].

The basic framework of reinforcement learning is shown in
Fig. 2. Agent executes an action at . After execution, the reward
value rt+1 is obtained from the environment, and then the agent
transfers to the new state st+1. The agent will adjust the action
selection according to the reward, and finally form its own action
selection strategy, which obtains the maximum reward value.

3.1.1. The input and output of reinforcement learning
According to the basic framework and principles of reinforce-

ment learning, we can describe the input and output of the
reinforcement learning algorithm. The input includes the set of
possible states, the executable actions under each state, the re-
ward value that can be obtained and which new state can be

transferred to by the execution of an action. The output is a strat-
egy that chooses actions based on states, which should maximize
the expectation of total reward value.

In fact, the input of reinforcement learning is a Markov deci-
sion process (MDP), which is defined as follows:

Definition 1 (Markov Decision Process (MDP)). An MDP is a 4-tuple
MDP=⟨S, A(.), P, R⟩, where

• S is a finite set of the world states;
• A(.) is a finite set of actions, in which A(s) represents the set

of actions that can be executed in state s ∈ S;
• P is the probability distribution function. When an action

a is invoked, the world makes a transition from its current
state s to a succeeding state s′. The probability for this
transition is labeled as P(s′ |s, a );
• R is the immediate reward function. When the current state

is s, and an action a is selected, then we can get an immedi-
ate reward r = R(s, a) from the environment after executing
an action.

The output of reinforcement learning is an action selection
strategy, expressed as π : S → A, that is, to select action a = π (s)
under state s. The best action selection strategy should maximize
the expectation of total reward value. The total reward value of
the agent obtained under a certain state action sequence whose
starting state is st can be described as Gt :

Gt =

∞∑
i=0

γ irt+i (1)

where rt+i represents the reward obtained when transferring
from state s to s′ at time t + i. γ indicates the discount rate, with
0 ≤ γ ≤ 1, which ensures that short-term reward is greater than
long-term reward, and the impact of recent reward plays a more
important role in the selection of action. The state-value function
is defined as the expectation of the random variable Gt :

Vπ (st ) = Eπ
[Gt |st = s] = Eπ

[

∞∑
i=0

γ irt+i|st = s] (2)

where Eπ (∗) denotes the expected value of a random variable
under policy π . Vπ (st ) represents the expectation of the total
rewards from the starting state st and under the strategy π . Its
recursive expression is

Vπ (s) =
∑
a∈A

π (a|s)
∑
s′∈S

p(s′|s, a)[r + γVπ (s′)] (3)

where p(s′|s, a) represents the probability of transitioning from
state s to succeeding state s′. According to the formula (3), the
optimal action selection strategy π∗ can be expressed as:

π∗ = argmax
π

Vπ (s), ∀s ∈ S (4)

Combining with the definition of a Markov decision process,
formula (3) and formula (4), the final best action selection strat-
egy can be also expressed as the formula (5).

π∗ = argmax
π

(
∑
s′

p(s′|s, π (s))[r + γVπ (s′)]) (5)

As a result of the above discussion, the input of the reinforce-
ment learning algorithm is a Markov decision process, and the
output is a strategy of selecting the action a = π (s) under the
state s, which can be expressed by formula (5).
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3.1.2. Q-learning
Q-learning is a commonly used reinforcement learning algo-

rithm [29]. Its basic idea is to estimate the reward generated by
an action with a Q value table, where the Q value is the estimation
of the real reward. When the actual value and the estimated value
are different after the execution of an action, the Q value table is
updated by the difference between the two value. The Q value
can gradually approximate to the real value [30]. After a certain
number of iterations, the Q value table can have a more accurate
estimate of the real reward value.

The Q-learning algorithm uses Q (s, a) to indicate the esti-
mated reward value of action a under the state s. The action
selection strategy follows the formula (6).

π (s) = argmax
a

Q (s, a), a ∈ A(s) (6)

Under this strategy, the real reward value of the action a based
on the state s can be expressed as the formula (7), where s′
represents the next state, and the subscript ‘‘real" represents the
real reward value, while Q (s, a) represents the value in the Q
value table to estimate the real Q value:

Qreal(s, a) = R(s′ | s, a)+ γmaxQ (s′, a′) (7)

The value in the Q table will be updated according to formula (8).

