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Abstract

This work develops a deep reinforcement learning based approach for Six Degree-of-Freedom (DOF) planetary powered descent and
landing. Future Mars missions will require advanced guidance, navigation, and control algorithms for the powered descent phase to tar-
get specific surface locations and achieve pinpoint accuracy (landing error ellipse <5 m radius). This requires both a navigation system
capable of estimating the lander’s state in real-time and a guidance and control system that can map the estimated lander state to a com-
manded thrust for each lander engine. In this paper, we present a novel integrated guidance and control algorithm designed by applying
the principles of reinforcement learning theory. The latter is used to learn a policy mapping the lander’s estimated state directly to a
commanded thrust for each engine, resulting in accurate and almost fuel-optimal trajectories over a realistic deployment ellipse. Specif-
ically, we use proximal policy optimization, a policy gradient method, to learn the policy. Another contribution of this paper is the use of
different discount rates for terminal and shaping rewards, which significantly enhances optimization performance. We present simulation
results demonstrating the guidance and control system’s performance in a 6-DOF simulation environment and demonstrate robustness
to noise and system parameter uncertainty.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Future unconstrained, science-driven, robotic and
human missions to large and small planetary bodies will
require a high degree of landing accuracy. Indeed, the next
generation of planetary landers will need more advanced
guidance and control capabilities to satisfy the increasingly
stringent accuracy requirements. The latter is driven by the
desire to explore regions on planets (e.g. Mars) and satel-
lites (e.g. Moon) that have the potential to yield the highest
https://doi.org/10.1016/j.asr.2019.12.030
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scientific return. In the case of Mars, the most demanding
mission phase is probably the powered descent, where the
goal is to achieve a soft pinpoint landing, which we will
define as the norm of the position error less than 5 m
and the magnitude of the landing velocity below 2 m/s,
with the velocity vector directed primarily downward,
and negligible deviation from an upright attitude and zero
rotational velocity. During a typical Entry, Descent and
Landing (EDL) as implemented in past robotic missions
to Mars (Shotwell, 2005; Braun and Manning, 2007), the
lander’s sensors (radar altimeters) are effectively blind until
the heat shield is jettisoned, at which point the lander’s
guidance, navigation, and control system must quickly esti-
mate the lander’s state from a prior distribution extending
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several km downrange and crossrange, and then use the
sequence of state estimates to achieve a soft landing at
the target position, typically within one minute of the heat
shield being jettisoned.

For the case of the robotic exploration of Mars, land-
ing accuracy is important for several reasons. First, given
accurate high-resolution maps of the Mars surface, the
pinpoint-landing problem subsumes the hazard avoidance
problem, as a hazard-free landing site can be targeted.
Second, delivering a rover closer to a location of scien-
tific interest reduces the risk of the rover malfunctioning
before it reaches the desired site. In fact, some sites
might be inaccessible to a rover unless the lander can
deliver the rover with pinpoint accuracy. Moreover,
reducing the distance the rover is required to travel can
relax the design requirements for the rover, with a poten-
tial reduction in rover mass. Clearly, landing accuracy on
the order of several meters is desirable as it would both
reduce mission risk and extend the scope of feasible
missions.

Several recent works have applied lossless convexifica-
tion of non-convex control problems to the 3-DOF plane-
tary landing Açkmes�e et al. (2013), Acikmese and Ploen
(2007), Sagliano (2018), Wang and Cui (2018) and have
achieved satisfactory accuracy. Imitation learning has also
been applied to the powered descent phase problem
Sánchez-Sánchez and Izzo (2018) for several 2-DOF land-
ing problems. However, it has been shown in Ross et al.
(2011) that a naive approach of imitation learning will
likely fail for more realistic (and complex) problems due
to the distribution mismatch problem, which they solve
using a dataset aggregation algorithm (DAgger). Guided
policy search (Levine and Koltun, 2013) is another
approach to allow an agent to learn from expert demon-
strations that does not suffer from the distribution mis-
match problem.

In this work, we develop an integrated guidance and
control system that learns a global policy over the region
of state space defined by the deployment ellipse and poten-
tial landing sites. This global policy maps the navigation
system’s estimate of the lander’s state directly to com-
mands specifying thrust levels for each engine. The global
policy is learned using reinforcement learning (RL). Learn-
ing involves simulated interaction between an agent instan-
tiating the policy and the environment over many episodes
with randomly generated initial conditions that cover the
deployment ellipse. Path constraints are imposed on the
lander’s attitude during the powered descent phase. Fur-
ther, each engine’s thrust is constrained to remain within
specified lower and upper limits. Note that there is no guar-
antee on the optimality of trajectories induced by the pol-
icy, although in practice it is possible to get close to
optimal performance by tuning the reward function. In
order to suggest problems where the RL approach may
be especially useful, we include a comparison of RL and
optimal control approaches to guidance and control in
Table 1.
Previous work using RL to solve control problems has
focused on applications in robotics, with very few
published works addressing problems in aerospace guid-
ance and control. The first application of RL to a problem
in the aerospace domain was applied to autonomous heli-
copter flight (Ng, 2003). More recently, in Waslander
et al. (2005) the authors compared reinforcement learning
to sliding mode control and linear control in a quadrotor
control application. The authors used policy iteration
(Sutton and Barto, 1998) in a model-based formulation,
where a model was learning from flight data using weighted
least squares. Both the sliding mode and RL methods
resulted in stable controllers, whereas the linear control
methods failed. In previous work, we achieved good results
in a 2-DOF environment, but over a limited range of initial
conditions (Gaudet and Furfaro, 2014). More recently, RL
has been applied to missile homing phase interception
using angle only measurements (Gaudet et al., 2019a)
and an adaptive fully integrated guidance, navigation,
and control for asteroid close proximity missions (Gaudet
et al., 2019c). And in Gaudet et al. (2019b), the authors
demonstrate a 3-DOF adaptive guidance system for Mars
powered descent phase optimized via reinforcement meta-
learning.

To our knowledge, this is the first published work
demonstrating an RL-derived integrated guidance and con-
trol system applied to planetary landing in a 6-DOF envi-
ronment. Open-AI gym has one environment for a 3-DOF
planar lunar landing1, but the problem is simplified by
using a range of initial conditions that are unrealistically
reduced from that required for an actual lunar landing
(the crossrange dispersion is only three times the width of
the landing site). In our work, we have found that solutions
that work over a limited range of initial conditions often
fail when the initial condition range is extended. Our ulti-
mate goal is to use RL to develop a fully integrated guid-
ance, navigation, and control system, where the policy
maps raw sensor observations directly to actuator com-
mands, i.e., radar altimeter readings to commanded thrust
for the lander’s individual engines. The RL framework can
be applied to solve many different types of guidance and
control problems, including missile homing phase guid-
ance, exoatmospheric intercepts, hypersonic reentry
maneuvering for planetary landings, and booster recovery
via powered landing.