Q (s, a) = Q (s, a)+ α(R(s′ | s, a)
+γmaxQ (s′, a′)− Q (s, a)) (8)

In the Q-learning algorithm, the theoretical action selection
follows formula (6). But in the actual learning process, if every
time we choose the action with the greatest Q value, it may easily
fall into a local optimum. Therefore, in the action selection of the
actual Q-learning algorithm, the ϵ − greedy strategy is executed.
That is, the action selection is conducted using formula (6) with
probability of ϵ and using random selection with probability 1−
ϵ. This strategy can help the reinforcement learning algorithm
achieve a certain balance between exploration and experience
utilization, and avoid falling into local optimum too early. The
Q-learning algorithm is given in Algorithm 1.

Algorithm 1: Q-learning
Initialize Q (s, a), parameters, input the MDP model
repeat

set current state s
repeat
Choose a in A(s) based on ϵ − greedy policy;
Execute a, get the reward r = R(s′ | s, a) and new state s′;
Q (s, a) = Q (s, a)+ α(r + γmaxQ (s′, a′)− Q (s, a))
s← s′

until Achieve a certain termination state
until Convergence

3.2. Time series prediction

The time series prediction is to estimate the future outcomes
based on the past data. In the field of service computing, because
of the dynamic change of the network environment and the per-
formance fluctuation of the service itself, the QoS often changes
with time. This change presents a certain regularity. Therefore,
the QoS can be regarded as time series data and our goal is to
predict the future QoS based on historical data.

It is assumed that a time series data xt satisfies xt = g(T ),
where g(T ) embodies the essential rules of the change of xt
with time. The time series prediction method generally believes
that the future data can be predicted based on the past data.
That is, there exists a function f , which makes g(t + 1) ≈

Fig. 3. The basic structure of the neural network.

f (xt , xt−1, xt−2, . . . , x0). The goal of time series prediction is to
find the function f , so that the future data can be estimated based
on the past time series data [31].

The classical time series prediction methods include mov-
ing average method, exponential smoothing method, autore-
gressive model and autoregressive summation moving average
model [32]. The general principle of these methods is to assume
that f is a linear function, and then select a suitable model
according to the characteristics of historical data. It establishes
a form of f (θ ) with parameter θ , then determines the parameters
of the function by analyzing the historical data, and uses this
function to predict the future data. Most of these methods are
based on short-term data and assume that the objective function
f is linear, which have a good effect in short-term prediction
or simple time series prediction. However, when the time series
changes in a complicated way that cannot be described by linear
models, the prediction accuracy of the above models will be
relatively low.

3.2.1. Neural network
In recent years, deep learning and neural network technology

have developed rapidly. Neural networks connect multiple pro-
cessing layers to solve complex prediction problems [33]. Because
of the ability of neural network to fit complex functions, there
are a lot of time series prediction researches based on neural
networks. The basic principle of these methods is to establish
the neural network f (θ ) first, and then train the network through
historical data, adjust its parameters, and finally use the trained
neural network to predict the future data [33]. The neural net-
work based method is able to predict complex time series, and
can adjust the parameters of neural network by the newly added
data. It has better learning ability and adjustment ability [34].
Therefore, this paper adopts a neural network based time series
prediction model to predict the future QoS.

The basic structure of the neural network is shown in Fig. 3,
which is a neural network containing the input, hidden, and
output layers. The link between neurons represents the weight
that needs to be multiplied when the data is transmitted. The
output of the neuron is finally obtained by the function y =
f (wx + b), in which the y is the output of the neuron, f is the
activation function of the neuron, w is the weights, b is the bias of
neurons, and x represents the data vector of the input layer. Each
neuron in a neural network follows the above simple rules, and
finally transfers the input of the neural network to the output,
which is called the forward propagation of the neural network.

The neural network can be represented as a function with
parameters: y = f (x; θ ), where x is input data, y is output
data, and θ represents the parameters in the neural network. The
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Fig. 4. The structure of a recurrent neural network.

output of an untrained neural network is often unsatisfactory,
that is, there is an error between the output and the expected
result. With the change of the neural network parameters, the
error on a certain set of data may become larger or smaller.
Based on this, we can define an error function L(θ ) to describe
the degree of the neural network error. Therefore, the training
process of neural network is actually to find a set of parameters
θ to minimize the value of the error function.

The gradient descent method is often used to solve this prob-
lem. The basic principle of the gradient descent method is that the
gradient direction is the (locally) fastest changed direction for a
function, so the value of the function can be reduced by adjusting
the independent variable along the gradient direction. The step is
repeated many times until the function value reaches a lowest
point. Then, a local minimum value is found. According to this
principle, the updating formula of neural network parameters is
given below:

θ = θ − η
∂L(θ )
∂θ

(9)

where η is the learning rate.

3.2.2. Recurrent neural network
Recurrent neural network is a special type of neural networks.

On the basis of the basic neural network structure, recurrent
neural networks take into account the possible temporal cor-
relation of some data, such as speech recognition, intelligent
translation [24,25,35].

The basic structure of a recurrent neural network is shown in
Fig. 4 [36]. In traditional neural networks, the input of the hidden
layer comes from the input layer only. In the recurrent neural
network, the input of hidden layer includes the input layer data
and the output of the hidden layer neurons at the last time. This
special neural network can also be expanded in time to get the
structure displayed in the lower part of Fig. 4.

Hochreite [37] made further modifications to recurrent neural
networks and put forward the LSTM neural network. Similar to
the human memory, some important information needs to keep
for a longer time, while some unimportant information may be

Fig. 5. The LSTM neural network internal structure.

easily forgotten. The LSTM neural network adds some structure
to distinguish and process information. It can decide long-term
memory or oblivion according to the importance of information.
A typical LSTM neural network internal structure is shown in
Fig. 5. In the figure, tanh and σ represent the neurons that
use the corresponding activation function, h represents output, x
represents input, and C is the called cell state. The entire internal
structure can be divided into three parts, including forget gate,
input gate, and output gate, to control the forgotten degree of
the original data, the acceptance of the new data and the output
data. In the forget gate, the forgotten degree ft is calculated by the
formula (10), which is between 0 and 1. The forget rate is used
to control the retention of the original memory.

ft = σ (Wi · [ht−1, xt ] + bi) (10)

The input gate determines which data to be added to the cell
state. It is calculated as:

it = σ (Wi · [ht−1, xt ] + bi) (11)
˜

C t = tanh(Wc · [ht−1, xt ] + bC ) (12)

Finally, the new cell state is controlled jointly by the calculation
results of the forgotten and the input gates:

Ct = ft ∗ Ct−1 + it ∗
˜

C t (13)

The output of the LSTM network is determined by the new cell
state, the current input and the output of the hidden layer at the
last time.

ht = σ (Wo · [ht−1, xt ] + bo) ∗ tanh(Ct ) (14)

By adding the three gates structure to the recurrent neural net-
work, the LSTM can distinguish and control information, memo-
rize the important information for a long time, and store it in the
cell state. In practice, LSTM has shown excellent learning ability
and has achieved great success in processing time series data.
Therefore, we adopt the LSTMmodel to learn and predict the time
series data of service quality, aiming to improve the accuracy of
the QoS estimation in a dynamic environment.

4. Service composition based on QoS prediction and reinforce-
ment learning

In this section, we propose an adaptive service composition
method combining QoS prediction and reinforcement learning.
At first, a typical scenario of service composition is described to
help understand the problem of service composition. In the ser-
vice composition, we select suitable candidate services through
reinforcement learning to maximize the total QoS value of the
composite service. Considering the dynamics and complexity of
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Fig. 6. A simple service composition workflow.

Fig. 7. A possible service composition result.

Fig. 8. Another possible service composition result.

the network environment, QoS is always changing, so we in-
troduce the QoS prediction method based on LSTM. Finally, we
combine the QoS prediction and reinforcement learning to solve
service composition problem, which can improve the quality of
the composite service in dynamic environment.