This paper is organized as follows. In Section 2, we give
some background on optimization via reinforcement learn-
ing. The problem formulation is then given in Section 3. In
Section 4, we show the results from policy optimization
and testing for 6-DOF planetary landing scenarios. In Sec-
tion 5, a comparison between RL-based 3-DOF/6-DOF
closed-loop policy and open-loop optimal trajectory
derived using direct methods is reported. In Section 6, con-
clusions and future work are reported.

https://gym.openai.com/envs/LunarLander-v2/


Table 1
A comparison of optimal control and RL Tedrake (2015)

Optimal control Reinforcement learning

Single trajectory (except for trivial cases where HJB equations
can be solved)

Global over theatre of operations

Unbounded run time except for special cases such as convex
constraints

Extremely fast run time for trained policy (<1 ms in this work)

Dynamics need to be represented as ODE, possibly constraining
fidelity of model used in optimization

No constraints on dynamics representation. Agent can learn in a high fidelity
simulator (i.e., Navier-Stokes modeling of aerodynamics)

Open Loop (requires a controller to track the optimal trajectory) Closed Loop (Integrated guidance and control)
Output feedback (co-optimization of state estimation and

guidance law) an open problem for non-linear systems
Can learn from raw sensor outputs allowing fully integrated GNC (pixels to actuator
commands). Can learn to compensate for sensor distortion

Requires full state feedback Does not require full state feedback
Elegantly handles state constraints State constraints handled either via large negative rewards and episode termination or

more recently, modification of policy gradient algorithm. Control constraints
straightforward to implement

Deterministic Optimization Stochastic Optimization, learning does not converge every time, may need to run
multiple policy optimizations
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2. Background: reinforcement learning

2.1. Reinforcement learning overview

RL algorithms can be broken down into two major
classes: value function methods and policy gradient meth-
ods. Value function-based algorithms learn a mapping
between a state-action tuple and the sum of the future dis-
counted rewards received when starting in that specific
state and taking that specific action. Actions with the high-
est value are then greedily chosen, with limited exploration
achieved by choosing a random action with some small
probability. Since all possible actions must be considered,
these methods only work with discrete action spaces. First
proposed by Watkins and Dayan (1992), recent work in
value function-based algorithms include deep Q networks
(Mnih et al., 2015). The latter use experience replay to
remove temporal correlation between samples and target
networks which results in a reduced instability of combin-
ing bootstrapping with non-linear function approximators.
Deep Q networks have proven effective at control tasks
requiring the mapping of pixel level observations directly
to control actions, as demonstrated in Mnih et al.
(2015), although they are less effective at control problems
where the dimensionality of the dynamics is larger, such as
problems in robotic control, and are not suitable for prob-
lems requiring continuous action spaces. Deterministic
policy gradient algorithms, first proposed by Silver et al.
(2014), and including the DDPG algorithm (Lillicrap
et al., 2015), can be employed as an alternative to methods
based on Deep Q learning. These algorithms also learn a
mapping between state-action tuples and values. However,
rather than taking actions that globally maximize the
value function, the algorithm maintains a separately
parameterized policy mapping states to actions, and uses
the chain rule to follow the gradient of the value function
with respect to the action, given that the action is a
function of the state as parameterized by the policy
parameters, h.
Generally, policy gradient algorithms learn a direct
stochastic mapping between an observation and action,
with the policy network’s parameters updated such that
the probability of actions leading to higher future rewards
is increased. First proposed by Williams (1992), these algo-
rithms suffer from high variance, which can be substan-
tially reduced by using a state value function baseline.
With a baseline, actions that result in future discounted
rewards higher than the estimated value of being in that
state, as given by the state value function, have their prob-
ability increased. In this approach, a state value function
mapping a state to the expected sum of future discounted
rewards is learned concurrently with a stochastic policy
mapping states to actions. For continuous action spaces,
it is common to parameterize the policy as a Gaussian dis-
tribution with a diagonal covariance matrix, where the pol-
icy outputs the mean and variance of the actions
conditioned on the state. Recently, Schulman et al. (2015)
have proven that policy gradient methods with stochastic
policies can have monotonic improvement guarantees, pro-
vided that the policy changes during optimization as mea-
sured by the Kullback-Leibler (KL) divergence are
constrained to be within certain bounds. The policy opti-
mization problem is posed as a constrained optimization
problem that ensures the KL divergence between policy
updates remains within specified bounds. The authors used
this result to develop the trust region policy optimization
algorithm (TRPO), which has proven effective at solving
high-dimensional control problems. Later, Schulman
et al. (2017) proposed the proximal policy optimization
(PPO) method that uses a heuristic to keep KL divergence
between policy updates at a level that in practice ensures
monotonic improvement during optimization. In practice,
PPO works slightly better than TRPO, and has the advan-
tage of not requiring second-order optimization methods.
Policy gradient methods are much less sample efficient than
methods based on Deep Q learning as they operate on pol-
icy. The latter means that policy gradient methods cannot
take advantage of sample reuse through techniques such
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as experience replay (Mnih et al., 2015). However, policy
gradient methods are more stable, and work with minimal
hyperparameter tuning, and tend to perform better in sys-
tems with high dimensional dynamics.

2.2. Policy gradient method

In the RL framework, an agent learns through episodic
interaction with an environment how to successfully com-
plete a task by learning a policy that maps observations
to actions. The environment initializes an episode by ran-
domly generating an internal state, mapping this internal
state to an observation, and passing the observation to
the agent. These observations could be a corrupted version
of the internal state (to model sensor noise) or could be raw
sensor outputs such as Doppler radar altimeter readings, or
a multi-channel pixel map from an electro-optical sensor.
At each step of the episode, an observation is generated
from the internal state and given to the agent. The agent
uses this observation to generate an action that is sent to
the environment; the environment then uses the action
and the current state to generate the next state and a scalar
reward signal. The reward and the observation correspond-
ing to the next state are then passed to the agent. The envi-
ronment can terminate an episode, with the termination
signaled to the agent via a done signal. The termination
could be due to the agent completing the task or violating
a constraint. Initially, the agent’s actions are random,
which allows the agent to explore the state space and begin
learning the value of experiencing a given observation, and
which actions are to be preferred as a function of this
observation. Here the value of an observation is the
expected sum of discounted rewards received after experi-
encing that observation; this is similar to the cost-to-go
in optimal control. As the agent gains experience, the
amount of exploration is decreased, allowing the agent to
exploit this experience. For most applications (unless a
stochastic policy is required), when the policy is deployed
in the field, exploration is turned off, as exploration gets
quite expensive using an actual lander. The safe method
of continuous learning in the field is to have the lander send
back telemetry data, which can be used to improve the
environment’s dynamics model and update the policy via
simulated experience.

In the following discussion, the vector xk denotes the
observation provided by the environment to the agent.
Note that in general xk does not need to satisfy the Markov
property. In those cases where it does not, several tech-
niques have proven successful in practice. In one approach,
observations spanning multiple time steps are concate-
nated, allowing the agent access to a short history of obser-
vations, which helps the agent infer the motion of objects in
consecutive observations. This was the approach used in
Mnih et al. (2015). In another approach, a recurrent neural
network is used for the policy and value function imple-
mentations. The recurrent network allows the agent to
infer motion from observations, similar to the way a
recursive Bayesian filter can infer velocity from a history
of position measurements. The use of recurrent network
layers has proven effective in supervised learning tasks
where a video stream needs to be mapped to a label
(Baccouche et al., 2011).

Each episode results in a trajectory defined by observa-
tion, actions, and rewards; a step in the trajectory at time tk
can be represented as ðxk; uk; rkÞ, where xk is the observa-
tion provided by the environment, uk the action taken by
the agent using the observation, and rk the reward returned
by the environment to the agent. The reward can be a func-
tion of both the observation xk and the action uk. The
reward is typically discounted to allow for infinite horizons
and to facilitate temporal credit assignment. Then, the sum
of discounted rewards for a trajectory can be defined as

rðsÞ ¼
XT
k¼0

ckrkðxk; ukÞ ð1Þ

where s ¼ ½x0; u0; . . . ; xT ; uT � denotes the trajectory, T is the
total number of time steps, and c 2 ½0; 1Þ denotes the dis-
count factor. The objective function the RL methods seek
to optimize is given by

JðhÞ ¼ EpðsÞ rðsÞ½ � ¼
Z
T

rðsÞphðsÞds ð2Þ

where

phðsÞ ¼
YT
k¼0

pðxkþ1jxk; uhÞ
" #

pðx0Þ ð3Þ

where EpðsÞ �½ � denotes the expectation over trajectories, T is
the set of trajectories induced by the policy, and in general
uh may be deterministic or stochastic function of the policy
parameters, h. However, it was noticed by Williams (1992)
that if the policy is chosen to be stochastic, where
uk � phðukjxkÞ is a PDF for uk conditioned on xk, then a
simple policy gradient expression can be found:

rhJðhÞ ¼ EpðsÞ
XT
k¼0

rkðxk; ukÞrh log phðukjxkÞ
" #

�
XM
i¼0

XT
k¼0

rkðxi
k; u

i
kÞrh log phðuikjxi

kÞ
ð4Þ

where the integral over s is approximated with M samples
from si � phðsÞ which are Monte Carlo roll-outs of the pol-
icy given the environment’s transition PDF, pðxkþ1jxkÞ. The
expression in Eq. (4) is called the policy gradient and the
form of this equation is referred to as the REINFORCE
method by Williams (1992). Since the development of the
REINFORCE method, additional theoretical work has
led to improvements in the performance of policy
gradient-based methods. In particular, it was shown that
the reward rkðxk; ukÞ in Eq. (4) can be replaced with state-
action value function Qpðxk; ukÞ, this result is known as
the Policy Gradient Theorem. Furthermore, the variance
of the policy gradient estimate that is derived from the
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Monte Carlo roll-outs, si, is reduced by subtracting a state-
dependent basis from Qpðxk; ukÞ. This basis is commonly
chosen to be the state value function V pðxkÞ, and we can
define Apðxk; ukÞ ¼ Qpðxk; ukÞ � V pðxkÞ. The function
Apðxk; ukÞ is referred to as the Advantage function for the
policy p and this function measures the relative reward
between taking a general action uk versus the action pro-
vided by the policy p. This method is known as the
Advantage-Actor-Critic (A2C) Method. The policy gradi-
ent for the A2C method is given by

rhJðhÞ �
XM
i¼0

XT
k¼0

Ap
wðxi

k; u
i
kÞrh log phðuikjxi

kÞ ð5Þ

where the w subscript denotes a function parameterized by
w.
2.3. Proximal policy optimization

The PPO approach (Schulman et al., 2017) is a type of
policy gradient which has demonstrated state-of-the-art
performance for many RL benchmark problems. The
PPO approach is developed using the properties of the
TRPO Method (Schulman et al., 2015). The TRPO method
formulates the policy optimization problem using a con-
straint to restrict the size of the gradient step taken during
each iteration (Sorensen, 1982). The TRPO method
policy update is calculated using the following problem
statement:

minimize
h

EpðsÞ
phðuk jxkÞ

phold ðuk jxkÞ
Ap
wðxk; ukÞ

h i
subject to EpðsÞ KL phðukjxkÞ; pholdðukjxkÞ

� �� �
6 d

ð6Þ

where the function KLð�; �Þ is the Kullback-Leibler (KL)
divergence Kullback and Leibler (1951). The parameter d
is a tuning parameter but the theory justifying the TRPO
methods proves monotonic improvement in the policy per-
formance if the policy change in each iteration is bounded a
parameter C. The parameter C is computed using the KL
divergence. Reference Schulman et al. (2015) computes a
closed-form expression for C but this expression leads to
prohibitively small steps, and therefore, Eq. (6) with a fixed
bound is used. Additionally, Eq. (6) is approximately
solved using the conjugate gradient algorithm, which
approximates the constrained optimization problem given
by Eq. (6) with a linearized objective function and a quad-
ratic approximation for the constraint. The PPO method
approximates the TRPO optimization process by account-
ing for the policy adjustment constraint with a clipped
objective function. The objective function used with PPO
can be expressed in terms of the probability ratio pkðhÞ
given by,

pkðhÞ ¼
phðukjxkÞ
pholdðukjxkÞ ð7Þ

where the PPO objective function is then as follows:
JðhÞ ¼ EpðsÞ min pkðhÞ; clipðpkðhÞ; 1� �; 1þ �Þ½ � Ap
wðxk; ukÞ

� �
ð8Þ

This clipped objective function has been shown to maintain
the KL divergence constraints, which aids convergence by
insuring that the policy does not change drastically
between updates. PPO uses an approximation to the
advantage function that is the difference between the
empirical return and a state value function baseline, given
by the following:

Ap
wðxk; ukÞ ¼

XT
‘¼k

c‘�krðx‘; u‘Þ
" #

� Vp
wðxkÞ ð9Þ

Here the value function V p
w is learned using the cost func-

tion given by

LðwÞ ¼
XM
i¼1

V p
wðxi

kÞ �
XT
‘¼k

c‘�krðui‘; xi
‘Þ

" # !2

ð10Þ

In practice, policy gradient algorithms update the policy
using a batch of trajectories (roll-outs) collected by interac-
tion with the environment. Each trajectory is associated
with a single episode, with a sample from a trajectory col-
lected at step k consisting of observation xk, action uk, and
reward rkðxk; ukÞ. Finally, gradient ascent is performed on h

and gradient descent on w and update equations are given
by

wþ ¼ w� � bwrwLðwÞjw¼w� ð11Þ
hþ ¼ h� þ bhrhJ hð Þjh¼h� ð12Þ
where bw and bh are the learning rates for the value func-
tion, V p

w xkð Þ, and policy, ph ukjxkð Þ, respectively.
3. Problem formulation

3.1. Equations of motion

The force FB and torque LB in the lander’s body frame
for a given commanded thrust depends on the placement
of the thrusters in the lander structure. We can describe
the placement of each thruster through a body-frame direc-

tion vector d and a position vector r, both in R3. The direc-
tion vector is a unit vector giving the direction of the body
frame force that results when the thruster is fired. The posi-
tion vector gives the body frame location where the force
resulting from the thruster firing is applied for the purposes
of computing torque. For a lander with k thrusters, the
body frame force and torque associated with one or more
thrusters firing is given by,

FB ¼
Xk
i¼1

dðiÞT ðiÞ
cmd ð13aÞ

LB ¼
Xk
i¼1

rðiÞ � F
ðiÞ
B ð13bÞ



Table 2
Body frame thruster locations.

Thruster x (m) y (m) z (m)

1 0 �2 �1
2 0 2 �1
3 �2 0 �1
4 2 0 �1
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where T cmdi 2 ½Tmin; Tmax� is the commanded thrust for
thruster i; Tmin and Tmax are a thruster’s minimum and max-

imum thrust, dðiÞ is the direction vector for thruster i, and

rðiÞ is the position of thruster i. The total body frame force
and torque are calculated by summing the individual forces
and torques. The dynamics model uses the lander’s current
attitude q to convert the body frame thrust vector to the
inertial frame, given by

FN ¼ AN
B ðqÞTFB ð14Þ

where AN
B ðqÞ is the direction cosine matrix mapping the

inertial frame to body frame obtained from the current atti-
tude parameter q. The attitude matrix is related to the
quaternion by the following expression (Shuster, 1993):

AN
B ðqÞ ¼ NT ðqÞWðqÞ ð15Þ

where

NðqÞ � q4I3�3 þ ½.��
�.T

� �
ð16aÞ

WðqÞ � q4I3�3 � ½.��
�.T

� �
ð16bÞ

where the quaternion is divided into the . and q4, the vec-

tor and scalar components, respectively, and qT ¼ ½. q4�T .
The rotational velocities xB=N are then obtained by inte-
grating the Euler rotational equations of motion, as follows
Junkins and Schaub (2009):

J _xB=N ¼ � xB=N�
� �

JxB=N þ LB þ LB
env ð17Þ

with

½a�� �
0 �a3 a2
a3 0 �a1
�a2 a1 0

2
64

3
75 ð18Þ

for any general 3� 1 vector a defined such that

½a��b ¼ a� b. The vector LB is the body frame torque as
given in Eq. (13b), Lenv is the body frame torque from
external disturbances, and J is the lander’s inertia tensor.
The lander’s attitude is then updated by integrating the dif-
ferential kinematic given by

_q ¼ 1

2
N qð ÞxB=N ð19Þ

where the lander’s attitude is parameterized using the

quaternion representation and xi denotes the ith compo-
nent of the rotational velocity vector xB=N . The transla-
tional motion is modeled as follows