4.1. A service composition scenario

A typical service composition flow is shown in Fig. 6. For each
abstract service, we need to determine its specific services, and
ultimately formulate a specific service composition workflow. For
example, based on the service composition workflow in Fig. 6,
the possible service composition results are shown in Fig. 7 and
Fig. 8. It is straightforward to see that as the number of candidate
services increases and the complexity of the service composition
workflow increases, the number of possible service composition
results will dramatically increase. The challenge of service com-
position is to check a large candidate space and get the optimal
result that maximizes the reward value.

4.2. Service composition model

According to the problem described in the previous section,
we will propose a service composition model based on the work-
flow. The workflow of the service composition can be regarded
as a Markov decision process. Based on the definition of Markov
decision process, the Markov decision process model of Web
service composition in a dynamic environment is defined below:

Definition 2 (Dynamic Web Service Composition MDP (DWSC-
MDP)). A DWSC-MDP is a 6-tuple DWSC-MDP=⟨S, S0, Sr , A(·), P,
R⟩, where

• S is a finite set of the world states;
• S0 is the initial state. The workflow of the service composi-

tion is executed from S0.
• Sr represents a set of termination states. When a termina-

tion state is reached, the flow of a service composition is
terminated.
• A(.) is a finite set of the services, in which A(s) represents

the set of services that can be invoked in state s ∈ S;

• P is the probability distribution function. When a service a is
invoked, the world makes a transition from its current state
s to a succeeding state s′. The probability for this transition
is labeled as P(s′ |s, a );
• R is the immediate reward function. When the current state

is s, and a service a is invoked, we can get an immediate
reward R(s′ |s, a, t ), where t represents the time to call
the service. In a service composition, the reward value is
generally determined by the QoS attributes of the service.

For a service composition workflow, the DWSC −MDP model
can be used to describe it completely. Take the simple work-
flow in Fig. 6 as an example. This workflow can be described
with a DWSC − MDP model, in which the state set is S =
{S0, S1, S2, S3, S4}, the initial state is S0, the termination state set
is {S4}. The services that can be invoked at different states include
A(S0) = {a0, a1} and A(S1) = {a2, a3, a4, a5}, etc. Examples of
transition probability include P(S1 | S0, a0) = 1, P(S2 | S1, a2) = 1,
etc. The reward value is calculated with the QoS obtained by
invoking the service.

After the workflow is determined, service composition process
starts from the initial state, selects a specific service for each
state, and then moves to a new state. When a termination state
is reached, the workflow of a service composition is completed.
This workflow, which is composed of multiple specific services,
is the result of a service composition. A good service composition
result should be able to make the total reward value as large as
possible.

4.3. Reward function in service composition

The reinforcement learning algorithm outputs the best action
selection strategy using a Markov decision process model, making
it suitable for the service selection problem. To use the reinforce-
ment learning algorithm, we need to define the reward function
first.

In service composition, the satisfaction level of invoking a
service is usually determined by the QoS. Therefore, the reward
function in this paper will be defined by the QoS attributes of a
service. Since different QoS attributes may have different range
of values, we first need to normalize different attributes and
map them to [0, 1]. In addition, considering that some of the
QoS attributes are positively correlated (such as throughput), and
some of the QoS attributes are negatively correlated (such as
response time), so the following two formulas are defined:

r =
QoS −min
max−min

(15)

r =
max− QoS
max−min

(16)

The formula (15) is used to normalize the QoS attributes that
are positively correlated, and formula (16) is used to normalize
the QoS attributes that are negatively correlated. r represents the
result of normalization value of this attribute. QoS represents the
QoS value of the attribute after the service is invoked, and max
and min represent the maximum and minimum QoS values of the
attribute.

If a service has multiple QoS attributes, the reward value will
be calculated with formula (17).

R =
m∑
i=1

wi ∗ ri (17)

where R represents the total reward value, m is the number
of QoS attributes considered, ri represents the normalized value
of the ith QoS attribute, and wi represents the weight of the
ith attribute. The weight reflects the importance of the different



H. Wang, J. Li, Q. Yu et al. / Future Generation Computer Systems 107 (2020) 551–563 557

Fig. 9. The Structure of LSTM for Time Series Prediction.

attributes. Generally, it is set up according to the preference of
the users on different attributes with

∑m
i=1 wi = 1.