_r ¼ v ð20aÞ

_v ¼ FN þ FN
env

m
þ g ð20bÞ

_m ¼ �
Pk

i kFBðiÞk
I spgref

ð20cÞ
where FN ðiÞ
is the inertial frame force as given in Eq. (14), k

is the number of thrusters, gref ¼ 9:8 m=s2;
g ¼ 0 0 �3:7114½ �m=s2 is used for Mars, I sp ¼ 225 s,
and the spacecraft’s mass is m. Fenv is a vector of normally
distributed random variables representing environmental
disturbances such as wind and variations in atmospheric
density. The random force vector Fenv is used during train-
ing to increase the policy’s robustness to external distur-
bances. It should be noted that, although Fenv is modeled
as a normally distributed random variable for this work,
a random-walk stochastic framework is a more realistic
disturbance model for dynamics systems. As a rough esti-
mate of the force caused by wind gusts, a cross-sectional
lander area of 100 square feet was assumed, and we used
the Cornell University wind pressure calculator to calculate
the resulting wind pressure in pounds per square foot,
divided this by 168 to account for the difference in average
surface air pressure between the two planets, multiplied by
the assumed cross-section of the lander, and then converted
the force to Newtons. Using this rough approximation, a
wind of 100 m/s would result in a force of 162 N. Note that
the Mars GRAM model shows a strong jet near 5-km
altitude and 70 degrees N latitude with winds reaching
100 m/s, so it is reasonable to expect a Lander to be able
to handle this case.

For purposes of modeling the lander’s moments of iner-
tia, we model the lander as a uniform density ellipsoid, with
inertia matrix given by

J ¼ m
5

b2 þ c2 0 0

0 a2 þ c2 0

0 0 a2 þ b2

2
64

3
75 ð21Þ

where a; b, and c correspond to the body frame x; y, and z

axes. m is the lander’s mass, which is updated as shown in
Eq. (20c). We assume the lander has a wet mass of 2000 kg
and four throttleable thrusters with a minimum and maxi-
mum thrust magnitude of 1000 N and 5000 N respectively.
The four thrusters are located in the lander body frame as
shown in Table 2, where x; y, and z are the body frame axes.
Roll is about the x-axis, yaw is about the z-axis, and pitch
is about the y-axis. Note that this thruster configuration
does not allow any direct control of the rotational velocity
around the z-axis. However, the lander’s yaw will change
during the trajectory, but due to coupling with pitch via
roll rather than due to torque caused by thrust. Direct
yaw control could be implemented by positioning the
thrusters at a slight angle to the body-frame z-axis, which

https://courses.cit.cornell.edu/arch264/calculators/example2.4/index.html
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might result in faster convergence of policy optimization.
The lander’s translational motion is described using a
target-centered inertial reference frame. The navigation
system provides updates to the guidance system every 0.2
s, and we integrate the equations of motion using fourth
order Runge-Kutta integration with a time step of 0.05 s.

3.2. Problem statement

Consider the powered descent problem on a large plan-
etary body such as Mars. In this section we describe the RL
set-up that is employed to find a 6-DOF closed-loop policy
that generates quasi-fuel optimal trajectories capable of (a)
driving the lander to the desired location to the planetary
surface with pin-point accuracy, and (b) satisfying flight
and systems constraints (e.g. glide slope, thrust and atti-
tude constraints). To set the stage for the problem formu-
lation in the RL framework, consider the standard
formulation for a typical trajectory optimization problem
(see for example Acikmese and Ploen, 2007):

Minimum-Fuel Problem: Find the thrust program and
flight time that minimize the following cost functions:

max
tf ;T

mLðtf Þ ¼ min
tf ;T

Z tf

0

kTkdt ð22Þ

subject to the following constraints (equations of motion):

€r ¼ gþ T

m
ð23aÞ

_m ¼ kTk
I spgref

ð23bÞ

and the following boundary conditions:

rð0Þ ¼ r0 ð24aÞ
vð0Þ ¼ _rð0Þ ¼ v0 ð24bÞ
rðtf Þ ¼ rf ð24cÞ
vðtf Þ ¼ _rðtf Þ ¼ vf ð24dÞ
And additional flight (glide slope) and thrust constraints:

0 < Tmin < kTk < Tmax ð25aÞ

halt ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ryðtÞ2 þ rzðtÞ2

q
rxðtÞ

0
@

1
A < ~halt ð25bÞ

Generally, one uses an inertial target-centered reference
frame that neglects the rotation of Mars. Since the powered
descent phase for a typical Mars mission is initiated at an
altitude that is low w.r.t. the planet’s radius, the gravity g

is assumed to be constant (i.e., motion in a uniform gravi-
tational field). The lander’s position is given by the vector

r 2 R3 and rT ¼ ½rx ry rz�T , where rx; ry , and rz are the
lander’s downrange, crossrange, and altitude in the target
centered reference frame. Likewise, the velocity is described

by a vector v 2 R3 and vT ¼ ½vx vy vz�T , where vx; vy , and
vz are the lander’s downrange, crossrange, and descent
components, respectively. The vectors r0; v0, and rf ; vf are
the initial and final position/velocity vetors, respectively.
Importantly, the thrust magnitude kTk is limited between

a maximum and minimum. The angle ~halt < p
2
represents

the glide slope constraint. This is cast as a typical optimal
control problem and generally solved using numerical
methods (e.g. Acikmese and Ploen, 2007; Lu, 2017). For
a 6-DOF problem, one needs to provide additional infor-
mation about the attitude of the lander. The body frame
is defined with the z-axis passing vertically through the lan-
der and orthogonal x and y axes completing the body ref-
erence frame. Although a more formal 6-DOF trajectory
and attitude optimal control problem can be done (e.g.
Szmuk and Acikmese, 2018), the RL framework is defined
such that the agent (i.e., the lander) responds to a single
cost (reward) signal which needs to be generally minimized
(maximized) during the search process. Indeed, with the
goal of the lander arriving at the origin of the target-
centered reference frame at some specified velocity vector
v ¼ _r and at a specified attitude, we can define the RL-
based landing problem as follows:

RL 6-DOF Closed-Loop Landing Problem:
Minimize:

1. Terminal Position Error: krk at t ¼ tf
2. Terminal Velocity Error: kvk at t ¼ tf
3. Terminal Attitude Error: Magnitude of Pitch / and Roll

h at t ¼ tf
4. Terminal Rotational Velocity Error: kxk at t ¼ tf
5. Control Effort:

P kTk where the sum is over a trajectory
and T is the total thrust

Subject to:

1. Terminal Glideslope: arctanðkvzk=kvx;ykÞ > 79 degrees
over final 2 m of descent (soft constraint)

2. Attitude Constraints: Magnitude of Pitch / and Roll h
less than 80 degrees (hard constraint)

3. Equations of Motion (set by the environment)

Here, hard constraints are imposed by terminating the
episode with a negative reward, whereas soft constraints
are encouraged through rewards but without premature
termination of the episode.
3.3. Implementation details

In order to facilitate reproduction of our results, we
include in this section several techniques we used in our
implementation. We adjust the clipping parameter � from
Eq. (8) to target a KL divergence between policy updates
of 0.001, which has worked well in other RL problems
(Schulman et al., 2017). The policy and value function is
learned concurrently, as the estimated value of a state is
policy dependent. We use a Gaussian distribution with
mean phðukjxkÞ and a diagonal covariance matrix for the



Table 3
Lander initial conditions for optimization.

Parameter min max

Downrange Position (m) 0 2000
Crossrange Position (m) �1000 1000
Elevation Position (m) 2300 2400
Downrange Velocity (m/s) �70 �10
Crossrange Velocity (m/s) �30 30
Elevation Velocity (m/s) �90 �70
Yaw (deg) �22.5 22.5
Pitch (deg) 22.5 67.5
Roll (deg) �22.5 22.5
Rotational Velocity Yaw Axis (deg/s) 0.00 0.00
Rotational Velocity Pitch Axis (deg/s) �0.60 0.60
Rotational Velocity Roll Axis (deg/s) �0.60 0.60
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action distribution in the policy. Because the log probabil-
ities are calculated using the exploration variance, the
degree of exploration automatically adapts during learning
such that the objective function is maximized.