4.4. Time series prediction based on LSTM

In a dynamic network environment, the QoS often changes
with time, and the reinforcement learning algorithm cannot es-
timate the changing trend of service quality. This section will
introduce the method of time series prediction based on LSTM
to help estimate the QoS in a dynamic environment.

The basic idea of the time series prediction is to predict the
future QoS using the past data. This paper uses the LSTM neural
network to predict the time series, which can be expressed as
follows:

xt = LSTM(xt−1, xt−2, xt−3, . . . , x0; θ ) (18)

where xt represents the predicted data at the next time step,
LSTM(xt−1, xt−2, xt−3, . . . , x0; θ ) represents the LSTM neural net-
work with the parameter of θ . The input of the neural network
is all past data. In practice, to predict with entire past data is
often difficult to carry out. So the input of the LSTM neural
network is actually the data of the previous n time steps. In
addition, the LSTM neural network can predict more than one
time steps. Therefore, the prediction of the LSTM neural network
can be expressed in formula (19), in which m is the count of time
steps of the prediction and the n is the count of time steps of
the input.

xt+m−1, . . . , xt+1, xt = LSTM(xt−1, xt−2, . . . , xt−n; θ ) (19)

After determining the input and output of the neural network,
the LSTM neural network shown in Fig. 9 can be constructed.
The graph shows the expansion of an LSTM neural network in
time. That is, the neural network represented by A in the graph
is the same neural network, and the data is passed from left to
right in sequence of time. In the input phase, n time steps data
are input to the LSTM neural network in turn. The output of the
last time neural network will also be part of the current input.
In the output phase, the LSTM neural network first outputs the
prediction data xt . After that, the neural network no longer has
the input from the external data (because it is now the future
time, which no longer has the actual data). It only takes the
predicted value from the previous moment as the input of the
current moment, as shown in Fig. 9, and outputs a predicted
value in each step. When m predicted values are obtained, the
prediction task completes.

After constructing LSTM neural network, a large amount of
historical data is needed to train the neural network. The training
data set needs to be segmented, and every continuous n+m data
points are used as the training data. The first n data is the input
of the neural network, and the last m time steps data represents
the expected prediction results to calculate the error of the neural
network. The error is calculated by formula (20), in which xt

represents the actual value of the t moment, x′t represents the
predicted value at t moment, and N is the number of data points
in the training set. The error function used is the mean square
error:

L =
1
N

N∑
t=0

(x′t − xt )2 (20)

After training, the gradient descent method in formula (9) is
used to adjust the parameters of the neural network. The training
process is repeated many times until the error value is stable at
the minimum. After training, the neural network can be used to
predict the future QoS.

4.5. Adaptive service composition algorithm

A new adaptive service combination algorithm is developed,
which combines reinforcement learning and QoS prediction. Be-
fore introducing the algorithm, we need to solve two problems of
QoS estimation in service composition.

First, in service composition, the quality of a candidate service
is not only related to the QoS attribute of the service itself, but
also the subsequent workflow resulting from the selection of this
service. For example, although a service has better QoS attributes,
the QoS in the subsequent process with selecting this service may
be poor, resulting in poor overall service composition quality.
Therefore, in the estimation of the QoS, we employ the Q-learning
algorithm and use the Q value to represent the QoS in the service
composition. According to the Q value formula (7), the Q value
is actually a linear superposition of each service reward value, so
it can also be estimated by the time series prediction method.
In addition, if the Q value is estimated through the LSTM neural
network, the formula (7) needs to be rewritten as follows:

Qreal(s, a) = R(s′ | s, a)+ γmaxLSTM(s′, a′) (21)

where LSTM(s′, a′) represents the predicted value of the LSTM
neural network corresponding to the state s′ and service a′, which
is the Q value estimation for the state–action pair (s′, a′).

In addition, with the running of the service composition al-
gorithm, new data will continue to be added to the historical
data set. Generally speaking, the neural network is trained in
a fixed training set, and then applied to the new data. But in
the process of service composition, historical data is gradually
accumulated, so incremental neural network training is needed.
A neural network training should be carried out if a certain
amount of new data is added. Moreover, with the accumulation
of historical data, these data may take up a lot of space and will
also affect the efficiency of neural network training. Therefore,
it is necessary to limit the size of the historical data set and
discard earlier historical data, which can improve the training
efficiency of the neural network. The detailed algorithm is given
in Algorithm 2. We refer to the proposed algorithm as QP-RL
(Q-Prediction Reinforcement Learning).

5. Experiments and analysis

In this section, we report the experimental results to verify
the effectiveness and efficiency of QP-RL under a dynamic envi-
ronment. The influence of different algorithm parameters will be
analyzed as well.

5.1. Experiment setting

The experiments are conducted over commonly used WS-
DREAM dataset [38], which describes real-world QoS evaluation
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Algorithm 2: Service Composition Based on QoS Prediction and
Reinforcement Learning
initialize LSTM(s, a), random exploration parameters ϵ, input data
length n, historical data capacity d, LSTM update threshold u;
input DWSC-MDP model;
repeat

Set s = s0;
repeat

Choose service a with ϵ − greedy strategy (Using LSTM to
estimate the quality of service);
Invoke a, get reward with formula (17), move to state s′;
Compute Q value with formula (21), add this data to historical
data set;
if data count in historical data set = d then

Discarding the oldest historical data;
end if
if new data count in historical data set = u then

Train LSTM with formula (20);
end if
s← s′;

until Achieve the termination state;
until Convergence (or up to the number of preset cycles);
Algorithm terminates. (The prediction Q value of each service can
determine the best candidate service in each state to complete the
service composition.)

Table 2
Samples of the WS-DREAM dataset.
Service Response-time Throughput

1 5.98 0.334
2 0.397 0.142
3 8 70.0
4 0.228 17.543
5 5.597 218.487
6 0.098 59.829

results from 339 users on 5,825 Web services. Some samples of
QoS for a user to invoke different services are shown in Table 2.
In our experiments, we use response-time and throughput to
calculate the reward value of service invocation according to
formulas (15), (16), (17). Other QoS attributes can be included in a
similar way. We randomly generate the DWSC-MDP model with
the structure shown in Fig. 10, where each hollow circle repre-
sents a state node. Each state node has two succeeding states that
may be transferred to. Each transfer path has at least one possible
candidate service. For example, state S1 is transferred to state S3
when the service a0 or a1 is invoked. It will be transferred to state
S4 when service a3 or a4 is invoked. The execution of the entire
workflow requiresM times of selection of candidate states, where
each state has a number of candidate services. In particular, by
setting the count of the service selection as m, the number of
candidate services per state as na and the possible subsequent
state number as ns, we can randomly generate different service
composition models.

The LSTM network in the algorithm is implemented using
the Google deep learning framework TensorFlow [39], and the
parameters of the neural network itself use the default settings.
The experiments are conducted on 64 bits Ubuntu-16.04.04 with
an i5-7500k CPU, 12G memory, and a nvdia-gtx1060 GPU.

5.2. Result analysis

5.2.1. Influence of parameters
In the QP-RL algorithm, there are some tunable parameters.

This section will test and compare different parameters to find
the best parameter settings. First, we randomly generate a DWSC-
MDP model, where the count of service selection is set to 50,

Fig. 10. Random DWSC-MDP model.

the number of candidate services per state is set to 4, and the
possible subsequent state is set to 2. Second, in order to compare
the values of different parameters, we set up a set of default
parameters, in which the random exploration parameter ϵ is set
to 0.6, the input data length n of the neural network is set to 20,
the historical data set capacity d is set to 1000, the neural network
update threshold u is set to 100. When comparing different values
of a parameter, the other parameters will be set to the default
values.

Figs. 11–14 show the results. There are two experimental
results for each parameter. The first one is the line chart of the
algorithm execution time with the parameter change, in which
the longitudinal axis indicates the algorithm running time in
hours. The second is the line chart of the cumulative reward value
with the change of the parameter. The cumulative reward value
is the sum of the reward obtained by each service invoked in the
service composition. The greater the cumulative reward value, the
better the result of the service composition.

For the random exploration parameter ϵ, as shown in Fig. 11,
when the ϵ value is small, the algorithm is close to the random
exploration. So the neural network is hard to be fully trained
and the QoS cannot be accurately estimated. The inaccurate es-
timation of QoS results in smaller cumulative reward and longer
running time. When ϵ is too large, the algorithm can get the final
result quickly, but it is easy to fall into the local optimum. So
the cumulative reward value is not the best. When ϵ is 0.6, the
algorithm can get the best result of service composition and have
a good efficiency, which is a better choice.