We use the ADAM optimizer (Kingma and Ba, 2014) to
adjust the learning rate for both the policy and value func-
tion networks. We use an approximation to the KL diver-
gence for a Gaussian that is given by the mean square
difference between the pre- and post-log probabilities of
policy actions. This approximation is close to the exact
KL divergence and is used in the open AI’s baseline PPO
implementation which is referred to as PPO2 (Schulman
et al., 2017).

� ¼
minð�max; 1:5�Þ if kl < 1

2
kltarg

maxð�min;
1
1:5
�Þ if kl > 2kltarg

(
ð26Þ

f ¼
1:5f if kl < 1

2
kltarg and � > 1

2
�max and f < fmax

1
1:5
f if kl > 2kltarg and � < 2�min and f > fmin

(

ð27Þ
We adjust the clipping parameter � based off of the KL
divergence between policy updates as shown in Eq. (26),
where kl is the KL divergence between policy updates,
kltarg is the target KL divergence, and �max and �min are
set to 0.5 and 0.01. A similar implementation was suggested
in Reference Schulman et al. (2017). We also adjust the
ADAM step size by multiplying it by a parameter f as
shown in (27), where fmin and fmax are set to 0.1 and 10.
A learning rate adjustment was used in Schulman et al.
(2017) for the roboschool environments, but the exact
implementation was not divulged.

When approximating functions using artificial neural
networks, it is important to scale the inputs to avoid sat-
urating the activation functions at each layer. Most
implementations scale the network input using statistics
calculated over a given rollout. Specifically, each element
of an input vector is scaled by first subtracting the mean
of the element and then dividing by three times the stan-
dard deviation, with the statistics calculated over a batch
of rollouts. A rollout is a batch of episodic trajectories
collected by the agent interacting with the environment
that is used to update the policy and value function.
We use a variation on this approach that adjusts the
statistics used for scaling incrementally over the entire
optimization, which boosts performance by avoiding dis-
continuities in the scaling statistics. It is also important
to ensure that the magnitude of the neural network out-
puts are reasonably close to unity, although full normal-
ization is not required. For policy parameter learning, we
scale the action such that maximum thrust for an engine
corresponds to a value of one. For value function
parameter learning, we use a heuristic that multiplies
the rewards accumulated over an episode by a factor
of 1� c.
3.4. RL problem formulation

In order to apply the reinforcement learning framework
developed in Section 2.3 to a particular problem, we need
to define an environment and reward function and specify
the policy and value function network architectures. To
test the policy, the trained policy is substituted for the
agent. The action taken by the agent based on the observa-
tion provided by the dynamics model is interpreted as a
thrust command by the thruster model, which passes a
body frame force and torque to the dynamics model, which
computes the next state. An episode terminates when the
lander’s altitude falls below zero or the attitude constraint
(the only hard constraint) is violated. The initial condition
generator generates random initial conditions for the lan-
der with values uniformly distributed between the mini-
mum and the maximum values given in Table 3, which

corresponds to a 4 km2 deployment ellipse. Although a 4

km2 deployment ellipse may seem unrealistically small for
the Mars powered descent phase application, the reduced
range of initial conditions results in a simpler problem that
allows us to iterate quickly over different hyperparameter
settings in the reward function. Later in this work, we

extend the deployment ellipse to 9 km2.
To speed up the design process, we developed a 3-DOF

RL environment where we could quickly assess the impact
of different reward functions and hyperparameter settings.
A policy optimized in the 3-DOF RL environment con-
verges around 70 times faster than in the 6-DOF environ-
ment. The reward function for the 3-DOF environment is
identical to that of the 6-DOF environment. We show opti-
mization learning curves for the 3-DOF environment to
allow comparison. The 3-DOF results are also used to
compare performance with the integrated guidance and
control system, where for a perfectly integrated guidance
and control system, we expect performance similar to the
3-DOF case.

The policy and value functions are implemented using
four-layer neural networks with tanh activations on each
hidden layer. The network architectures are as shown in



Table 4
Policy and value function network architecture.

Policy Network Value Network

Layer # units Activation # units Activation

Hidden 1 10 	 obs dim tanh 10 	 obs dim tanh
Hidden 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh1 	 nh3p

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh1 	 nh3p

tanh
Hidden 3 10 	 act dim tanh 5 tanh
Output act dim Linear 1 Linear
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Table 4, where nhi is the number of units in layer i; obs dim
is the observation dimension, and act dim is the action
dimension.

The most challenging part of solving the Mars landing
problem using RL was the development of a reward func-
tion that works well in a sparse reward setting. If we only
reward the agent for making a soft pinpoint landing at the
correct attitude and with close to zero rotational velocity,
the agent would never see the reward within a realistic
number of episodes, as the probability of achieving such
a landing using random actions in a 6-DOF environment
with realistic initial conditions is exceedingly low. The
sparse reward problem is typically addressed using inverse
reinforcement learning (Ng et al., 2000), where a per time
step reward function is learned from expert demonstra-
tions. With a reward given at each step of agent-
environment interaction, the rewards are no longer sparse.
In theory, demonstrations using optimal control could pro-
vide trajectories for inverse RL, but this would be very
computationally expensive for 6-DOF trajectories, and
many optimal control packages have trouble with complex
non-convex and/or non-differentiable constraints.

Instead, we chose a different approach, where we engi-
neer a reward function that, at each time step, provides
hints to the agent (referred to as ‘‘shaping rewards”) that
drive it towards a soft pinpoint landing. The recommended
approach for such a reward shaping function is to make the
reward a difference of potentials, in which case theoretical
results have shown that the additional reward does not
change the optimal policy (Ng, 2003). However, we were
unable to find a potential function that worked well with
the difference of potentials approach.

Our solution was to choose a shaping reward that keeps
the agent’s velocity vector aligned with the line of sight vec-
tor. Such a shaping reward results in a pinpoint, but not
necessarily soft, landing. To achieve the soft landing, the
agent estimates time-to-go as the ratio of the range and
the magnitude of the lander’s velocity and reduces the tar-
geted velocity as time-to-go decreases. It is also important
that the lander’s terminal velocity be directed predomi-
nantly downward, the lander’s terminal attitude is upright,
and there are negligible terminal rotational velocity compo-
nents. To achieve these requirements, we use the piecewise
reward shaping function given in Eqs. (28a)–(28e), where s1
and s2 are hyperparameters and vo is set to the magnitude
of the lander’s velocity at the start of the powered descent
phase. We see that the shaping rewards take the form of a
velocity field that maps the lander’s position to a target
velocity. In words, we target a location 15 m above the
desired landing site and target a z-component of landing
velocity equal to �2 m/s. Below 15 m, the downrange
and crossrange velocity components of the target velocity
field are set to zero, which encourages a vertical descent.
Targeting a vertical descent has the beneficial side effect
of encouraging the agent to keep the attitude level with
no rotational velocity. This results in a good landing atti-
tude with small rotational velocity components and a
velocity directed primarily downward.

vtarg ¼ �vo
r̂

kr̂k
	 


1� exp � tgo
s

� �� �
ð28aÞ

tgo ¼ kr̂k
kv̂k ð28bÞ

r̂ ¼ r� 0 0 15½ �; ifrz > 15

0 0 rz½ �; otherwise



ð28cÞ

v̂ ¼ v� 0 0 �2½ �; ifrz > 15

v� 0 0 �1½ �; otherwise



ð28dÞ

s ¼ s1; ifrz > 15

s2; otherwise



ð28eÞ

Finally, we provide a terminal reward bonus when the lan-
der reaches an altitude of zero, and the terminal position,
velocity, attitude, and rotational velocity are within speci-
fied limits. The reward function is then given by the
following:

r ¼ akv� vtargk þ bkFBk þ cany q tð Þ > qlimð Þ

þd
X3
i¼1

�maxð0; qi � qmgniÞ þ g

þjðrz < 0 and krk < rlim and kvk < vlim
and allðq < qlimÞ and allðx < xlim and gs < gslimÞÞ

ð29Þ
where the various terms are described in the following:

1. a weights a term penalizing the error in tracking the tar-
get velocity (negative reward).