For the input data length n, it can be seen that the execution
time of the algorithm increases sharply with the increase of n, so
the length of the input data should not be set too large due to
the hardware condition. In addition, although a larger n can get
better results of the service composition, further improvement
when n is more than 20 is not very obvious. But the execution
time increases a lot. Thus, n is set to 20 to get a more balanced
algorithm effect.

For historical dataset capacity d, from Fig. 13, it can be seen
that when d is too small, the quality of the results of the service
composition is very poor. This is because the neural network can-
not be fully trained. With the increase of d, the effectiveness and
execution time of the algorithm are improved. When d reaches
1000, the cumulative reward value tends to be stable, indicating
that the oversized historical data capacity may not be of great
help to the QoS estimation. As a result, d is set to 1000.

As shown in Fig. 14, the execution time of the algorithm
decreases with the increase of u, but the improvement of the
result is not obvious when u becomes too small. The reason is
that the neural network is able to accurately predict the data for a
period of time. So we do not need to update LSTM too frequently.
According to the experimental results, u is set to 100 to minimize
the execution time of the algorithm.
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Fig. 11. Experiments for ϵ.

Fig. 12. Experiments for input data length n.

Fig. 13. Experiments for historical data capacity d.

Fig. 14. Experiments for LSTM update threshold u.

5.2.2. The effectiveness of dynamic environment
The proposed service composition algorithm aims to deal with

the changes of QoS in a dynamic environment. The QoS prediction

technique is used to improve the accuracy of QoS estimation. In
this section, we verify the effectiveness of the proposed method
in a dynamic environment and compare it with the Q-learning
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based adaptive service composition algorithm. In order to verify
the performance of the algorithm in a highly dynamic environ-
ment, we have made some modifications to the original data,
which is given by

x′t = xt−1 + (1+ v)(xt − xt−1) (22)

where xt represents the predicted value of QoS, v represents the
ratio of data changes and x′t is new data. We control the degree
of fluctuation of the data by changing the value of v. A larger
the value of v leads to a greater the fluctuation degree of the
data, which simulates the change of QoS in a highly dynamic
environment.

Fig. 15 shows the result of Q-learning algorithm and QP-RL
algorithm in the cases of v=0, v=0.1 and v=0.2. The horizontal
axis is the number of episodes executed by the algorithm, and
an episode is an execution process from the start state to the
termination state. The vertical axis is the cumulative reward value
of the result of the service composition. Through the comparison
of the three graphs, it can be seen that the QP-RL algorithm
can eventually achieve a more stable state, while the Q-learning
algorithm is becoming more and more unstable with the increase
of the degree of data fluctuation. The reason for this is that the
QP-RL algorithm uses historical data to predict the time series
of the quality of service. Although the volatility of the data has
become larger, recurrent neural network is still able to predict
these changes very well. The Q-learning algorithm estimates the
quality of service based on the Q value table. When the data
fluctuation becomes larger, the error of the estimation of QoS will
become larger, which will result in the deterioration of the quality
of the service composition and the instability of the algorithm.

In addition, we can see from the comparison between Q-
learning and QP-RL algorithm that the result of Q-learning al-
gorithm is superior to QP-RL algorithm in the initial stage of
algorithm execution. This is because in the early stage of execu-
tion of the algorithm, the data in the neural network historical
data set is insufficient. So the prediction effect and the quality of
the service composition is very poor. However, with the running
of the algorithm, the neural network finally has stronger predic-
tion ability for the dynamic data. Compared with Q-learning, it
can predict the change of data more accurately, and the stability
of the algorithm is much better than the Q-learning based service
composition algorithm. After the convergence of the Q-learning
algorithm, the result of the service composition still has a great
fluctuation. The reason is that Q-learning cannot make a good
estimate of the future data changes, resulting in the unstable
results of the final service composition.

The experimental results show that the proposed QP-RL al-
gorithm can get better service composition results in dynamic
environment and achieve better adaptive ability and stability.