2. b weights a term penalizing control effort (negative
reward).

3. c weights a term penalizing exceeding yaw, pitch, and
roll limits. The ”any” function is set to Boolean True
if any elements of its argument are Boolean True (just
like the Python np.any() function). If any attitude com-
ponent exceeds its limit, the episode is terminated. (neg-
ative reward)

4. d weights a term that increases as the lander’s attitude
(Euler 321) passes a threshold qmgn; this gives the agent

a hint that it is approaching the attitude limit qlim (neg-
ative reward)

5. g is a constant positive term that encourages the agent to
keep making progress along the trajectory. Since all
other rewards are negative, without this term, an agent
would be incentivized to violate the attitude constraint
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and prematurely terminate the episode to maximize the
total discounted rewards received starting from the ini-
tial state. (positive reward)

6. j is a bonus given for a successful landing, where termi-
nal position, velocity, attitude, rotational velocity, and
glideslope gs are all within specified limits. The ‘‘all”
function is set to Boolean True if all elements of its argu-
ment are Boolean True (just like the Python np.all()
function). The limits are rlim ¼ 5 m; vlim ¼ 2m=s
m; qlim ¼ 0:2 rad (except for yaw, which is not limited),
gslim ¼ 79 degrees, and wlim ¼ 0:2 rad/s. (positive
reward)

This reward function allows the agent to trade off
between tracking the target velocity given in Eq. (28a), con-
serving fuel, satisfying the attitude constraints, and maxi-
mizing the reward bonus given for a good landing. Note
that the constraints are not hard constraints such as might
be imposed in an optimal control problem solved using col-
location methods. However, the consequences of violating
the constraints (a large negative reward and termination of
the episode) are sufficient to ensure they are not violated
once learning has converged. Hyperparameter settings
and coefficients used in this work are given in Table 5, note
that due to lander symmetry, we do not impose any limits
on the lander’s yaw. There is a certain amount of intuition
that goes into choosing some of these hyperparameter set-
tings, as is generally the case when applying reinforcement
learning to complex problems. In this work, it took a few
hours of thought to determine initial values, and around
a week of simulation to fine-tune the values.

The observation given to the agent during learning and
testing is given by

obs ¼ verror q x rz tgo½ � ð30Þ
where verror ¼ v� vtarg, with vtarg given in Eq. (28a), the lan-
der’s estimated altitude, the time-to-go, as well as an esti-
mate of the lander’s attitude (q) and rotational velocity
(x). Note that aside from the altitude, the lander transla-
tional coordinates do not appear in the observation. This
results in a policy with good generalization in that the pol-
icy’s behavior can extend to areas of the full state space
that were not experienced during learning. To provide a
robust final policy, we optimize with parameter uncertainty.
Table 5
Hyperparameter settings.

Parameter Value

vo (m/s) kvok
s1 (s) 20
s2 (s) 100
a �0.01
b �0.05
c �100
d �20
g 0.01
j 10

qlim (deg) 360 80 80½ �
qmgn (deg) 360 67 67½ �
Specifically, at the beginning of each episode both the
lander’s initial mass and the acceleration due to gravity
are perturbed to give a random value within 5% and 2%
of nominal, respectively. In addition, we apply random
uniform noise to the inertia tensor at the beginning of each
episode. There is no physical significance to the inertia ten-
sor noise; it is just a method of introducing parameter
uncertainty in order to learn a robust policy.

It turns out that the when a terminal reward is used (as
we do), it is advantageous to use a relatively large discount
rate. However, it is also advantageous to use a lower dis-
count rate for the shaping rewards. To our knowledge, a
method of resolving this conflict has not been reported in
the literature. In this work, we resolve the conflict by intro-
ducing a framework for accommodating multiple discount
rates. Let c1 be the discount rate used to discount r1ðkÞ, the
reward function term in Eq. (29) that is associated with the
j coefficient. Moreover, let c2 be the discount rate used to
discount r2ðkÞ, the sum of all other terms in the reward
function. We can then rewrite the Eq. (10) and (9) in terms
of these rewards and discount rates, as given by the
following:

JðwÞ ¼
XM
i¼1

V p
wðxi

kÞ �
XT
l¼k

c‘�k
1 r1ðui‘; xi

‘Þ þ c‘�k
2 r2ðui‘; xi

‘Þ
" # !2

ð31aÞ

Ap
wðxk; ukÞ ¼

XT
‘¼k

c‘�k
1 r1ðu‘; x‘Þ þ c‘�k

2 r2ðu‘; x‘Þ
" #

� V p
wðxkÞ

ð31bÞ
Although the approach is simple, the performance
improvement is significant, despite the fact that we had
to give up the use of generalized advantage estimation
(Schulman et al., 2015b) as it is not compatible with multi-
ple discount rates. Without the use of multiple discount
rates, the performance was actually worsened by including
the terminal reward term.
4. Results

Code to reproduce results can be found at: github.com/
Aerospace-AI/AAS-18-290-6DOF
4.1. Policy optimization

Rollouts are generated by the agent interacting with the
environment for 120 episodes, with the resulting trajecto-
ries used to compute the advantages and update the value
and policy function approximators. Optimization was ter-
minated after 300,000 episodes. Learning curves are shown
in Figs. 1–5. In Fig. 1 (Fig. 4 for 3-DOF optimization), we
plot statistics for the undiscounted rewards over 120 epi-
sodes, which is the number of episodes the agent accumu-
lates before updating the policy and value function.
”Steps” refers to the number of interactions between the



Fig. 1. 6-DOF Optimization: Learning curves of mean number of steps per 1000 episodes (left vertical axis), mean reward (right vertical axis), standard
deviation of reward, and minimum reward.

Fig. 2. 6-DOF Optimization: Learning statistics of KL, Entropy, and Explained Variance versus episodes.
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agent and environment for the episode; this can be con-
verted to the trajectory duration by multiplying by the nav-
igation period of 0.2s. Fig. 2 (Fig. 5 for 3-DOF
optimization) gives the policy entropy and the KL diver-
gence between policy updates. We also plot the explained
variance as a measure of how well the value function
explains the observed returns; if the explained variance is
1, the value function perfectly explains the observed
returns, if it is less than zero, the value functions predictive
ability is less than that of predicting constant value for the
value of being in any state. Specifically, we calculate the
explained variance as shown below in Eq. (32), where y is
the actual sum of discounted rewards over the batch of tra-
jectories (the target for the value function approximator)
and ŷ is the predicted sum of discounted rewards as given
by the value function approximator.
exp var ¼ 1� r2
y � r̂2

y

r2
y

ð32Þ

Fig. 3(a) and (b) (Fig. 6(a) and (b) for 3-DOF) plot the
lander’s end of episode position and velocity magnitudes as
learning progresses, where again the statistics are accumu-
lated over the 120 episodes used for the policy and value
function updates. Fig. 3 (In Fig. 6 for the 3-DOF optimiza-
tion), we plot the mean and standard deviation of the lan-
der’s position, velocity, attitude, and angular velocity at
end of episode computed over the 120 episodes. Note in
Fig. 3(c) and (d) that the standard deviation of the attitude
and rotational velocity seems inconsistent with a good
landing. This is partly due to the parameter uncertainty
introduced during learning, and partly due to policy explo-
ration. However, during the execution of the learned policy



Fig. 3. 6-DOF optimization: lander position, velocity, attitude, and angular velocity at end of episode. (a) Norm position, (b) norm velocity, (c) norm
attitude, (d) norm angular velocity.