5.2.3. The effectiveness under the different scale problems
The last section verifies the effectiveness of QP-RL algorithm

in a dynamic environment. This section will test the effective-
ness and efficiency of the algorithm. In this experiment, three
DWSC-MDP models are randomly generated to simulate different
scales of service composition problems. The number of service
selection, number of candidate services per state, and number of
possible subsequent states of the three models are set to (20,2,2),
(50,4,2), (100,10,5) respectively, corresponding to small, medium,
and large-scale problems.

Fig. 16 shows the running process of Q-learning algorithm and
QP-RL algorithm under three cases. It can be seen that the running
process of the algorithm is similar to that in the last section.
The results of QP-RL algorithm at the initial stage are poor in
quality. As the algorithm continues to run, the result quality of
the QP-RL algorithm is getting better and better. Finally, it is more Fig. 15. Experiments for different v.
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Fig. 16. Experiments under different scale problems.

Fig. 17. Execution time under different scale problems.

stable than the result of the service composition obtained by the
Q-learning algorithm.

The above results show that in large-scale problems, the QP-RL
algorithm can still get better service composition results. It is also
observed that when the scale of problem is large, the execution
time of the QP-RL algorithm will be significantly longer. Fig. 17
shows the execution time of QP-RL algorithm under different
scales. It can be seen that as the scale of the problem increases,
the execution time of the QP-RL algorithm will also increase
dramatically. For an extremely large-scale problem, the QP-RL
algorithm may fail to complete. For most practical service compo-
sition scenarios, QP-RL algorithm can be effectively applied. What
is more, the time consumption of the QP-RL algorithm is mainly
in the training of a large number of neural networks. But for
the users, it is only necessary to use the trained neural network
to determine the candidate services for the service composition.
Therefore, the neural network training and learning process in
the QP-RL algorithm can be performed using a high-performance
computers, and only the final result of the service composition is
provided to the users.

5.3. Remarks

In this section, we verify the effectiveness of the QP-RL algo-
rithm under a dynamic environment by a series of experiments,
and compare it with the Q-learning based service composition
algorithm. Different parameters of the QP-RL algorithm are tested
and the optimum selection of the parameters is discussed. The
experimental results show that the adaptive service composi-
tion algorithm that combines QoS prediction and reinforcement
learning can be well applied to dynamic changing environment.
The result of service composition is superior to the Q-learning
algorithm, and has good stability.

In addition to the above advantages, the experiments also
show that the algorithm proposed in this paper has some short-
comings. The QP-RL algorithm has poor quality of service com-
position in the early stage. For this problem, we can pre-train the
neural network with historical data. This may help achieve a bet-
ter service composition results from the beginning. In addition,
when dealing with large-scale problems, the proposed method
can achieve better service combination results, but the efficiency
of the algorithm becomes slow. We consider to employ the multi-
agent technology to achieve better scalability as part of our future
work.
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6. Conclusion and future work

Service composition offers one of the most important ways
of software reuse by combining existing web services to form
new systems that meet the complex requirements of users. With
the increase of functionally similar services, there is a need to
select appropriate services from a large candidate pool to form a
high-quality composite service. However, in a dynamic network
environment, the QoS is not static, and the quality may fluctuate
with time. So the service composition method needs to be ad-
justed dynamically to adapt to the changes of the environment.
The proposed approach takes into account the characteristics of
the dynamic change of QoS. A recurrent neural network based
model is developed to estimate the QoS time series. A DWSC-
MDP model is used to formally represent a service composition.
An adaptive service composition algorithm is developed that
integrates reinforcement learning and dynamic QoS prediction.
Experimental results and comparison with the Q-learning based
adaptive service composition algorithm help demonstrate the
effectiveness of the proposed approach.

The proposed method of adaptive service composition based
on reinforcement learning uses a Q value table and recurrent neu-
ral networks. This requires the establishment of a corresponding
recurrent neural network for every possible candidate service,
which leads to a high computational cost for a large number of
candidate services. For this problem, we plan to explore deep re-
inforcement learning and use neural network mapping to replace
the Q-value table in our future work. We also plan to explore
a multi-agent system where multiple agents communicate and
coordinate with each other to improve the efficiency.
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