Fig. 4. 3-DOF Optimization: learning curves of mean number of steps per 1000 episode (left vertical axis), mean reward (right vertical axis), standard
deviation of reward, and minimum reward.
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a good landing solution is achieved. Although we termi-
nated optimization at 300,000 episodes, the performance
was still improving, and the standard deviation of the
action was still around 4% for exploration. Since this is
4% of the maximum thrust, exploration noise still had a
significant impact on the policy. During policy testing, we
see that the magnitude of the attitude and rotational veloc-
ity is bounded more tightly.
4.2. Policy testing

To test the guidance policy, we simulate the policy for
10,000 episodes using the same initial conditions as used
for policy optimization, as given in Table 3. During testing,
the dynamics model adds Gaussian noise to the force act-
ing on the lander. The noise has a mean that is computed
at the start of each episode uniformly distributed between



Fig. 5. 3-DOF optimization: learning statistics of KL, entropy, and explained variance versus episodes.

Fig. 6. 3-DOF Optimization: lander position and velocity at end of episode. (a) Norm position, (b) norm velocity.
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�100 and 100 N and held constant during the episode. The
noise standard deviation is 100 N. At the start of each epi-
sode, the nominal wet mass of 2000 kg is set to a uniformly
distributed value between ± 5% of nominal. The distribu-
tions for all the uncertain parameters that are randomly
sampled during learning are shown in Table 6. Table 7 tab-
ulates the touchdown statistics accumulated over testing.
The glideslope statistic is given by the average
arctanðvz=k½vx; vy �kÞ over the final 2 m of descent; here a
high value is desirable, as it indicates the lander’s velocity
is directed primarily in the downward direction. Note that
due to symmetry in the lander design, we do not care about
the terminal yaw value.

We compared the fuel efficiency of the 6-DOF RL agent
to that of a 3-DOF RL agent using the same reward
Table 6
Parameter uncertainty for policy optimization.

Parameter min max

Initial Mass (kg) 1900 2100
Grav. Acc. (m=s2) 0:07 0:07 3:64½ � �0:07 �0:07 3:79½ �
IT Diag (kg m2) �100 100
IT Off-Diag (kg m2) �10 10
shaping function and to a 3-DOF controller using the
energy-optimal closed-loop guidance algorithm as devel-
oped by Battin (1999), page 558 and D’Souza (1997) (here
referred to as DR/DV algorithm). The fuel efficiency statis-
tics are given at the bottom of Table 7. We use the DR/DV
results as a proxy for optimal performance, as the algo-
rithm is energy-optimal for the case of unlimited thrust
(although we limit the thrust for the comparison). Because
DR/DV has an unacceptable terminal glideslope (less than
45 degrees), we used a piecewise trajectory with a single
waypoint 15 m above the landing site, similar to the
approach we used for the RL policy, which achieved a min-
imum glideslope of 82.4 degrees. This added about 20 kg to
the DR/DV fuel consumption. We see a 4% increase in fuel
consumption for the 6-DOF RL agent as compared to
3-DOF DR/DV. To put this increase in perspective, note
that tracking the DR/DV trajectory in a 6-DOF environ-
ment would certainly increase fuel consumption. Finally,
note that the 6-DOF RL agent achieves fuel efficiency close
to that of the 3-DOF RL agent; this tells us that the
selected reward shaping function has a critical impact on
fuel efficiency. There is certainly room for improvement
here, as the exponential decrease in the magnitude of the



Table 7
Touchdown statistics (same initial condition range as for optimization).

Parameter Mean SD Min Max

Downrange Position (m) 0.4 0.7 �3.0 4.5
Crossrange Position (m) �0.1 0.7 �5.9 5.2

Downrange Velocity (m/s) 0.06 0.03 �0.06 0.14
Crossrange Velocity (m/s) �0.01 0.04 �0.20 0.13
Elevation Velocity (m/s) �0.93 0.08 �0.36 1.32

Pitch (rad) �0.016 0.010 �0.063 0.033
Roll (rad) �0.003 0.011 �0.038 0.066

Rot. Velocity – Roll (rad/s) �0.000 0.021 �0.129 0.105
Rot. Velocity – Pitch (rad/s) �0.005 0.013 �0.099 0.066
Rot. Velocity – Yaw (rad/s) 0.000 0.000 0.000 0.000

Glideslope (deg) 87.40 1.12 82.4 89.93

Fuel Consumed – 6-DOF RL (kg) 291 15 257 352
Fuel Consumed – 3-DOF RL (kg) 291 14 260 358
Fuel Consumed – 3-DOF DR/DV (kg) 279 14 233 335
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target velocity is probably sub-optimal. Indeed, an optimal
trajectory with an initial position far from the target land-
ing site might accelerate towards the target to quickly close
the downrange and crossrange distance in order to reduce
trajectory time and use less fuel to maintain altitude.

Divert functionality was tested by running 5000 Monte
Carlo simulations over the same initial conditions, but trig-
gering a divert of 800 m downrange and 800 m crossrange
when the lander reached an altitude of 1500 m. On average,
the divert maneuver resulted in a 30 kg average increase in
fuel consumption but otherwise did not impact
performance.

A sample trajectory is plotted in Fig. 7, where x; y, and z

are the downrange, crossrange, and altitude trajectory
components in the target-centered reference frame. Thrust
Fig. 7. 6-DOF sam
is shown in the inertial frame. The left side plot that is sec-
ond from the top gives the altitude as a function of the
norm of the cross range and downrange position. This plot
is from initial conditions of 1500 m to �70 m/s downrange,
�500 m to �30 m/s crossrange, and 2400 m to �90 m/s ele-
vation. For comparison, we also plot (Fig. 8) a trajectory
from the 3-DOF RL policy that starts from the same initial
conditions. Note that there are a couple of places where the
system exhibits small oscillations in the lander’s thrust vec-
tor. If this were due to the policy falling into a local cost
function minimum, further optimization may have allowed
improvement, as the exploration variance was close to 0.2
when optimization was terminated. Also note that depend-
ing on the lander aerodynamics, a maximum angular veloc-
ity of close to 50 degrees per second may be too large.
ple trajectory.



Fig. 8. Sampled 3-DoF trajectory using 3-DOF policy and same position and velocity as 6-DoF case.

B. Gaudet et al. / Advances in Space Research 65 (2020) 1723–1741 1737
Although in this work we only implemented an attitude
constraint, it would be a simple matter to add a rotational
velocity constraint as well. The apparent discontinuity dur-
ing the last few seconds of a trajectory is due to the shaping
function enforcing a vertical descent over the last 15 m.

From Figs. 7 and 8, it is apparent that the 3-DOF and
6-DOF position and velocity trajectories are almost identi-
cal. The thrust differs toward the start and end of the land-
ing due to the need to adjust attitude in the 6-DOF case in
order to change the thrust direction, although overall the
thrust trajectories are similar. Specifically, since the simula-
tions begin with an average pitch of 45 degrees, the policy
rotates the lander to a smaller pitch angle in order to allow
a burn with the thrust vector pointing downwards to
reduce the magnitude of the vertical velocity component.
In addition, the policy must rotate the lander to allow a
burn that reduces the crossrange velocity until the lander
Table 8
Lander extended initial conditions for optimization.

Parameter min max

9 km2 deployment ellipse

Downrange Position (m) 0 3000
Crossrange Position (m) �1500 1500
Elevation Position (m) 2400 2500
Downrange Velocity (m/s) �70 �10
Crossrange Velocity (m/s) �30 30
Elevation Velocity (m/s) �90 �70

12 km2 deployment ellipse
Downrange Position (m) 0 4000
Crossrange Position (m) �1500 1500
Elevation Position (m) 2900 3100
Downrange Velocity (m/s) 0 4000
Crossrange Velocity (m/s) �30 30
Elevation Velocity (m/s) �90 �70

Fig. 9. 100 sample trajectories over 9 km2 deployment ellipse. (a) 3-DOF
trajectories, (b) 6-DOF trajectories.
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is on a trajectory pointing towards the target. Towards the
end of the trajectory, where the lander must transition to a
vertical descent, there is another area where the thrust tra-
jectories differ.

We also re-tested the policy over two extended deploy-
ment ellipses, as shown in Table 8, where we extend the

deployment ellipse to 9 km2, and again to 12 km2. Here
we use the same environmental noise and mass uncertainty

as in the testing of the policy over the 4 km2 deployment
ellipse. Note that in order to obtain satisfactory perfor-

mance over the 12 km2 deployment ellipse, we had to raise
the altitude of the deployment ellipse to 3000 m. Impor-
tantly, this is the same policy that was optimized over the

initial conditions given in Table 3, i.e., a 4 km2 deployment
ellipse. Landing statistics over 20,000 episodes were similar
to that given in Table 7, but average and maximum fuel
consumption increased. Since the reward shaping function
does not require the lander’s full translational state, the
policy generalizes quite well to regions of state space not
experienced during optimization. Fig. 9(a) and (b) illustrate

100 randomly sampled trajectories using the 9 km2 deploy-
ment ellipse for the 3-DOF and 6-DOF policies,
respectively.
5. Comparison with GPOPS solution

Fig. 10 shows experimental results comparing the
3-DOF and 6-DOF agents to the solution provided by
Fig. 10. Comparison of 3-DOF and 6-DOF policy with GPOPS solution. (a) T
trajectories for 3-DOF, 6-DOF, and GPOPS starting from same initial conditi
DOF, and GPOPS.
GPOPS (Rao et al., 2010), an optimal control solver using
a 3-DOF problem formulation with the same initial condi-
tions used to generate Figs. 7 and 8. The GPOPS solution,
which also required a vertical descent over the final 15 m of
altitude loss, had a fuel consumption of 250 kg, as com-
pared to 290 kg for the 6-DOF and 3-DOF policies, mak-
ing the RL policy fuel consumption 18 percent higher than
GPOPS optimal. First, regarding fuel efficiency, note that
the GPOPS trajectories are open loop, and when combined
with a trajectory tracking controller the fuel consumption
will be higher. Second, since the 6-DOF and 3-DOF poli-
cies have almost identical fuel consumption, we can attri-
bute the difference in fuel efficiency between the RL
policies and optimal to the reward shaping function used
during optimization, which although effective, is not opti-
mal. Indeed, we see in Fig. 10 that the RL policy trajecto-
ries are on average 20 s longer than the GPOPS
trajectories. Moreover, the thrust profile does not conform
to the typical ‘‘bang-bang” thrust magnitude associated
with optimal trajectories. Consequently, future work to
improve the fuel efficiency of the RL derived integrated
guidance and control system should focus on the reward
shaping function. Concretely, it may prove productive to
learn an optimal velocity field function f : r # v mapping
the agent’s position r to velocity v. Specifically, we would
use GPOPS to generate a large number of 3-DOF optimal
trajectories over a range of initial conditions spanning the
deployment ellipse, and collect a dataset of positions and
associated velocities. A neural network would then learn
otal mass performance comparison for 3-DOF, 6-DOF, and GPOPS, (b)
ons, (c) thrust magnitude profiles performance comparison for 3-DOF, 6-



Fig. 11. 6-DOF and 3-DOF fuel-mass performance. (a) 3-DOF fuel-mass performance, (b) 6-DOF fuel-mass performance, (c) 3-DOF fuel-mass along the
trajectories, (d) 6-DOF fuel-mass along the trajectories.

Table 9
Extended range fuel consumption.

Parameter Mean SD Max

9 km2 deployment ellipse

Fuel Consumed – 6-DOF RL Policy (kg) 308 25 412
Fuel Consumed – 3-DOF RL (kg) 309 25 400
Fuel Consumed – 3-DOF DR/DV (kg) 297 23 381

12 km2 deployment ellipse
Fuel Consumed – 6-DOF RL Policy (kg) 340 31 468
Fuel Consumed – 3-DOF RL (kg) 341 30 437
Fuel Consumed – 3-DOF DR/DV (kg) 319 27 414
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the optimal velocity field mapping from this dataset.
Finally, during RL optimization, the trained velocity field
neural network would output a target velocity vector which
would replace vtarg in Eq. (28a).

Additionally, the comparison of the 3-DOF and 6-DOF
agents in terms of fuel consumption is further investigated
in Fig. 11. Fig. 11(a), (b), (c), and (d) show the fuel perfor-
mance for the 3-DOF and 6-DOF policies over the 9
square kilometer deployment ellipse. Fig. 11(a), (b), (c),
and (d) plot the difference between the initial mass and
the final mass, Dm ¼ mðtf Þ � mðtoÞ, as a function of the ini-
tial velocity and divert range. We expect that for larger
divert ranges and larger initial velocities the fuel consump-
tion will be larger, and Figs. 11(a) and (b) show these
trends for both the trained 3-DOF and 6-DOF policy. It
should be noted that once trained, these policies are able
to provide a closed-loop integrated guidance and control
solution that safely lands given a 9 square kilometer
deployment ellipse and ranges of initial velocities shown
in Fig. 11(a) and (b). The main takeaway from Fig. 11(a)
and (b) is that the 3-DOF and 6-DOF policy have similar
performance in terms of fuel consumption. However, inves-
tigating the fuel consumption along the trajectory (shown
in Fig. 11(c) and (d) for the 3-DOF and 6-DOF cases,
respectively), we see that the 6-DOF and 3-DOF policies
initially deviate in terms of fuel consumption but then fol-
low a similar trajectory. This is due to that fact that both
policies have the same target velocity profiles. The values
for the fuel performance are also summarized in Table 9.
On a 2.3Ghz processor, it takes less than 1mS for the 6-
DOF policy to map an observation to an action; 3-DOF is
faster at less than 0.2mS. On a flight processor running at
100 MHz, we would expect the 6-DOF mapping to increase
to around 23mS. In this work, we used a navigation period
of 0.2 s, so the policy mapping run time is not an issue. This
is using the Tensorflow python API, further speedup would
be possible by coding the guidance and control system
using C++.
6. Conclusion

The intent of this paper was to demonstrate that rein-
forcement learning is a viable approach to developing an
integrated guidance and control system for aerospace appli-
cations, although we have certainly not demonstrated all of
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the potential benefits of the reinforcement learning frame-
work (see Table 1) in this work.A second contribution of this
work was to introduce the use of different discount rates for
shaping and terminal rewards, which we found significantly
enhances performance. A policy was optimized in a 6-DOF
Mars powered descent phase environment. The trained pol-
icy was validated through Monte Carlo simulation, and we
demonstrated the ability to achieve pinpoint accuracy and
a soft landing with minimal deviation from an ideal landing
attitude and rotational velocity, with large divert distance
capability. The policy was shown to be robust to noise and
parameter uncertainty. The computational requirements to
run the policy are modest, with only four matrix multiplica-
tions required tomap the estimated state from the navigation
system to abody frame thrust command,whichmakes it pos-
sible to run the policy on the current generationof flight com-
puters. Although fuel efficiency was not optimal, the
approach does have the advantages (as compared to generat-
ing and tracking an optimal trajectory) of being global over
the theater of operations and computational efficiency.
Developing a mission ready guidance and control system
would require high fidelity models of peripheral systems,
and a promising approach would be to integrate the naviga-
tion system into the policy (raw sensor output mapping to
actuator commands), providing robustness to sensor noise
and miscalibration. Future work will explore a reinforce-
ment learning architecture where the policy can adapt in real
time to changing dynamics and internal/ external distur-
bances, and apply the reinforcement learning framework
to other aerospace applications, including hypersonic reen-
try, asteroid close proximity operations and the homing
phase missile interception problem.
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